
Supplementary Material for580

“Hodge-Aware Learning on Simplicial Complexes”581

A Illustration for Background582

Ths paper relies on the Hodge decomposition and the spectral simplicial theory. To ease the exposition,583

we illustrate them for the edge flow space. We refer to [27, 26, 30] for more details.584

A.1 Hodge decomposition of an edge flow585

Given an edge flow x1, the Hodge decomposition in Theorem 1 gives586

x1 = x1,G + x1,C + x1,H (A.1)

with x1,G = B
>
1
x0 for some node signal x0, and x1,C = B2x2 for some triangle signal x2, and587

x1,H follows B1x1,H = 0 and B
>
2
x1,H = 0.588

(a) Edge flow (b) Gradient flow (c) Curl flow (d) Harmonic flow

Figure A.1: Hodge decomposition of an edge flow. (b)-(d) are the Hodge decomposition of the
example edge flow in (a) (we denote its divergence and curl in purple and orange, respectively).
The gradient flow is the gradient of some node signal (in blue) and is curl-free. The curl flow can
be obtained from some triangle flow (in red), and is divergence-free. The harmonic flow has zero
divergence and zero curl, which is circulating around the hole {1, 3, 4}. Note that in this figure and
Fig. A.2, the flow numbers are rounded up to two decimal places. Thus, at some nodes or triangles
with zero-divergence or zero-curl, the divergence or curl might not be exactly zero.

A.2 Spectral simplicial theory589

Here we show how the eigenvalues of Lk carry the notion of simplicial frequency [30]. Specifically,590

we show for k = 1 an eigenvalue measures the total divergence or curl of the eigenvector.591

• Gradient Frequency: the nonzero eigenvalues associated with the eigenvectors U1,G of L1,d,592

which span the gradient space im(B>
1

), admit L1,du1,G = �1,Gu1,G for any eigenpair593

u1,G and �1,G. Thus, we have �1,G = u
>
1,GL1,du1,G = u

>
1,GB

>
1
B1u1,G = kB1u1,Gk

2

2
,594

which is an Euclidean norm of the divergence, i.e., the total nodal variation of u1,G. If an595

eigenvector has a larger eigenvalue, it has a larger total divergence. For the SFT of an edge596

flow, if the gradient embedding x̃1,G has a large weight on such an eigenvector, it contains597

components with a large divergence, and we say it has a large gradient frequency. Thus, we598

call such eigenvalues associated with U1,G gradient frequencies.599

• Curl Frequency: the nonzero eigenvalues associated with the eigenvectors U1,C of L1,u,600

which span the curl space im(B2), admit L1,uu1,C = �1,Cu1,C for any eigenpair u1,C and601

�1,C. Thus, we have �1,C = u
>
1,CL1,uu1,C = u

>
1,CB2B

>
2
u1,C = kB

>
2
u1,Ck

2

2
, which is602

an Euclidean norm of the curl, i.e., the total rotational variation of u1,C. If an eigenvector603

has a larger eigenvalue, it has a larger total curl. For the SFT of an edge flow, if the curl604

embedding x̃1,C has a large weight on such an eigenvector, it contains components with a605

large curl, and we say it has a large curl frequency. Thus, we call such eigenvalues associated606

with U1,C curl frequencies.607

• Harmonic Frequency: the zero eigenvalues associated with the eigenvectors U1,H, which608

span the harmonic space ker(L1), admit L1u1,H = 0 for any eigenpair u1,H and �1,H = 0.609

14



From the definition of L1, we have B1u1,H = B
>
2
u1,H = 0. That is, the eigenvector u1,H610

is divergence- and curl-free. We also say such an eigenvector has zero signal variation in611

terms of the nodes and triangles. This resembles the constant graph signal in the node space.612

We call such zero eigenvalues as harmonic frequencies.613

Fig. A.2 shows the simplicial Fourier basis and the corresponding simplicial frequencies of the SC,614

from which we see how the eigenvalues of L1 can be interpreted as the simplicial frequencies.615

(a) uG,1, �G,1(0.80) (b) uG,2, �G,2(1.61) (c) uG,3, �G,3(2.43) (d) uG,4, �G,4(3.96) (e) uG,5, �G,5(5.12)

(f) uG,6, �G,6(6.08) (g) uC,1, �C,1(1.59) (h) uC,2, �C,2(3.00) (i) uC,3, �C,3(4.41) (j) uH, �H(0)

Figure A.2: (a)-(f) Six gradient frequencies and the corresponding Fourier basis. We also annotate
their divergences, and we see that these eigenvectors with a small eigenvalue have a small magnitude
of total divergence, i.e., the edge flow variation in terms of the nodes. Gradient frequencies reflect the
nodal variations. (g)-(i) Three curl frequencies and the corresponding Fourier basis. We annotate their
curls and we see that these eigenvectors with a small eigenvalue have a small magnitude of total curl,
i.e., the edge flow variation in terms of the triangles. Curl frequencies reflect the rotational variations.
(j) Harmonic basis with a zero frequency, which has a zero nodal and zero rotational variation.

For k = 0, the eigenvalues of L0 carry the notion of graph frequency, which measures the graph616

(node) signal smoothness w.r.t. the upper adjacent simplices, i.e., edges. Thus, the curl frequency of617

k = 0 coincides with the graph frequency and a constant graph signal has only harmonic frequency618

component, and there is no divergence frequency. For a more general k, there exist these three types619

of simplicial frequencies, which measure the k-simplicial signal total variations in terms of faces and620

cofaces.621

B Illustrated Simplicial Complex CNNs and Details on Properties622

We give two examples where the first is a SCCNN on a SC of order two, and the second is the form623

of SCCNN with multi-features.624

Example 13. For k = 2, a SCCNN layer reads as625
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(B.1)

Recursively, we see that a SCCNN layer takes as inputs {x
l�1

0
,x

l�2

0
,x

l�2

1
,x

l�2

2
} to compute x

l
0
.626

One may find this familar as some type of skip connections in GNNs [65].627

Example 14 (Multi-Feature SCCNN). A multi-feature SCCNN at layer l takes {X
l�1

k�1
,X

l�1

k ,X
l�1

k+1
}628

as inputs, each of which has Fl�1 features, and generates an output Xl
k with Fl features as629

X
l
k = �

 
TdX

t=0

L
t
k,dB

>
k X

l�1

k�1
W

0l
k,d,t +

TdX

t=0

L
t
k,dX

l�1

k W
l
k,d,t

+
TuX

t=0

L
t
k,uX

l�1

k W
l
k,u,t +

TuX

t=0

L
t
k,uBk+1X

l�1

k+1
W

0l
k,u,t

! (B.2)

where L
t indicates the matrix t-power of L, while superscript l indicates the layer index.630
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(a) SC example (b) Lower edge conv. (c) Upper edge conv. (d) Inter-simplicial locality

Figure B.1: (a) A SC where arrows indicate the reference orientations of edges and triangles. 2-
simplices are (filled) triangles shaded in green and open triangle {1, 3, 4} is not in the SC. (b) Lower
convolution via H1 and H1,d on edge e1: SCF H1 aggregates the information from its direct lower
neighbors (edges in blue) and two-hop lower neighbors (edges in purple) to e1 (in black) if Td = 2;
and lower SCF H1,d aggregates the projected information from nodes to edges likewise (denoted by
the arrows in blue and purple from nodes to edges). (c) Upper convolution via H1 and H1,u on e1: H1

aggregates the information from direct upper neighbors (edges in red) and two-hop upper neighbors
(edges in orange) to e1 (in black); and upper SCF H1,u aggregates the projected information from
triangles to edges likewise (denoted by double arrows in red and orange from triangle centers to
edges). (d) Node 1 (in black) contains information from its neighbors {2, 3, 4} (nodes in red), and
projected information from edges which contribute to these neighbors (denoted by arrows in red from
edges to nodes), and from triangles {t1, t2, t3} which contribute to those edges (denoted by double
arrows in red from triangle centers to edges). This interaction is the coupling between the intra- and
the extended inter-simplicial locality.

B.1 Simplicial locality in details631

The construction of SCFs has an intra-simplicial locality. Hkxk, which consists of basic operations632

Lk,dxk and Lk,uxk. They are given, on simplex s
k
i , by633

[Lk,dxk]i =
P

j2Nk
i,d[{i}[Lk,d]ij [xk]j , [Lk,uxk]i =

P
j2Nk

i,u[{i}[Lk,u]ij [xk]j , (B.3)

where s
k
i aggregates signals from its lower and upper neighbors, N

k
i,d and N

k
i,u. We can compute634

the t-step shifting recursively as L
t
k,dxk = Lk,d(Lt�1

k,d xk), a one-step shifting of the (t � 1)-shift635

result; likewise for L
t
k,uxk. A SCF linearly combines such multi-step simplicial shiftings based on636

lower and upper adjacencies. Thus, the output Hkxk is localized in Td-hop lower and Tu-hop upper637

k-simplicial neighborhoods [30]. SCCNNs preserve such intra-simplicial locality as the elementwise638

nonlinearity does not alter the information locality, shown in Figs. B.1b and B.1c.639

A SCCNN takes the data on k- and (k±1)-simplices at layer l�1 to compute x
l
k, causing interactions640

between k-simplices and their (co)faces when all SCFs are identity. In turn, xl�1

k�1
contains information641

on (k � 2)-simplices from layer l � 2. Likewise for x
l�1

k+1
, thus, xl

k also contains information up to642

(k ± 2)-simplices if L � 2, because Bk�(Bk+1) 6= 0. Accordingly, this inter-simplicial locality643

extends to the whole SC if L � K, unlike linear filters in a SC where the locality happens up to the644

adjacent simplices [31, 66], which limits its expressive power. This locality is further coupled with645

the intra-locality through three SCFs such that a node not only interacts with the edges incident to it646

and direct triangles including it, but also edges and triangles further hops away which contribute to647

the neighboring nodes, as shown in Fig. B.1d.648

B.2 Complexity649

In a SCCNN layer for computing x
l
k, there are 2 + Td + Tu filter coefficients for the SCF H

l
k, and650

1 + Td and 1 + Tu for H
l
k,d and H

l
k,u, respectively, which gives the parameter complexity of order651

O(Td + Tu). This complexity will increase by FlFl�1 fold for the multi-feature case, and likewise652

for the computational complexity. Given the inputs {x
l�1

k�1
,x

l�1

k ,x
l�1

k+1
}, we discuss the computation653

complexity of x
l
k in (1).654

First, consider the SCF operation H
l
kx

l�1

k . As discussed in the localities, it is a composition of655

Td-step lower and Tu-step upper simplicial shiftings. Each simplicial shifting has a computational656
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complexity of order O(nkmk) dependent on the number of neighbors. Thus, this operation has a657

complexity of order O(nkmk(Td + Tu)).658

Second, consider the lower SCF operation H
l
k,dB

>
k x

l�1

k�1
. As incidence matrix Bk is sparse, it has659

nk(k + 1) nonzero entries as each k-simplex has k + 1 faces. This leads to a complexity of order660

O(nkk) for operation B
>
k x

l�1

k�1
. Followed by a lower SCF operation, i.e., a Td-step lower simplicial661

shifting, thus, a complexity of order O(knk + nkmkTd) is needed.662

Third, consider the upper SCF operation H
l
k,uBk+1x

l�1

k+1
. Likewise, incidence matrix Bk+1 has663

nk+1(k + 2) nonzero entries. This leads to a complexity of order O(nk+1k) for the projection664

operation Bk+1x
l�1

k+1
. Followed by an upper SCF operation, i.e., a Tu-step upper simplicial shifting,665

thus, a complexity of order O(kNk+1 + nkMkTu) is needed.666

Finally, we have a computational complexity of order O(k(nk + nk+1) + NkMk(Td + Tu)) in total.667

Remark 15. The lower SCF operation H
l
k,dB

>
k x

l�1

k�1
can be further reduced if nk�1 ⌧ nk. Note668

that we have669

H
l
k,dB

>
k x

l�1

k�1
=

TdX

t=0

w
0l
k,d,tL

t
k,dB

>
k x

l�1

k�1
= B

>
k

TdX

t=0

w
0l
k,d,tL

t
k�1,ux

l�1

k�1
, (B.4)

where the second equality comes from that Lk,dB
>
k = B

>
k BkB

>
k = B

>
k Lk�1,u, L

2

k,dB
>
k =670

(B>
k Bk)(B>

k Bk)B>
k = B

>
k (BkB

>
k )(BkB

>
k ) = B

>
k Lk�1,u and likewise for general t. Using the671

RHS of (B.4) where the simplicial shifting is performed in the (k � 1)-simplicial space, we have a672

complexity of order O(kNk + nk�1mk�1Td). Similarly, we have673

H
l
k,uBk+1x

l�1

k+1
=

TuX

t=0

w
0l
k,u,tL

t
k,uBk+1x

l�1

k+1
= Bk+1

TuX

t=0

w
0l
k,u,tL

t
k+1,dx

l�1

k+1
(B.5)

where the simplicial shifting is performed in the (k+1)-simplicial space. If it follows that nk+1 ⌧ nk,674

we have a smaller complexity of O(kNk+1 + nk+1mk+1Tu) by using the RHS of (B.5).675

B.3 Details on Symmetries of SCs and simplicial data, Equivariance of SCCNNs676

Permutation symmetry of SCs. There exists a permutation group Pnk for each set S
k in a SC677

of order K. For K = 0, this gives the graph permutation group. We can combine these groups for678

different simplex orders by a group product to form a larger permutation group P = ⇥k Pnk , which679

is a symmetry group of SCs and simplicial data, assuming vertices in each simplex are consistently680

ordered. That is, we have, for p = (p0, p1, . . . , pK) 2 P , [p · Lk]ij = [Lk]p�1
k (i)p�1

k (j), [p · Bk]ij =681

[Bk]p�1
k�1(i)p

�1
k (j), and [p·xk]i = [xk]p�1

k (i). This permutation symmetry of SCs gives us the freedom682

to list simplices in any order.683

Orientation symmetry of simplicial data. The orientation of a simplex is an equivalence class684

that two orientations are equivalent if they differ by an even permutation [9, 8]. Thus, for a simplex685

s
k
i = {i0, . . . , ik} with k > 0, we have an orientation symmetry group Ok,i = {o

+

k,i, o
�
k,i} by a group686

homomorphism which maps all the even permutations of {i0, . . . , ik} to the identity element o
+

k,i687

and all the odd permutations to the reverse operation o
�
k,i.688

We can further combine the orientation groups of all simplices in a SC as O = ⇥i,k Ok,i by using a689

group product. This however is not a symmetry group of an oriented SC because o
�
k,i ·Lk changes the690

signs of Lk elements in ith column and row, and o
�
k,i · Bk changes the ith row, resulting in a different691

SC topology. Instead, it is a symmetry group of the data space, due to its alternating nature w.r.t.692

simplices. For o 2 O we have [o · xk]i = ok,i · fk(sk
i ) = fk(o�1

k,i · s
k
i ), i.e., [xk]i remains unchanged693

w.r.t. the changed orientation of s
k
i . This gives us the freedom to choose reference orientations of694

simplices when working with simplicial data.695

Theorem 16 (Permutation Equivariance). A SCCNN in Eq. (1) is P -equivariant. For all p 2 P , we696

have p · SCCNNk : {pk�1 · xk�1, pk · xk, pk+1 · xk+1} ! pkxk.697

Theorem 17 (Orientation Equivariance). A SCCNN in Eq. (1) is O-equivariant if �(·) is odd. For all698

o 2 O, we have o · SCCNNk : {ok�1 · xk�1, ok · xk, ok+1 · xk+1} ! ok · xk.699
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Proof. Both the permutation group and orientation group have linear matrix representations. By700

following the same procedure in [17, Appendix D] or [16], we can prove the equivariance.701

B.4 Diffusion process on SCs702

Diffusion process on graphs can be generalized to SCs to characterize the evolution of simplicial703

data over the SC, in analogy to data diffusion on nodes [12, 36, 29]. Here we provide an informal704

treatment of how discretizing diffusion equations on SCs can give resemblances of simplicial shifting705

layers. Consider diffusion equation and its Euler discretization with a unit time step706

ẋk(t) = �Lkxk(t), Euler step: xk(t + 1) = xk(t) � Lkxk(t) = (I � Lk)xk(t) (B.6)

with an initial condition xk(t) = x
0

k. The solution of this diffusion is xk(t) = exp (�Lkt)x0

k. As707

the time increases, the simplicial data reaches to a steady state ẋk(t) = 0, which lies in the harmonic708

space ker(Lk). The simplicial shifting layer resembles this Euler step with a weight and nonlinearity709

when viewing the time step as layer index. Thus, a NN composed of simplicial shifting layers can710

suffer from oversmoothing on SCs, giving outputs with decreasing Dirichlet energies as the number711

of layers increases.712

Now let us consider the case where the two Laplacians have different coefficients713

ẋk(t) = �Lk,dxk(t) � �Lk,uxk(t), Euler step: xk(t) = (I � Lk,d � �Lk,u)xk(t). (B.7)

The steady state of this diffusion equation follows (Lk,d + �Lk,u)xk(t) = 0, where xk(t) would be714

in the kernal space of Lk still. However, before reaching this state, when the time increases, xk(t)715

would primarily approach to the kernel of B
>
k+1

if � � 1, in which the lower part of the Dirichlet716

energy remains, i.e., the decrease of D(x(t)) slows down.717

When accounting for inter-simplicial couplings, consider there are nontrivial xk�1 and xk+1 and the718

diffusion equation becomes719

ẋk(t) = �Lkxk(t) + B
>
k xk�1 + Bk+1xk+1, (B.8)

which has source terms B
>
k xk�1 +Bk+1xk+1. Consider a steady state ẋk = 0. We have Lkxk(t) =720

xk,d + xk,u, where xk is not in the kernel space of Lk. The Euler discretization gives721

xk(t + 1) = (I � Lk)xk(t) + xk,d + xk,u. (B.9)

The layer in [14] x
l+1

k = w0(I � Lk)xl
k + w1xk,d + w2xk,u is a weighted variant of above step722

when viewing time steps as layers.723

C Proofs for Section 3724

C.1 Dirichlet energy minimization perspective725

Hodge Laplacian smoothing. We can find the gradient of problem Eq. (2) as @D
@xk

= B
>
k Bkxk +726

�Bk+1B
>
k+1

xk, thus, a gradient descent step follows as Eq. (2) with a step size ⌘.727

Proof of Proposition 3. Consider ⌘ = 1.728

D(xl+1

k ) = w
2

0
kBk(I � Lk,d � �Lk,u)xl

kk
2

2
+ w

2

0
kB

>
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kk

2

2

= w
2

0
k(I � Lk�1,u)Bkx

l
kk

2

2
+ w

2

0
k(I � �Lk+1,d)B>

k+1
x

l
kk

2

2

 w
2

0
k(I � Lk�1,u)k2

2
kBkx

l
kk

2

2
+ w

2

0
k(I � �Lk+1,d)k2

2
kB

>
k+1

x
l
kk

2

2

(C.1)

which follows from triangle inequality. By definition, we have kI � Lk�1,uk
2

2
= kI � Lk,dk

2

2
and729

kI � Lk,uk
2

2
= kI � Lk+1,dk

2

2
. Also, we have kI � Lkk

2

2
= max{kI � Lk,dk

2

2
, kI � Lk,uk

2

2
} Thus,730

we have D(xl+1

k )  w
2

0
kI � Lkk

2

2
D(xl

k) when � = 1. When w
2

0
kI � Lkk

2

2
< 1, Dirichlet energy731

D(xl+1

k ) will exponentially decrease as l increases.732

When � 6= 1, from (C.1), we have D(xl+1

k ) = Dd(xl+1

k ) + Du(xl+1

k ), which follows733

Dd(xl+1

k )  w
2

0
k(I � Lk,d)k2

2
Dd(xl

k) and Du(xl+1

k )  w
2

0
k(I � �Lk,u)k2

2
Du(xl

k) (C.2)
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When � = 1, the oversmoothing condition is kI � Lkk
2

2
= max{kI � Lk,dk

2

2
, kI � Lk,uk

2

2
} <

1

w2
0

.734

If kI � Lkk
2

2
= kI � Lk,dk

2

2
, under the oversmoothing condition, by not restricting � to be 1,735

w
2

0
k(I � �Lk,u)k2

2
can be larger than 1 depending on the choice, which means Du(xl

k) does not736

necessarily decrease, so does not D(xl
k).737

Hodge Laplacian smoothing with sources. The gradient of the objective in Eq. (3) is given by738

Lkx
l
k � B

>
k xk�1 � Bk+1xk+1, which gives the gradient descent update in Eq. (3) with a step size ⌘.739

Consider the layer in [14] xl+1

k = w0(I�Lk)xl
k+w1xk,d+w2xk,u with some weights. By triangle in-740

equality, we have D(xl+1

k )  w
2

0
kI�Lkk

2

2
D(xl

k)+w
2

1
�max(Lk,d)kxk,dk

2

2
+w

2

2
�max(Lk,u)kxk,uk

2

2
.741

If the weight w0 is small enough following the condition in Proposition 3, the contribution from the742

projections, controled by weights w1 and w2, can compromise the decrease by w0, maintaining the743

Dirichlet energy.744

D Proofs for Section 4745

D.1 A derivation of the spectral frequency response Eq. (4)746

SFT of xk. First, the SFT of xk is given by x̃k = [x̃>
k,H, x̃

>
k,G, x̃

>
k,C]> with the harmonic embedding747

x̃k,H = U
>
k,Hxk = U

>
k,Hxk,H in the zero frequencies, the gradient embedding x̃k,G = U

>
k,Gxk =748

U
>
k,Gxk,G in the gradient frequencies, and the curl embedding x̃k,C = U

>
k,Cxk = U

>
k,Cxk,C in the749

curl frequencies.750

SFT of Hkxk. By diagonalizing an SCF Hk with Uk, we have751

Hkxk = Uk
eHkU

>
k xk = Uk(h̃k � x̃k) (D.1)

where eHk = diag(h̃k). Here, h̃k = [h̃>
k,H, h̃

>
k,G, h̃

>
k,C]> is the frequency response, given by752

8
><

>:

harmonic response : h̃k,H = (wk,d,0 + wk,u,0)1,

gradient response : h̃k,G =
PTd

t=0
wk,d,t�

�t
k,G + wk,u,01,

curl response : h̃k,C =
PTu

t=0
wk,u,t�

�t
k,C + wk,d,01,

with (·)�t the elementwise tth power of a vector. Thus, we can express h̃k � x̃k as753

[(h̃k,H � x̃k,H)>
, (h̃k,G � x̃k,G)>

, (h̃k,C � x̃k,C)>]>. (D.2)

SFT of projections. Second, the lower projection xk,d 2 im(B>
k ) has only a nonzero gradient754

embedding x̃k,d = U
>
k,Gxk,d. Likewise, the upper projection xk,u 2 im(Bk+1) contains only a755

nonzero curl embedding x̃k,u = U
>
k,Cxk,u. The lower SCF Hk,d has h̃k,d =

PTd

t=0
w

0
k,d,t�

�t
k,G as756

the frequency response that modulates the gradient embedding of xk,d and the upper SCF Hk,u has757

h̃k,u =
PTu

t=0
w

0
k,u,t�

�t
k,C as the frequency response that modulates the curl embedding of xk,u.758

SFT of yk. For the output yk = Hk,dxk,d + Hkxk + Hk,uxk,u, we have759

8
<

:

ỹk,H = h̃k,H � x̃k,H,

ỹk,G = h̃k,d � x̃k,d + h̃k,G � x̃k,G,

ỹk,C = h̃k,C � x̃k,C + h̃k,u � x̃k,u.

(D.3)

D.2 Expressive power in Theorem 6760

Proof. From the Cayley-Hamilton theorem [37], we know that an analytical function f(A) of a761

matrix A can be expressed as a matrix polynomial of degree at most its minimal polynomial degree,762

which equals to the number of distinct eigenvalues if A is positive semi-definite.763

Consider an analytical function Gk,d of Lk,d, defined on the spectrum of Lk,d via analytical function764

gk,G(�) where � is in the set of zero and the gradient frequencies. Then, Gk,d can be implemented765

by a matrix polynomial of Lk,d of order up to nk,G where nk,G is the number of nonzero eigenvalues766
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of Lk,d, i.e., the number of distinct gradient frequencies. Likewise, any analytical function Gk,u of767

Lk,u can be implemented by a matrix polynomial of Lk,u of order up to nk,C, which is the number768

of nonzero eigenvalues of Lk,u, i.e., the number of distinct curl frequencies.769

Thus, as of the matrix polynomial definition of SCFs in a SCCNN, the expressive power of Hk,dxk,d+770

Hkxk +Hk,uxk,u is at most G0
k,dxk,d +(Gk,d +Gk,u)xk +G

0
k,uxk,u, when the matrix polynomial771

orders (convolution orders) follow Tk,d = T
0
k,d = nk,G and Tk,u = T

0
k,u = nk,C.772

D.3 Hodge-aware of SCCNN in Theorem 7773

Proof. Consider a linear mapping T : V ! V . An invariant subspace W of T has the property that all774

vectors v 2 W are transformed by T into vectors also contained in W , i.e., v 2 W =) T (v) 2 W.775

For an input x 2 im(B>
k ), the output Hkx is in im(B>

k ) too, because of776

Hkx =
X

t

L
t
k,dx +

X

t

L
t
k,ux =

X

t

L
t
k,dx 2 im(B>

k ) (D.4)

where the second equality comes from the orthogonality between im(B>
k ) and im(Bk+1). Similarly,777

we can show that for x 2 im(Bk+1), the output Hkx 2 im(Bk+1); for x 2 ker(Lk), the output778

Hkx 2 ker(Lk). This essentially says the three subspaces of the Hodge decomposition are invariant779

with respect to the SCF Hk. Likewise, the gradient space is invariant with respect to the lower SCF780

Hk,d, which says any lower projection remains in the gradient space after passed by Hk,d; and the781

curl space is invariant with respect to the upper SCF Hk,u.782

Lastly, through the spectral relation in Eq. (4), the learning operator Hk in the gradient space is783

controlled by the learnable weights {wk,d,t}, which is independent of the learnable weights {wk,u,t},784

associated to the learning of Hk in the curl space. Likewise, the lower SCF learns in the gradient785

space as well but with another set of learnable weights {w
0
k,d,t}, and the upper SCF learns in the curl786

space with learnable weights {w
0
k,u,t}. From the spectral expressive power, we see that above four787

independent learning in the two subspaces can be as expressive as any analytical functions of the788

corresponding frequencies (spectrum). This concludes the independent and expressive learning in the789

gradient and curl spaces.790

E Proofs for Section 5791

We first give the formulation of SCCNNs on weighted SCs, then we proceed the stability proof.792

A weighted SC can be defined through specifying the weights of simplices. We give the definition of793

a commonly used weighted SC with weighted Hodge Laplacians in [29, 39].794

Definition 18 (Weighted SC and Hodge Laplacians). In an oriented and weighted SC, we have795

diagonal weighting matrices Mk with [M]ii measuring the weight of ith k-simplex. A weighted kth796

Hodge Laplacian is given by797

Lk = Lk,d + Lk,u = MkB
>
k M

�1

k�1
Bk + Bk+1Mk+1B

>
k+1

M
�1

k . (E.1)

where Lk,d and Lk,u are the weighted lower and upper Laplacians. A symmetric version fol-798

lows L
s
k = M

�1/2

k LkM
1/2

k , and likewise, we have L
s
k,d = M

1/2

k B
>
k M

�1

k�1
BkM

1/2

k and L
s
k,u =799

M
�1/2

k Bk+1Mk+1B
>
k+1

M
�1/2

k , with the weighted incidence matrix is M
�1/2

k�1
BkM

1/2

k [39–41].800

SCCNNs in weighted SC. The SCCNN layer defined in a weighted SC is of form801

x
l
k = �(Hl

k,dRk,dx
l�1

k�1
+ H

l
kx

l�1

k + H
l
k,uRk,ux

l�1

k+1
) (E.2)

where the three SCFs are defined based on the weighted Laplacians (E.1), and the lower and802

upper contributions x
l
k,d and x

l
k,u are obtained via projection matrices Rk,d 2 Rnk⇥nk�1 and803

Rk,u 2 Rnk⇥nk+1 , instead of B
>
k and Bk+1. For example, [14] considered R1,d = M1B

>
1
M

�1

0
804

and R1,u = B2M2.805
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E.1 Proof of Stability of SCCNNs in Theorem 12806

For a SCCNN in (E.2) in a weighted SC S , we consider its perturbed version in a perturbed SC bS at807

layer l, given by808

x̂
l
k = �( bHl

k,d
bRk,dx̂

l�1

k�1
+ bHl

kx̂
l�1

k + bHl
k,u
bRk,ux̂

l�1

k+1
) (E.3)

which is defined based on perturbed Laplacians with the same set of filter coefficients, and the809

perturbed projection operators following relativ perturbation model.810

Given the initial input x
0

k for k = 0, 1, . . . , K, our goal is to upper bound the Euclidean distance811

between the outputs x
l
k and x̂

l
k for l = 1, . . . , L,812

kx̂
l
k � x

l
kk2 = k�( bHl

k,d
bRk,dx̂

l�1

k�1
� H

l
k,dRk,dx

l�1

k�1

+ bHl
kx̂

l�1

k � H
l
kx

l�1

k + bHl
k,u
bRk,ux̂

l�1

k+1
� H

l
k,uRk,ux

l�1

k+1
)k2.

(E.4)

We proceed the proof in two steps: first, we analyze the operator norm k bHl
k � H

l
kk2 of a SCF H

l
k813

and its perturbed version bHl
k; then we look for the bound of the output distance for a general L-layer814

SCCNN. To ease notations, we omit the subscript such that kAk = maxkxk2=1kAxk2 is the operator815

norm (spectral radius) of a matrix A, and kxk is the Euclidean norm of a vector x.816

In the first step we omit the indices k and l for simplicity since they hold for general k and l. We first817

give a useful lemma.818

Lemma 19. Given the ith eigenvector ui of L = U⇤U
>, for lower and upper perturbations Ed819

and Eu, we have820

Edui = qdiui + E1ui, Euui = quiui + E2ui (E.5)

with eigendecompositions Ed = VdQdV
>
d

and Eu = VuQuV
>
u

where Vd, Vu collect the821

eigenvectors and Qd, Qu the eigenvalues. It holds that kE1k ✏d�d and kE2k ✏u�u, with822

�d = (kVd �Uk+1)2 �1 and �u = (kVu �Uk+1)2 �1 measuring the eigenvector misalignments.823

Proof. We first prove that Edui = qdiui + E1ui. The perturbation matrix on the lower Laplacian824

can be written as Ed = E
0

d
+ E1 with E

0
d

= UQdU
> and E1 = (Vd � U)Qd(Vd � U)> +825

UQd(Vd � U)> + (Vd � U)QdU
>. For the ith eigenvector ui, we have that826

Edui = E
0

d
ui + E1ui = qdiui + E1ui (E.6)

where the second equality follows from E
0
d
ui = qdiui. Since kEdk ✏d, it follows that kQdk ✏d.827

Then, applying the triangle inequality, we have that828

kE1kk(Vd � U)Qd(Vd � U)>
k+kUQd(Vd � U)>

k+k(Vd � U)QdUk

kVd � Uk
2
kQdk+2kVd � UkkQdkkUk ✏dkVd � Uk

2+2✏dkVd � Uk

=✏d((kVd � Uk+1)2 � 1) = ✏d�d,

(E.7)

which completes the proof for the lower perturbation matrix. Likewise, we can prove for Euui.829

E.1.1 Step I: Stability of the SCF H
l
k830

Proof. 1. Low-order approximation of bH � H. Given a SCF H =
PTd

t=0
wd,tL

t
d

+
PTu

t=0
wu,tL

t
u

,831

we denote its perturbed version by bH =
PTd

t=0
wd,t

bLt
d

+
PTu

t=0
wu,t

bLt
u
, where the filter coefficients832

are the same. The difference between H and bH can be expressed as833

bH � H =
TdX

t=0

wd,t(bLt
d

� L
t
d
) +

TuX

t=0

wu,t(bLt
u

� L
t
u
), (E.8)

in which we can compute the first-order Taylor expansion of bLt
d

as834

bLt
d

= (Ld + EdLd + LdEd)t = L
t
d

+ Dd,t + Cd (E.9)
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with Dd,t :=
Pt�1

r=0
(Lr

d
EdL

t�r
d

+ L
r+1

d
EdL

t�r�1

d
) parameterized by t and Cd following kCdk835 Pt

r=2

�t
r

�
kEdLd + LdEdk

r
kLdk

t�r. Likewise, we can expand bLt
u

as836

bLt
u

= (Lu + EuLd + Ldu)t = L
t
u

+ Du,t + Cu (E.10)

with Du,t :=
Pt�1

r=0
(Lr

u
EuL

t�r
u

+ L
r+1

u
EuL

t�r�1

u
) parameterized by t and Cu following kCuk837 Pt

r=2

�t
r

�
kEuLu + LuEuk

r
kLuk

t�r. Then, by substituting (E.9) and (E.10) into (E.8), we have838

bH � H =
TdX

t=0

wd,tDd,t +
TuX

t=0

wu,tDu,t + Fd + Fu (E.11)

with negligible terms kFdk= O(kEdk
2) and kFuk= O(kEuk

2) because perturbations are small839

and the coefficients of higher-order power terms are the derivatives of analytic functions h̃G(�) and840

h̃C(�), which are bounded [cf. Definition 10].841

2. Spectrum of ( bH � H)x. Consider a simplicial signal x with an SFT x̃ = U
>
x = [x̃1, . . . , x̃n],842

thus, x =
Pn

i=1
x̃iui. Then, we study the effect of the difference of the SCFs on a simplicial signal843

from the spectral perspective via844

( bH � H)x =
nX

i=1

x̃i

TdX

t=0

wd,tD
t
d,tui +

nX

i=1

x̃i

TdX

t=0

wu,tD
t
u,tui + Fdx + Fux (E.12)

where we have845

D
t
d,tui =

t�1X

r=0

(Lr
d
EdL

t�r
d

+L
r+1

d
EdL

t�r�1

d
)ui, and D

t
u,tui =

t�1X

r=0

(Lr
u
EuL

t�r
u

+L
r+1

u
EuL

t�r�1

u
)ui.

(E.13)
Since the lower and upper Laplacians admit the eigendecompositions for an eigenvector ui846

Ldui = �diui, Luui = �uiui, (E.14)

we can express the terms in (E.12) as847

L
r
d
EdL

t�r
d

ui = L
r
d
Ed�

t�r
di ui = �

t�r
di L

r
d
(qdiui + E1ui) = qdi�

t
diui + �

t�r
di

L
r
d
E1ui, (E.15)

where the second equality holds from Lemma 19. Thus, we have848

L
r+1

d
EdL

t�r�1

d
ui = qdi�

t
diui + �

t�r�1

di L
r+1

d
E1ui. (E.16)

With the results in (E.15) and (E.16), we can write the first term in (E.12) as849

nX

i=1

x̃i

TdX

t=0

wd,tD
t
d,tui =

nX

i=1

x̃i

TdX

t=0

wd,t

t�1X

r=0

2qdi�
t
diui

| {z }
term 1

+
nX

i=1

x̃i

TdX

t=0

wd,t

t�1X

r=0

(�t�r
di L

r
d
E1ui + �

t�r�1

di L
r+1

d
E1ui)

| {z }
term 2

.

(E.17)

Term 1 can be further expanded as850

term 1 = 2
nX

i=1

x̃iqdi

TdX

t=0

twd,t�
t
diui = 2

nX

i=1

x̃iqdi�dih̃
0
G

(�di)ui (E.18)

where we used the fact that
PTd

t=0
twd,t�

t
di = �dih̃

0
G

(�di). Using Ld = U⇤dU
> we can write term851

2 in (E.17) as852

term 2 =
nX

i=1

x̃iUdiag(gdi)U
>
E1ui (E.19)
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where gdi 2 Rn has the jth entry853

[gdi]j =
TdX

t=0

wd,t

t�1X

r=0

✓
�

t�r
di [⇤d]rj + �

t�r�1

di [⇤d]r+1

j

◆
=

(
2�dih̃

0
G

(�di) for j = i,

�di+�dj

�di��dj
(h̃G(�di) � h̃G(�dj)) for j 6= i.

(E.20)
Now, substituting (E.18) and (E.19) into (E.17), we have854

nX

i=1

x̃i

TdX

t=0

wd,tD
t
d,tui = 2

nX

i=1

x̃iqdi�dih̃
0
G

(�di)ui +
nX

i=1

x̃iUdiag(gdi)U
>
E1ui. (E.21)

By following the same steps as in (E.17)-(E.20), we can express also the second term in (E.12) as855

nX

i=1

x̃i

TdX

t=0

wu,tD
t
u,tui = 2

nX

i=1

x̃iqui�uih̃
0
C
(�ui)ui +

nX

i=1

x̃iUdiag(gui)U
>
E2ui (E.22)

where gui 2 Rn is defined as856

[gui]j =
TdX

t=0

wu,t

t�1X

r=0

✓
�

t�r
ui [⇤u]rj + �

t�r�1

ui [⇤u]r+1

j

◆
=

(
2�uih̃

0
C
(�ui) for j = i,

�ui+�uj

�ui��uj
(h̃C(�ui) � h̃C(�uj)) for j 6= i.

(E.23)

3. Bound of k( bH � H)xk. Now we are ready to bound k( bH � H)xk based on triangle inequality.857

First, given the small perturbations kEdk  ✏d and kEuk  ✏u, we have for the last two terms in858

(E.12)859

kFdxk  O(✏2
d
)kxk, and kFuxk  O(✏2

u
)kxk. (E.24)

Second, for the first term k
Pn

i=1
x̃i
PTd

t=0
wd,tD

t
d
uik in (E.12), we can bound its two terms in (E.18)860

and (E.19) as861

����
nX

i=1

x̃i

TdX

t=0

wd,tD
t
d,tui

���� 

����2
nX

i=1

x̃iqdi�dih̃
0
G

(�di)ui

����+

����
nX

i=1

x̃iUdiag(gdi)U
>
E1ui

����.

(E.25)
For the first term on the RHS of (E.25), we can write862

����2
nX

i=1

x̃iqdi�dih̃
0
G

(�di)ui

����
2

 4
nX

i=1

|x̃i|
2
|qdi|

2
|�dih̃

0
G

(�di)|
2

 4✏
2

dc
2

d
kxk

2
, (E.26)

which results from, first, |qdi|  ✏d = kEdk since qdi is an eigenvalue of Ed; second, the integral863

Lipschitz property of the SCF |�h̃
0
G

(�)|  cd; and lastly, the fact that
Pn

i=1
|x̃i|

2 = kx̃k
2 = kxk

2864

and kuik
2 = 1. We then have865

����2
nX

i=1

x̃iqdi�dih̃
0
G

(�di)ui

����  2✏dcdkxk. (E.27)

For the second term in RHS of (E.25), we have866
����

nX

i=1

x̃iUdiag(gdi)U
>
E1ui

���� 

nX

i=1

|x̃i|kUdiag(gdi)U
>

kkE1kkuik, (E.28)

which stems from the triangle inequality. We further have kUdiag(gdi)U>
k = kdiag(gdi)k  2Cd867

resulting from kUk = 1 and the cd-integral Lipschitz of h̃G(�) [cf. Definition 10]. Moreover, it868

follows that kE1k  ✏d�d from Lemma 19, which results in869

����
nX

i=1

x̃iUdiag(gdi)U
>
E1ui

����  2Cd✏d�d

p
nkxk (E.29)

where we use that
Pn

i=1
|x̃i| = kx̃k1 

p
nkx̃k =

p
nkxk. By combining (E.26) and (E.29), we870

have871 ����
nX

i=1

x̃i

TdX

t=0

wd,tD
t
d,tui

����  2✏dcdkxk + 2Cd✏d�d

p
nkxk. (E.30)
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Analogously, we can show that872

����
nX

i=1

x̃i

TdX

t=0

wu,tD
t
u,tui

����  2✏ucukxk + 2Cu✏u�u

p
nkxk. (E.31)

Now by combining (E.24), (E.30) and (E.31), we can bound k( bH � H)xk as873

k( bH � H)xk  2✏dcdkxk + 2Cd✏d�d

p
nkxk + O(✏2

d
)kxk

+ 2✏ucukxk + 2Cu✏u�u

p
nkxk + O(✏2

u
)kxk.

(E.32)

By defining �d = 2(1 + �d

p
n) and �u = 2(1 + �u

p
n), we can obtain that874

k bH � Hk  cd�d✏d + cu�u✏u + O(✏2
d
) + O(✏2

u
). (E.33)

Thus, we have kH
l
k � bHl

kk  ck,d�k,d✏k,d + ck,u�k,u✏k,u with �k,d = 2(1 + �k,d
p

nk) and875

�k,u = 2(1+�k,u
p

nk) where we ignore the second and higher order terms on ✏k,d and ✏k,u. Likewise,876

we have kH
l
k,d � bHl

k,dk  ck,d�k,d✏k,d for the lower SCF and kH
l
k,u � bHl

k,uk  ck,u�k,u✏k,u for877

the upper SCF.878

E.1.2 Step II: Stability of SCCNNs879

Proof. Given the initial input x0

k, the Euclidean distance between x
l
k and x̂

l
k at layer l can be bounded880

by using triangle inequality and the c�-Lipschitz property of �(·) [cf. Assumption 11] as881

kx̂
l
k � x

l
kk2  c�(�l

k,d + �
l
k + �

l
k,u), (E.34)

with882

�
l
k,d :=k bHl

k,d
bRk,dx̂

l�1

k�1
� H

l
k,dRk,dx

l�1

k�1
k,

�
l
k :=k bHl

kx̂
l�1

k � H
l
kx

l�1

k k,

�
l
k,u :=k bHl

k,u
bRk,ux̂

l�1

k+1
� H

l
k,uRk,ux

l�1

k+1
k.

(E.35)

We now focus on upper bounding each of the terms.883

1. Term �
l
k. By subtracting and adding bHl

kx
l�1

k within the norm, and using the triangle inequality,884

we obtain885

�
l
k  k bHl

k(x̂l�1

k � x
l�1

k )k + k( bHl
k � H

l
k)xl�1

k k  kx̂
l�1

k � x
l�1

k k + k bHl
k � H

l
kkkx

l�1

k k

 kx̂
l�1

k � x
l�1

k k + (ck,d�k,d✏k,d + ck,u�k,u✏k,u)kxl�1

k k

(E.36)

where we used the SCF stability in (E.33) and that all SCFs have a normalized bounded frequency886

response in Assumption 11. Note that bHl
k is also characterized by h̃G(�) with the same set of filter887

coefficients as H
l
k.888

2. Term �
l
k,d and �

l
k,u. By subtracting and adding a term bHl

k,d
bRk,dx

l�1

k�1
within the norm, we have889

�
l
k,d  k bHl

k,d
bRk,d(x̂l�1

k�1
� x

l�1

k�1
)k + k( bHl

k,d
bRk,d � H

l
k,dRk,d)xl�1

k�1
k

 kbRk,dkkx̂
l�1

k�1
� x

l�1

k�1
k + k bHl

k,d
bRk,d � H

l
k,dRk,dkkx

l�1

k�1
k,

(E.37)

where we used again triangle inequality and k bHl
k,dk  1 from Assumption 11. For the term kbRl

k,dk,890

we have kbRl
k,dk  kR

l
k,dk + kJk,dkkR

l
k,dk  rk,d(1 + "k,d) where we used kR

l
k,dk  rk,d in891

Assumption 11 and kJ
l
k,dk  "k,d. For the second term of RHS in (E.37), by adding and subtracting892

bHl
k,dR

l
k,d we have893

k bHl
k,d
bRk,d � H

l
k,dRk,dk = k bHl

k,d
bRk,d � bHl

k,dR
l
k,d + bHl

k,dR
l
k,d � H

l
k,dRk,dk

 k bHl
k,dkkbRk,d � Rk,dk + k bHl

k,d � H
l
k,dkkRk,dk

 rk,d"k,d + C
0
k,d�k,d✏k,drk,d

(E.38)
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where we use the stability result of the lower SCF H
l
k,d in (E.33). By substituting (E.38) into (E.37),894

we have895

�
l
k,d  r̂k,dkx̂

l�1

k�1
� x

l�1

k�1
k + (rk,d"k,d + C

0
k,d�k,d✏k,drk,d)kxl�1

k�1
k. (E.39)

By following the same procedure [cf. (E.37) and (E.38)], we obtain896

�
l
k,u  r̂k,ukx̂

l�1

k+1
� x

l�1

k+1
k + (rk,u"k,u + C

0
k,u�k,u✏k,urk,u)kxl�1

k+1
k. (E.40)

3. Bound of kx̂
l
k � x

l
kk. Using the notations tk, tk,d and tk,u in Theorem 12, we then have a set of897

recursions, for k = 0, 1, . . . , K898

kx̂
l
k � x

l
kk c�(r̂k,dkx̂

l�1

k�1
� x

l�1

k�1
k + tk,dkx

l�1

k�1
k + kx̂

l�1

k � x
l�1

k k + tkkx
l�1

k k

+ r̂k,ukx̂
l�1

k+1
� x

l�1

k+1
k + tk,ukx

l�1

k+1
k).

(E.41)

Define vector b
l as [bl]k = kx̂

l
k � x

l
kk with b

0 = 0. Let �l collect the energy of all outputs at layer899

l, with [�l]k := kx
l�1

k k. We can express the Euclidean distances of all k-simplicial signal outputs for900

k = 0, 1, . . . , K, as901

b
l
� c�

bZb
l�1 + c�T�l�1 (E.42)

where � indicates elementwise smaller than or equal, and we have902

T =

2

66664

t0 t0,u

t1,d t1 t1,u

. . . . . . . . .
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tK,d tK

3

77775
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r̂K,d 1

3

77775
.

(E.43)
We are now interested in building a recursion for (E.42) for all layers l. We start with term x

l
k. Based903

on its expression in (E.2), we bound it as904

kx
l
kk  c�(kHl

k,dkkRk,dkkx
l�1

k�1
k + kH

l
kkkx

l�1

x k + kH
l
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k+1
k)

 c�(rk,dkx
l�1

k�1
k + kx

l�1

x k + rk,ukx
l�1

k+1
k),

(E.44)

which holds for k = 0, 1, . . . , K. Thus, it can be expressed in the vector form as �l
� c�Z�l�1,905

with906

Z =

2

66664

1 r0,u

r1,d 1 r1,u

. . . . . . . . .
rK�1,d 1 rK�1,u

rK,d 1

3

77775
. (E.45)

Similarly, we have �l�1
� c�Z�l�2, leading to �l

� c
l
�Z

l�0 with �0 = � [cf. Assumption 11].907

We can then express the bound (E.42) as908

b
l
� c�

bZb
l�1 + c

l
�TZ

l�1�. (E.46)

Thus, we have909

b
0 = 0, b

1
� c�T�, b

2
� c

2
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3

� c
3

�(bZ2
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2�), b
4
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(E.47)
which, inductively, leads to910

b
l
� c

l
�

lX

i=1

bZi�1
TZ

l�i�. (E.48)

Bt setting l = L, we obtain the bound b
L

� d = c
L
�

PL
l=1
bZl�1

TZ
L�l� in Theorem 12.911
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F Experiment details912

F.1 Synthetic experiments on Dirichlet energy evolution913

We created a synthetic SC with 100 nodes, 241 edges and 135 triangles with the GUDHI toolbox914

[67], and we set the initial inputs on three levels of simplices to be random sampled from U([�5, 5]).915

We then built a SCCNN composed of simplicial shifting layers with weight w0 and nonlinearities916

including id, tanh and relu. When the weight follows the condition in Proposition 3, from Fig. F.1917

(the dashed lines labled as “shift”), we see that the Dirichlet energies of all three outputs exponentially918

decrease as the number of layers increases. We then uncoupled the lower and upper parts of the919

Laplacians in the edge space in the shifting layers by setting � 6= 1. As shown in Fig. F.1 (the dotted920

lines), the Dirichlet energies of the edge outputs decrease at a slower rate than before. Lastly, we921

added the inter-simplicial couplings, which overcome the oversmoothing problems, as shown by the922

solid lines.
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Figure F.1: Oversmoothing effects of simplicial shifting and the mitigation effects of uncoupling
lower and upper adjacencies and accounting for inter-simplicial couplings.

923

F.2 Additional details on Forex experiments924

In the forex dataset, there are 25 currencies which can be exchanged pairwise at three timestamps. We925

first represented their exchange rates on the edges and took the logrithm, i.e., [x1][i,j] = log
10

r
i/j =926

�[x1][j,i]. Then, the total arbitrage can be computed as the total curl B>
2
x1.927

We considered to recover the exchange rates under three types of settings: 1) random noise following928

normal distribution such that the signal-to-noise ration is �3dB, which is spread over the whole929

simplicial spectrum; 2) “curl noise” projected from triangle noise following normal distribution such930

that the signal-to-noise ration is �3dB, which is distributed only in the curl space; and 3) 50% of the931

total forex rates are recorded and the other half is not available, set as zero values.

Table F.1: Forex results (nmse, arbitrage) and the corresponding hyperparameters.
Methods Random noise “Curl noise” Interpolation

Input 0.119 ± 0.004, 25.19 ± 0.874 0.552 ± 0.027, 122.36 ± 5.90 0.717 ± 0.030, 106.40 ± 0.902

`2-norm 0.036 ± 0.005, 2.29 ± 0.079 0.050 ± 0.002, 11.12 ± 0.537 0.534 ± 0.043 , 9.67 ± 0.082

SNN 0.11 ± 0.005, 23.24 ± 1.03 0.446 ± 0.017, 86.947 ± 2.197 0.702 ± 0.033, 104.738 ± 1.042
L = 5, F = 64, T = 4, tanh L = 6, F = 64, T = 3, tanh L = 2, F = 64, T = 1, tanh

PSNN 0.008 ± 0.001, 0.984 ± 0.17 0.000 ± 0.000, 0.000 ± 0.000 0.009 ± 0.001, 1.128 ± 0.329
L = 6, F = 64, tanh L = 5, F = 1, T = 4, id L = 6, F = 64, T = 4, tanh

Bunch 0.981 ± 0.0 , 22.912 ± 1.228 0.981 ± 0.0, 22.912 ± 1.228 0.983 ± 0.005 , 19.887 ± 6.341
— — —

MPSN 0.039 ± 0.004, 7.748 ± 0.943 0.076 ± 0.012, 14.922 ± 2.493 0.117 ± 0.063, 23.147 ± 11.674
L = 2, F = 64, id, sum L = 4, F = 64, tanh, mean L = 2, F = 64, tanh, sum

SCCNN, id 0.027 ± 0.005, 0.000 ± 0.000 0.000 ± 0.000, 0.000 ± 0.000 0.265 ± 0.036 , 0.000 ± 0.000
L = 2, F = 16, Td = 0, Tu = 3 L = 5, F = 1, Td = 1, Tu = 1 L = 2, F = 16, Td = 0, Tu = 3

SCCNN, tanh 0.002 ± 0.000, 0.325 ± 0.082 0.000 ± 0.000, 0.003 ± 0.003 0.003 ± 0.002, 0.279 ± 0.151
L = 6, F = 64, Td = 5, Tu = 2 L = 1, F = 64, Td = 2, Tu = 2 L = 6, F = 64, Td = 5, Tu = 1
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First, as a baseline method, we chose `2 norm of the curl B2x1 as a regularizer to reduce the932

total arbitrage, i.e., x̂1 = (I + wL1,u)�1
x1 with a regularization weight w 2 [0, 10]. For the933

learning methods, we consider the following hyperparameter ranges: the number of layers to be L 2934

{1, 2, . . . , 6}, the number of intermediate features to be F 2 {1, 16, 32, 64}. For the convolutional935

methods including SNN [15], PSNN [16], Bunch [14] and SCCNN, we considered the intermediate936

layers with nonlinearities including id and tanh. The convolution orders of SNN and SCCNN are set937

to be {1, 2, . . . , 5}. For the message-passing method, MPSN [17], we considered the setting from [17,938

Eq. 35] where the sum and mean aggregations are used and each message update function is a two-939

layer MLP. With these noisy or masked rates as inputs and the clean arbitrage-free rates as outputs,940

we trained different learning methods at the first timestamp, and validated the hyperparameters at941

the second timestamp, and tested their performance at the thrid one. During the training of 1000942

epochs, a normalized MSE loss function and adam optimizer with a fixed learning rate of 0.001 are943

used. We run the same experiments for 10 times. Table F.1 reports the best results (nmse) and the944

total arbitrage, together with the hyperparameters.945

F.3 Additional details on Simplex prediction946

F.3.1 Method in Detail947

The method for simplex prediction is generalized from link prediction based on GNNs by [52]: For948

k-simplex prediction, we use an SCCNN in an SC of order up to k to first learn the features of949

lower-order simplices up to order k �1. Then, we concatenate these embedded lower-order simplicial950

features and input them to a two-layer MLP which predicts if a k-simplex is positive (closed, shall be951

included in the SC) or negative (open, not included in the SC).952

For example, in 2-simplex prediction, consider an SC of order two, which is built based on nodes,953

edges and (existing positive) triangles. Given the initial inputs on nodes x0 and on edges x1 and954

zero inputs on triangles x2 = 0 since we assume no prior knowledge on triangles, for an open955

triangle t = [i, j, k], an SCCNN is used to learn features on nodes and edges (denoted by y).956

Then, we input the concatenation of the features on three nodes or three edges to an MLP, i.e.,957

MLPnode([y0]ik[y0]jk[y0]k) or MLPedge([y][i,j]k[y][j,k]k[y][i,k]), to predict if triangle t is positive958

or negative. A MLP taking both node and edge features is possible, but we keep it on one simplex level959

for complexity purposes. Similarly, we consider an SCCNN in an SC of order three for 3-simplex960

prediction, which is followed by an MLP operating on either nodes, edges or triangles.961

F.3.2 Data Preprocessing962

We consider the data from the Semantic Scholar Open Research Corpus [53] to construct a coau-963

thorship complex where nodes are authors and collaborations between k-author are represented by964

(k � 1)-simplices. Following the preprocessing in [15], we obtain 352 nodes, 1472 edges, 3285965

triangles, 5019 tetrahedrons (3-simplices) and a number of other higher-order simplices. The node966

signal x0, edge flow x1 and triangle flow x2 are the numbers of citations of single author papers and967

the collaborations of two and three authors, respectively.968

For the 2-simplex prediction, we use the collaboration impact (the number of citations) to split the969

total set of triangles into the positive set TP = {t|[x2]t > 7} containing 1482 closed triangles and the970

negative set TN = {t|[x2]t  7} containing 1803 open triangles such that we have balanced positive971

and negative samples. We further split the 80% of the positive triangle set for training, 10% for972

validation and 10% for testing; likewise for the negative triangle set. Note that in the construction of973

the SC, i.e., the incidence matrix B2, Hodge Laplacians L1,u and L2,d, we ought to remove negative974

triangles in the training set and all triangles in the test set. That is, for 2-simplex prediction, we only975

make use of the training set of the positive triangles since the negative ones are not in the SC.976

Similarly, we prepare the dataset for 3-simplex (tetrahedron) prediction, amounting to the tetradic977

collaboration prediction. We obtain balanced positive and negative tetrahedron sets based on the978

citation signal x3. In the construction of B3, L2,u and L3,d, we again only use the tetrahedrons in979

the positive training set.980
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F.3.3 Models981

For comparison, we first use heuristic methods proposed in [2] as baselines to determine if a982

triangle t = [i, j, k] is closed, namely, 1) Harmonic mean: st = 3/([x1]
�1

[i,j] + [x1]
�1

[j,k]
+ [x1]

�1

[i,k]
),983

2) Geometric mean: st = limp!0[([x1]
p
[i,j] + [x1]

p
[j,k]

+ [x1]
p
[i,k]

)]1/p, and 3) Arithmetic mean:984

st = ([x1][i,j] + [x1][j,k] + [x1][i,k])/3, which compute the triangle weight based on its three faces.985

Similarly, we generalized these mean methods to compute the weight of a 3-simplex [i, j, k, m] based986

on the four triangle faces in 3-simplex prediction.987

We then consider different learning methods. Specifically, 1) “Bunch” by [14] (we also general-988

ized this model to 3-dimension for 3-simplex prediction); 2) Message passing simplicial network989

(“MPSN”) by [17] which provides a baseline of message passing scheme in comparison to the990

convolution scheme; 3) Principled SNN (“PSNN”) by [16]; 4) SNN by [15]; 5) SCNN by [26]; 6)991

GNN by [51]; 7) MLP: providing as a baseline for the effect of using inductive models.992

For MLP, Bunch, MPSN and our SCCNN, we consider the outputs in the node and edge spaces,993

respectively, for 2-simplex prediction, which are denoted by a suffix “-Node” or “-Edge”. For994

3-simplex prediction, the output in the triangle space can be used as well, denoted by a suffix “-Tri.”,995

where we also build SCNNs in both edge and triangle spaces.996

F.3.4 Experimental Setup and Hyperparameters997

We consider the normalized Hodge Laplacians and incidence matrices, a particular version of the998

weighted ones [39, 29]. Specifically, we use the symmetric version of the normalized random walk999

Hodge Laplacians in the edge space, proposed by [41], which were used in [14, 68] as well. We1000

generalized the definitions for triangle predictions.1001

Hyperparameters. 1) the number of layers: L 2 {1, 2, 3, 4, 5}; 2) the number of intermediate and1002

output features to be the same as F 2 {16, 32}; 3) the convolution orders for SCCNNs are set to be1003

the same, i.e., T
0
d

= Td = Tu = T
0
u

= T 2 {1, 2, 3, 4, 5}. We do so to avoid the exponential growth1004

of the parameter search space. For GNNs [51] and SNNs [15], we set the convolution orders to be1005

T 2 {1, 2, 3, 4, 5} while for SCNNs [19], we allow the lower and upper convolutions to have different1006

orders with Td, Tu 2 {1, 2, 3, 4, 5}; 4) the nonlinearity in the feature learning phase: LeakyReLU1007

with a negative slope 0.01; 5) MPSN is set as [64]; 6) the MLP in the prediction phase: two layers1008

with a sigmoid nonlinearity. For 2-simplex prediction, the number of the input features for the node1009

features is 3F , and for the edge features is 3F . For 3-simplex prediction, the number of the input1010

features for the node features is 4F , for the edge features is 6F and for the triangle features is 4F1011

since a 3-simplex has four nodes, six edges and four triangles. The number of the intermediate1012

features is the same as the input features, and that of the output features is one; and, 7) the binary1013

cross entropy loss and the adam optimizer with a learning rate of 0.001 are used; the number of the1014

epochs is 1000 where an early stopping is used. We compute the AUC to compare the performance1015

and run the same experiments for ten times with random data splitting.1016

F.3.5 Results1017

In Table F.2, we report the best results of each method with the corresponding hyperparameters.1018

Different hyperparameters can lead to similar results, but we report the ones with the least complexity.1019

All experiments for simplex predictions were run on a single NVIDIA A40 GPU with 48 GB of1020

memory using CUDA 11.5.1021

F.3.6 Ablation Study1022

We perform an ablation study to observe the roles of different components in SCCNNs.1023

SC Order K. We investigate the influence of the SC order K. Table F.3 reports the 2-simplex1024

prediction results for K = {1, 2} and the 3-simplex prediction results for K = {1, 2, 3}. We observe1025

that for k-simplex prediction, it does not necessarily guarantee a better prediction with a higher-order1026

SC, which further indicates that a positive simplex could be well encoded by both its faces and other1027

lower-order subsets. For example, in 2-simplex prediction, SC of order one gives better results than1028

SC of order two (similar for Bunch), showing that in this coauthorship complex, triadic collaborations1029

are better encoded by features on nodes than pairwise collaborations. In 3-simplex prediction, SCs of1030
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Table F.2: 2- (Left) and 3-Simplex (Right) prediction AUC (%) results.

METHODS AUC PARAMETERS

HARM. MEAN 62.8±2.7 —
ARITH. MEAN 60.8±3.2 —
GEOM. MEAN 61.7±3.1 —
MLP-NODE 68.5±1.6 L = 1, F = 32

GNN 93.9±1.0 L = 5, F = 32, T = 2
SNN-EDGE 92.0±1.8 L = 5, F = 32, T = 5
PSNN-EDGE 95.6±1.3 L = 5, F = 32
SCNN-EDGE 96.5±1.5 L = 5, F = 32, Td = 5, Tu = 2

BUNCH-NODE 98.3±0.5 K = 1, L = 4, F = 32
MPSN-NODE 98.1±0.5 K = 1, L = 3, F = 32
SCCNN-NODE 98.7±0.5 K = 1, L = 2, F = 32, T = 2

METHODS AUC PARAMETERS

HARM. MEAN 63.6±1.6 —
ARITH. MEAN 62.2±1.4 —
GEOM. MEAN 63.1±1.4 —
MLP-TRI. 69.0±2.2 L = 3, F = 32

GNN 96.6±0.5 L = 5, F = 32, T = 5
SNN-TRI. 95.1±1.2 L = 5, F = 32, T = 5
PSNN-TRI. 98.1±0.5 L = 5, F = 32
SCNN-TRI. 98.3±0.4 L = 5, F = 32, Td = 2, Tu = 1

BUNCH-EDGE 98.5±0.5 K = 3, L = 4, F = 16
MPSN-EDGE 99.2±0.3 K = 3, L = 3, F = 32
SCCNN-NODE 99.4±0.3 K = 3, L = 3, F = 32, T = 3

different orders give similar results, showing that tetradic collaborations can be encoded by nodes, as1031

well as by pairwise and triadic collaborations.1032

Table F.3: Prediction results of SCCNNs with different SC order K.

METHOD 2-SIMPLEX PARAMETERS

SCCNN-NODE 98.7±0.5 K = 1, L = 2, F = 32, T = 2
SCCNN-NODE 98.4±0.5 K = 2, L = 2, F = 32, T = 2
BUNCH-NODE 98.3±0.4 K = 1, L = 4, F = 32
BUNCH-NODE 98.0±0.4 K = 2, L = 4, F = 32
MPSN-NODE 94.5±1.5 K = 1, L = 3, F = 32
MPSN-NODE 98.1±0.5 K = 2, L = 3, F = 32

SCCNN-EDGE 97.9±0.9 K = 1, L = 3, F = 32, T = 5
SCCNN-EDGE 95.9±1.0 K = 2, L = 5, F = 32, T = 3
BUNCH-EDGE 97.3±1.1 K = 1, L = 4, F = 32
BUNCH-EDGE 94.6±1.2 K = 2, L = 4, F = 32
MPSN-EDGE 94.1±2.4 K = 1, L = 3, F = 32
MPSN-EDGE 97.0±1.2 K = 2, L = 2, F = 16

METHOD 3-SIMPLEX PARAMETERS

SCCNN-NODE 99.3±0.3 K = 1, L = 2, F = 32, T = 1
SCCNN-NODE 99.3±0.2 K = 2, L = 2, F = 32, T = 5
SCCNN-NODE 99.4±0.3 K = 3, L = 3, F = 32, T = 3
MPSN-NODE 96.0±1.2 K = 1, L = 3, F = 32
MPSN-NODE 98.2±0.8 K = 2, L = 2, F = 32

SCCNN-EDGE 98.9±0.5 K = 1, L = 3, F = 32, T = 5
SCCNN-EDGE 99.2±0.4 K = 2, L = 5, F = 32, T = 5
SCCNN-EDGE 99.0±1.0 K = 3, L = 5, F = 32, T = 5
MPSN-EDGE 96.3±1.1 K = 1, L = 3, F = 32
MPSN-EDGE 98.3±0.8 K = 2, L = 3, F = 32

SCCNN-TRI. 97.9±0.7 K = 2, L = 4, F = 32, T = 4
SCCNN-TRI. 97.4±0.9 K = 3, L = 4, F = 32, T = 4
MPSN-TRI. 99.1±0.2 K = 2, L = 3, F = 32

Missing Components in SCCNNs. With a focus on 2-simplex prediction with SCCNN-Node of1033

order one, to avoid overcrowded settings, we study how each component of an SCCNN influences the1034

prediction. We consider the following settings without: 1) “Edge-to-Node”, where the projection x0,u1035

from edge to node is not included, equivalent to GNN; 2) “Node-to-Node”, where for node output,1036

we have x
l
0

= �(Hl
0,uR1,ux

l�1

1
); 3) “Node-to-Edge”, where the projection x1,d from node to edge1037

is not included, i.e., we have x
l
1

= �(Hl
1
x

l�1

1
); and 4) “Edge-to-Edge”, where for edge output, we1038

have x
l
1

= �(Hl
1,dR1,dx

l�1

0
).

Table F.4: 2-Simplex prediction (SCCNN-Node without certain components or with limited inputs).

Missing Component AUC Parameters

— 98.7±0.5 L = 2, F = 32, T = 2
Edge-to-Node 93.9±0.8 L = 5, F = 32, T = 2
Node-to-Node 98.7±0.4 L = 4, F = 32, T = 2
Edge-to-Edge 98.5±1.0 L = 3, F = 32, T = 3
Node-to-Edge 98.8±0.3 L = 4, F = 32, T = 3

Missing Input AUC Parameters

— 98.7±0.5 L = 2, F = 32, T = 2
Node input 98.2±0.5 L = 2, F = 32, T = 4
Edge input 98.1±0.4 L = 2, F = 32, T = 3
Node, Edge inputs 50.0±0.0 —

1039

From the results in Table F.4 (Left), we see that “No Edge-to-Node”, i.e., GNN, gives much worse1040

results as it leverages no information on edges with limited expressive power. For cases with1041

other components missing, a similar performance can be achieved, however, at a cost of the model1042

complexity, with either a higher convolution order or a larger number of layers L, while the latter1043

in turn degrades the stability of the SCCNNs, as discussed in Section 5. As studied by [17, Thm.1044

6], SCCNNs with certain inter-simplicial couplings pruned/missing can be powerful as well for1045

simplicial WC test, but if we did not consider certain component, it comes with a cost of complexity1046

which might degrade the model stability if more number layers are required.1047
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Limited Input. We study the influence of limited input data for model SCCNN-Node of order two.1048

Specifically, we consider the input on either nodes or edges is missing. From Table F.4, we see that1049

the prediction performance does not deteriorate at a cost of the model complexity (higher convolution1050

orders) when a certain part of the input missing except with full zeros as input. This ability of learning1051

from limited data shows the robustness of SCCNNs.1052

F.3.7 Stability Analysis1053

We then perform a stability analysis of SCCNNs. We artificially add perturbations to the normalization1054

matrices when defining the Hogde Laplacians, which resemble the weights of simplices. We consider1055

small perturbations E0 on node weights which is a diagonal matrix following that kE0k  ✏0/2.1056

We generate its diagonal entries from a uniform distribution [�✏0/2, ✏0/2) with ✏0 2 [0, 1], which1057

represents one degree of deviation of the node weigths from the true ones. Similarly, perturbations on1058

edge weights and triangle weights are applied to study the stability. In a SCCNN-Node for 2-simplex1059

prediction of K = 2, we measure the distance between the simplicial outputs with and without1060

perturbations on nodes, edges, and triangles, i.e., kx
L
k � x̂

L
k k/kx

L
k k, for k = 0, 1, 2.1061

Stability Dependence. We first show the stability mutual dependence between different simplices in1062

Fig. F.2. We see that under perturbation on node weights, triangle output is not influenced until the1063

number of layers becomes two; likewise, node output is not influenced by perturbations on triangle1064

weights with a one-layer SCCNN. Also, a one-layer SCCNN under perturbations on edge weights1065

will cause outputs on nodes, edges, triangles perturbed. Lastly, we observe that the same degree of1066

perturbations added to different simplices causes different degrees of instability, owing to the number1067

nk of k-simplices in the stability bound. Since N0 < N1 < N2, the perturbations on node weights1068

cause less instability than those on edge and triangle weights.1069
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Figure F.2: The stabilities of different simplicial outputs are dependent on each other.

Number of Layers. Fig. F.3 shows that the stability of SCCNNs degrades as the number of layers1070

increases as studied in Theorem 12. As the NN deepens, the stability deteriorates, which corresponds1071

to our analysis of using shallow layers.
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Figure F.3: The stability of SCCNNs in terms of different numbers of layers. We consider perturba-
tions on edge weights.

1072

F.4 Additional details on Trajectory prediction1073

F.4.1 Problem Formulation1074

A trajectory of length m can be modeled as a sequence of nodes [v0, v1, . . . , vm�1] in an SC. The task1075

is to predict the next node vm from the neighbors of vm�1, Nvm�1 . The algorithm in [16] first repre-1076

sents the trajectory equivalently as a sequence of oriented edges [[v0, v1], [v1, v2], . . . , [vm�2, vm�1]].1077

Then, an edge flow x1 is defined, whose value on an edge e is [x1]e = 1 if edge e is traversed by the1078
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trajectory in a forward direction, [x1]e = �1 if edge e is traversed in a backward direction by the1079

trajectory, and [x1]e = 0, otherwise.1080

With the trajectory flow x1 as the input, together with zero inputs on the nodes and triangles, an1081

SCCNN of order two is used to generate a representation x
L
1

of the trajectory, which is the output on1082

edges. This is followed by a projection step x
L
0,u = B1Wx

L
1

, where the output is first passed through1083

a linear transformation via W, then projected into the node space via B1. Lastly, a distribution over1084

the candidate nodes Nvm�1 is computed via a softmax operation, nj = softmax([xL
0,u]j), j 2 Nvm�1 .1085

The best candidate is selected as vm = argmaxjnj . We refer to [13, Alg. S-2] for more details.1086

Given that an SCCNN of order two generates outputs also on nodes, we can directly apply the node1087

feature output xL
0

to compute a distribution over the candidate nodes Nvm�1 without the projection1088

step. We refer to this as SCCNN-Node, and the method of using the edge features with the projection1089

step as SCCNN-Edge.1090

F.4.2 Model1091

In this experiment, we consider the following methods: 1) PSNN by [16]; 2) SNN by [15]; 3) SCNN1092

by [19] where we consider different lower and upper convolution orders Td, Tu; and 4) Bunch by [14]1093

where we consider both the node features and edge features, namely, Bunch-Node and Bunch-Edge.1094

Synthetic Data. Following the procedure in [41], we generate 1000 trajectories as follows. First, we1095

create an SC with two “holes” by uniformly drawing 400 random points in the unit square, and then a1096

Delaunay triangulation is applied to obtain a mesh, followed by the removal of nodes and edges in1097

two regions. To generate a trajectory, we consider a starting point at random in the lower-left corner,1098

and then connect it via a shortest path to a random point in the upper left, center, or lower-right region,1099

which is connected to another random point in the upper-right corner via a shortest path.1100

We consider the random walk Hodge Laplacians [41]. For Bunch method, we set the shifting1101

matrices as the simplicial adjacency matrices defined in [14]. We consider different NNs with three1102

intermediate layers where each layer contains F = 16 intermediate features. The tanh nonlinearity is1103

used such that the orientation equivariance holds. The final projection n generates a node feature1104

of dimension one. In the 1000-epoch training, we use the cross-entropy loss function between the1105

output d and the true candidate and we consider an adam optimizer with a learning rate of 0.001 and1106

a batch size 100. To avoid overfitting, we apply a weight decay of 5 · 10�6 and an early stopping.1107

As done in [16], besides the standard trajectory prediction task, we also perform a reverse task where1108

the training set remains the same but the direction of the trajectories in the test set is reversed and a1109

generalization task where the training set contains trajectories running along the upper left region and1110

the test set contains trajectories around the other region. We evaluate the correct prediction ratio by1111

averaging the performance over 10 different data generations.1112

Real Data. We also consider the Global Drifter Program dataset from http://www.aoml.noaa.1113

gov/envids/gld/, localized around Madagascar. It consists of ocean drifters whose coordinates1114

are logged every 12 hours. An SC can then be created as [41] by treating each mesh as a node,1115

connecting adjacent meshes via an edge and filling the triangles, where the “hole” is yielded by the1116

island. Following the process in [16], it results in 200 trajectories and we use 180 of them for training.1117

In the training, a batch size of 10 is used and no weight decay is used. The rest experiment setup1118

remains the same as the synthetic case.1119

F.4.3 Results1120

We report the prediction accuracy of different tasks for both datasets in Table F.5. We first investigate1121

the effects of applying higher-order SCFs in the simplicial convolution and accounting for the lower1122

and upper contributions. From the standard accuracy for both datasets, we observe that increasing1123

the convolution orders improves the prediction accuracy, e.g., SCNNs become better as the orders1124

Td, Tu increase and perform always better than PSNN, and SCCNNs better than Bunch. Also,1125

differentiating the lower and upper convolutions does help improve the performance as SCNN of1126

orders Td = Tu = 3 performs better than SNN of T = 3.1127

However, accounting for the node and triangle contributions in SCCNNs does not help the prediction1128

compared to the SCNNs, likewise for Bunch compared to PSNN. This is due to the zero node and1129
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triangle inputs because there are no available node and triangle features. Similarly, the prediction1130

directly via the node output features is not accurate compared to projection from edge features.1131

Moreover, we also observe that the performance of SCCNNs that are trained with the same data1132

does not deteriorate in the reverse task because the orientation equivariance ensures SCCNNs to be1133

unaffected by the orientations of the simplicial data. Lastly, we see that, like other NNs on SCs,1134

SCCNNs have good transferability to the unseen data.1135

Table F.5: Trajectory Prediction Accuracy. (Left): Synthetic trajectory in the standard, reverse and
generalization tasks. (Right): Ocean drifter trajectories. For SCCNNs, we set the lower and upper
convolution orders Td, Tu to be the same as T .

METHODS STANDARD REVERSE GENERALIZATION PARAMETERS

PSNN 63.1±3.1 58.4±3.9 55.3±2.5 —
SCNN 65.6±3.4 56.6±6.0 56.1±3.6 Td = Tu = 2
SCNN 66.5±5.8 57.7±5.4 60.6±4.0 Td = Tu = 3
SCNN 67.3±2.3 56.9±4.8 59.4±4.2 Td = Tu = 4
SCNN 67.7±1.7 55.3±5.3 61.2±3.2 Td = Tu = 5
SNN 65.5±2.4 53.6±6.1 59.5±3.7 T = 3

BUNCH-NODE 35.4±3.4 38.1±4.6 29.0±3.0 —
BUNCH-EDGE 62.3±4.0 59.6±6.1 53.9±3.1 —
SCCNN-NODE 46.8±7.3 44.5±8.2 31.9±5.0 T = 1
SCCNN-EDGE 64.6±3.9 57.2±6.3 54.0±3.0 T = 1
SCCNN-NODE 43.5±9.6 44.4±7.6 32.8±2.6 T = 2
SCCNN-EDGE 65.2±4.1 58.9±4.1 56.8±2.4 T = 2

STANDARD PARAMETERS

49.0±8.0 —
52.5±9.8 Td = Tu = 2
52.5±7.2 Td = Tu = 3
52.5±8.7 Td = Tu = 4
53.0±7.8 Td = Tu = 5
52.5±6.0 T = 3

35.0±5.9 —
46.0±6.2 —
40.5±4.7 T = 1
52.5±7.2 T = 1
45.5±4.7 T = 2
54.5±7.9 T = 2

F.4.4 Convolution Order and Integral Lipschitz Property1136

We investigate the effect of the integral Lipschitz property of the SCFs in an NN on SC. To do so,1137

given an NN on SCs with an SCF Hk for k-simplicial signals, we add the following integral Lipschitz1138

regularizer to the loss function during training so to promote the integral Lipschitz property1139

rIL = k�k,Gh̃
0
k,G(�k,G)k + k�k,Ch̃

0
k,C(�k,C)k =

�����

TdX

t=0

twk,d,t�
t
k,G

�����+

�����

TuX

t=0

twk,u,t�
t
k,C

�����
(F.1)

for �k,G 2 {�k,G,i}
nk,G

i=1
and �k,C 2 {�k,C,i}

nk,C

i=1
, which are the gradient and curl frequencies. To1140

avoid computing the eigendecomposition of the Hodge Laplacian, we can approximate the true1141

frequencies by sampling certain number of points in the frequency band (0, �k,G,m] and (0, �k,C,m]1142

where the maximal gradient and curl frequencies can be computed by efficient algorithms, e.g., power1143

iteration [69, 70].1144

Here, to illustrate that the integral Lipschitz property of the SCFs helps the stability of NNs on SCs,1145

we consider the effect of regularizer rIL against perturbations in PSNNs and SCNNs with different1146

Td and Tu for the standard synthetic trajectory prediction. The regularization weight on rIL is set1147

as 5 · 10�4 and the number of samples to approximate the frequencies is set such that the sampling1148

interval is 0.01.1149

Fig. F.4 shows the prediction accuracy and the relative distance between the edge outputs of the NNs1150

trained with and without the integral Lipschitz regularizer in terms of different levels of perturbations.1151

We see that the integral Lipschitz regularizer helps the stability of the NNs, especially for large1152

SCF orders, where the edge output is less influenced by the perturbations compared to without the1153

regularizer. Meanwhile, SCNN with higher-order SCFs, e.g., Td = Tu = 5, achieves better prediction1154

than PSNN (with one-step simplicial shifting), while maintaining a good stability with its output not1155

influenced by perturbations drastically.1156

We also measure the lower and upper integral Lipschitz constants of the trained NNs across different1157

layers and features, given by max�k,G |�k,Gh̃k,G(�k,G)| and max�k,C |�k,Ch̃k,C(�k,C)|, shown in1158

Fig. F.5. We see that the SCNN trained with rIL indeed has smaller integral Lipschitz constants than1159

the one trained without the regularizer, thus, a better stability, especially for NNs with higher-order1160

SCFs.1161
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Figure F.4: Effect of the integral Lipschitz regularizer rIL in the task of synthetic trajectory prediction
against different levels ✏ of random perturbations on L1,d and L1,u. We show the accuracy (Top row)
and the relative distance between the edge output (Bottom row) for different NNs on SCs with and
without rIL. SCNN13 is the SCNN with Td = 1 and Tu = 3.
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Figure F.5: The integral Lipschitz constants of SCFs at each layer of the trained SCNNs with and
without the integral Lipschitz regularizer rIL. We use symbols c

l
k,d and c

l
k,u to denote the lower and

upper integral Lipschitz constants at layer l. Regularizer rIL promotes the integral Lipschitz property,
thus, the stability, especially for NNs with large SCF orders.
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