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Supplementary Material for

“Hodge-Aware Learning on Simplicial Complexes”

A Illustration for Background

Ths paper relies on the Hodge decomposition and the spectral simplicial theory. To ease the exposition,
we illustrate them for the edge flow space. We refer to [27, 126} 30] for more details.

A.1 Hodge decomposition of an edge flow

Given an edge flow x1, the Hodge decomposition in gives

X1 =X1,¢ +X1,c+X1,H (A.D

with X ¢ = BlTxo for some node signal xg, and x;, ¢ = Bax, for some triangle signal x2, and
x1 1 follows Bix; g = 0and BJ x; 11 = 0.

0)6 71 34 2
097 0.52 010

by TS SNy Ny

711( K() / ﬁ v / oxja/

631 0.53 6 081

(a) Edge flow (b) Gradient flow (c) Curl flow (d) Harmonic flow

Figure A.1: Hodge decomposition of an edge flow. (b)-(d) are the Hodge decomposition of the
example edge flow in (a) (we denote its divergence and curl in purple and orange, respectively).
The gradient flow is the gradient of some node signal (in blue) and is curl-free. The curl flow can
be obtained from some triangle flow (in red), and is divergence-free. The harmonic flow has zero
divergence and zero curl, which is circulating around the hole {1, 3, 4}. Note that in this figure and
Fig. A2, the flow numbers are rounded up to two decimal places. Thus, at some nodes or triangles
with zero-divergence or zero-curl, the divergence or curl might not be exactly zero.

A.2 Spectral simplicial theory

Here we show how the eigenvalues of Ly, carry the notion of simplicial frequency [30]]. Specifically,
we show for £ = 1 an eigenvalue measures the total divergence or curl of the eigenvector.

* Gradient Frequency: the nonzero eigenvalues associated with the eigenvectors U g of Ly g,
which span the gradient space im(B7 ), admit Ly qu; ¢ = A .guy,g for any eigenpair
uy ¢ and A\; . Thus, we have \j ¢ = UIGLLdul,G = uIGB]—BluLG = |Biui ¢l
which is an Euclidean norm of the divergence, i.e., the total nodal variation of u; ¢. If an
eigenvector has a larger eigenvalue, it has a larger total divergence. For the SFT of an edge
flow, if the gradient embedding X; g has a large weight on such an eigenvector, it contains
components with a large divergence, and we say it has a large gradient frequency. Thus, we
call such eigenvalues associated with U, ¢ gradient frequencies.

 Curl Frequency: the nonzero eigenvalues associated with the eigenvectors Uy ¢ of Ly y,
which span the curl space im(B3), admit Ly ,uy,c = A1,cuy ¢ for any eigenpair u; ¢ and
Ar,c. Thus, we have Ay ¢ = uf cLiyuic = uf (ByBjuy ¢ = [Bg uy |3, which is
an Euclidean norm of the curl, i.e., the total rotational variation of u; ¢. If an eigenvector
has a larger eigenvalue, it has a larger total curl. For the SFT of an edge flow, if the curl
embedding X; ¢ has a large weight on such an eigenvector, it contains components with a
large curl, and we say it has a large curl frequency. Thus, we call such eigenvalues associated
with U ¢ curl frequencies.

* Harmonic Frequency: the zero eigenvalues associated with the eigenvectors U; g, which
span the harmonic space ker(L ), admit Lyuy g = O for any eigenpair u; i and A; g = 0.
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From the definition of L;, we have Bju; g = B2Tu1,H = 0. That is, the eigenvector u; g
is divergence- and curl-free. We also say such an eigenvector has zero signal variation in
terms of the nodes and triangles. This resembles the constant graph signal in the node space.
We call such zero eigenvalues as harmonic frequencies.

s14 [Fig. A.2/shows the simplicial Fourier basis and the corresponding simplicial frequencies of the SC,
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from which we see how the eigenvalues of Li; can be interpreted as the simplicial frequencies.
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Figure A.2: (a)-(f) Six gradient frequencies and the corresponding Fourier basis. We also annotate
their divergences, and we see that these eigenvectors with a small eigenvalue have a small magnitude
of total divergence, i.e., the edge flow variation in terms of the nodes. Gradient frequencies reflect the
nodal variations. (g)-(i) Three curl frequencies and the corresponding Fourier basis. We annotate their
curls and we see that these eigenvectors with a small eigenvalue have a small magnitude of total curl,
i.e., the edge flow variation in terms of the triangles. Curl frequencies reflect the rotational variations.
(j) Harmonic basis with a zero frequency, which has a zero nodal and zero rotational variation.

For k = 0, the eigenvalues of Lg carry the notion of graph frequency, which measures the graph
(node) signal smoothness w.r.t. the upper adjacent simplices, i.e., edges. Thus, the curl frequency of
k = 0 coincides with the graph frequency and a constant graph signal has only harmonic frequency
component, and there is no divergence frequency. For a more general k, there exist these three types
of simplicial frequencies, which measure the k-simplicial signal total variations in terms of faces and
cofaces.

B Illustrated Simplicial Complex CNNs and Details on Properties

We give two examples where the first is a SCCNN on a SC of order two, and the second is the form
of SCCNN with multi-features.
Example 13. For k = 2, a SCCNN layer reads as
xg = o(Hyx '+ Hy Bixi"),
x} = o(H} ;B x{~ +H1x1 +H Boxb ), (B.1)
xh = o(H, 4By x ' + Hixi ).
Recursively, we see that a SCCNN layer takes as inputs {xf) ! Xé 2 xl1 2 12_2} to compute x}.
One may find this familar as some type of skip connections in GNNs [65]
Example 14 (Multi-Feature SCCNN). A multi-feature SCCNN at layer  takes {X} Y, X} ", X| 24 }
as inputs, each of which has F;_; features, and generates an output Xﬁc with F; features as

Td Td
X =0 ( Z LZ,dBZXl Wk de T Z Lz,dxéc_lwfhd,t

t=0 t=0
Ty T, (B-2)
l— l -1
+ Z Lfc,uxk 1Wk,u,t + Z L}tc,uBk-‘rle-l-ka u,t
t=0

where L indicates the matrix t-power of L, while superscript [ indicates the layer index.
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(a) SC example (b) Lower edge conv. (c) Upper edge conv.  (d) Inter-simplicial locality

Figure B.1: (a) A SC where arrows indicate the reference orientations of edges and triangles. 2-
simplices are (filled) triangles shaded in green and open triangle {1, 3,4} is not in the SC. (b) Lower
convolution via H; and H; 4 on edge e;: SCF H; aggregates the information from its direct lower
neighbors (edges in blue) and two-hop lower neighbors (edges in purple) to e; (in black) if Ty = 2;
and lower SCF H; 4 aggregates the projected information from nodes to edges likewise (denoted by
the arrows in blue and purple from nodes to edges). (c) Upper convolution via H; and H; ,, on eq: H;
aggregates the information from direct upper neighbors (edges in red) and two-hop upper neighbors
(edges in orange) to e; (in black); and upper SCF H, ,, aggregates the projected information from
triangles to edges likewise (denoted by double arrows in red and orange from triangle centers to
edges). (d) Node 1 (in black) contains information from its neighbors {2, 3,4} (nodes in red), and
projected information from edges which contribute to these neighbors (denoted by arrows in red from
edges to nodes), and from triangles {t1, 2, t3} which contribute to those edges (denoted by double
arrows in red from triangle centers to edges). This interaction is the coupling between the intra- and
the extended inter-simplicial locality.

B.1 Simplicial locality in details

The construction of SCFs has an intra-simplicial locality. Hx},, which consists of basic operations
Ly axx and Ly, ,x. They are given, on simplex s¥, by

[Laxeli = 2 5ens o Lraliglxelis [Leaxeli = 225 ne oy Lrulisxelss  (B.3)

where s¥ aggregates signals from its lower and upper neighbors, /\fikd and V¥ . We can compute

the t-step shifting recursively as Lfcy aXk = Lk,d(L}:dlxk), a one-step shifting of the (¢ — 1)-shift
result; likewise for L‘,;uxk. A SCF linearly combines such multi-step simplicial shiftings based on
lower and upper adjacencies. Thus, the output Hjxy, is localized in Ty-hop lower and T;,-hop upper
k-simplicial neighborhoods [30]. SCCNNs preserve such intra-simplicial locality as the elementwise
nonlinearity does not alter the information locality, shown in|Figs. B.1bjand[B.1c|

A SCCNN takes the data on k- and (k= 1)-simplices at layer [ — 1 to compute xL, causing interactions
between k-simplices and their (co)faces when all SCFs are identity. In turn, xﬁ;ll contains information
on (k — 2)-simplices from layer [ — 2. Likewise for xﬁ;ll, thus, x} also contains information up to
(k £ 2)-simplices if L > 2, because Bxo(By41) # 0. Accordingly, this inter-simplicial locality
extends to the whole SC if L > K, unlike linear filters in a SC where the locality happens up to the
adjacent simplices [31}166], which limits its expressive power. This locality is further coupled with
the intra-locality through three SCFs such that a node not only interacts with the edges incident to it
and direct triangles including it, but also edges and triangles further hops away which contribute to

the neighboring nodes, as shown in

B.2 Complexity

In a SCCNN layer for computing ng there are 2 + T}y + T, filter coefficients for the SCF H! , and
1+ Tyand 1+ T, for H, ; and H! , respectively, which gives the parameter complexity of order
O(Ty + Ty). This comple;(ity will iflcrease by F;F;_; fold for the multi-feature case, and likewise
for the computational complexity. Given the inputs {x; %, x. !, xﬁ;ll }, we discuss the computation
complexity of x! in (T).

First, consider the SCF operation Hixijl. As discussed in the localities, it is a composition of
Tq-step lower and T};-step upper simplicial shiftings. Each simplicial shifting has a computational
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complexity of order O(n,my) dependent on the number of neighbors. Thus, this operation has a
complexity of order O(npmy(Taq + Ty)).

Second, consider the lower SCF operation H}, BTxk 1- As incidence matrix By, is sparse, it has
nk(k 4+ 1) nonzero entries as each k-simplex has k + 1 faces. This leads to a complexity of order
O(nyk) for operation BTxk 1- Followed by a lower SCF operation, i.e., a Tyq-step lower simplicial
shifting, thus, a complexity of order O (kny + ngmyTy) is needed.

Third, consider the upper SCF operation H%C’uBk+1x§€jrll. Likewise, incidence matrix By has
nk+1(k + 2) nonzero entries. This leads to a complexity of order O(ny11k) for the projection
operation B k+1xfc_+11. Followed by an upper SCF operation, i.e., a T;,-step upper simplicial shifting,
thus, a complexity of order O(kNy41 + ny My T, ) is needed.

Finally, we have a computational complexity of order O(k(ny + ng+1) + Np My (Tq + Ty,)) in total.

Remark 15. The lower SCF operation H, ;B[ x} ", can be further reduced if njy_; < ny. Note
that we have

Td Td
Hf’c,dB;crxéc 11 Zwﬁ,d,th,dexig 11 B;Zwﬁ’d’th 1uX§c 117 (B.4)
t=0 t=0
where the second equality comes from that kadB,I = B,;'—BkB;r = BkTLk._l_’u, LidBZ =
(B{By)(B/ B;)B] = B/ (B;B} )(B;B]) = B] L;_1,, and likewise for general t. Using the
RHS of (B.4) where the simplicial shifting is performed in the (k — 1)-simplicial space, we have a
complexity of order O(kNy + ny_1mi_1Tq4). Similarly, we have

Tll
1 -1 _
Hk,uBk+1Xk+1 = E k u, th uBk+1xk+1 = Bit1 § wk u th+1 dxk+1 (B.5)
t=0 t=0

where the simplicial shifting is performed in the (k+1)-simplicial space. If it follows that ng 1 < ng,
we have a smaller complexity of O(kNy11 + np+1mi417y) by using the RHS of (B.5).

B.3 Details on Symmetries of SCs and simplicial data, Equivariance of SCCNNs

Permutation symmetry of SCs. There exists a permutation group P,, for each set S* in a SC
of order K. For K = 0, this gives the graph permutation group. We can combine these groups for
different simplex orders by a group product to form a larger permutation group P = X, P, , which
is a symmetry group of SCs and simplicial data, assuming vertices in each simplex are consistently
ordered. That is, we have, for p = (po, p1, - . - 7]?K) € P, [p -Lilij = [Lk]p;l(i)p'k—‘l(j), [p-Bglij =
[Bk]p;il(i)plzl(j), and [p-xg]; = [Xk]p;l(i). This permutation symmetry of SCs gives us the freedom
to list simplices in any order.

Orientation symmetry of simplicial data. The orientation of a simplex is an equivalence class
that two orientations are equivalent if they differ by an even permutation [9, |8]. Thus, for a simplex
s¥ = {io,...,ir} with k > 0, we have an orientation symmetry group Oy, ; = {0}’ ,, 0}, ;} by a group
homomorphism which maps all the even permutations of {ig, ..., i} to the identity element 02,'1.
and all the odd permutations to the reverse operation o,_,.

We can further combine the orientation groups of all simplices ina SCas O = X, ;. Oy ; by using a
group product. This however is not a symmetry group of an oriented SC because o, , - L, changes the
signs of Ly, elements in ith column and row, and o, - By, changes the ith row, resulting in a different
SC topology. Instead, it is a symmetry group of the data space, due to its alternating nature w.r.t.
simplices. For o € O we have [0 - x;]; = op; - fi(s¥) = fi(o} | - sF), i.e., [x}]; remains unchanged
w.r.t. the changed orientation of s¥. This gives us the freedom to choose reference orientations of
simplices when working with simplicial data.

Theorem 16 (Permutation Equivariance). A SCCNN in|Eq. (1)|is P-equivariant. For all p € P, we
have p - SCCNNy, : {pr—1 - Xk—1,Dk * Xk, Pkt1 - Xkt 1} — PeXke

Theorem 17 (Orientation Equivariance). A SCCNN in[Eq. (1) is O-equivariant if (-) is odd. For all
0 € O, we have 0 - SCCNNy, : {0ok—1 - Xk—1, 0k * Xk, Ok+1 - Xkt1} —> Ok * X
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Proof. Both the permutation group and orientation group have linear matrix representations. By
following the same procedure in [[17, Appendix D] or [16], we can prove the equivariance. O

B.4 Diffusion process on SCs

Diffusion process on graphs can be generalized to SCs to characterize the evolution of simplicial
data over the SC, in analogy to data diffusion on nodes [[12} 36} 29]. Here we provide an informal
treatment of how discretizing diffusion equations on SCs can give resemblances of simplicial shifting
layers. Consider diffusion equation and its Euler discretization with a unit time step

Xk(t) = —kak(t), Euler step: Xk(t + 1) = Xk(t) — Lgxs (t) = (I — Lk)Xk(t) (B.6)

with an initial condition x(t) = x¥. The solution of this diffusion is xj(t) = exp (—Lxt)x}. As
the time increases, the simplicial data reaches to a steady state X, (¢) = 0, which lies in the harmonic
space ker(Ly ). The simplicial shifting layer resembles this Euler step with a weight and nonlinearity
when viewing the time step as layer index. Thus, a NN composed of simplicial shifting layers can
suffer from oversmoothing on SCs, giving outputs with decreasing Dirichlet energies as the number
of layers increases.

Now let us consider the case where the two Laplacians have different coefficients
Xk(t) = —Lk7dxk(t) — 7Lk7uxk(t), Euler step: Xk(f,) = (I — Lk,d — ’yLk,u)Xk(t). (B.7)

The steady state of this diffusion equation follows (Ly, q + YL )Xk (t) = 0, where x(¢) would be
in the kernal space of Ly, still. However, before reaching this state, when the time increases, xy ()
would primarily approach to the kernel of B; 41 if v > 1, in which the lower part of the Dirichlet
energy remains, i.e., the decrease of D(x(t)) slows down.

When accounting for inter-simplicial couplings, consider there are nontrivial x;_; and x4 and the
diffusion equation becomes

Xp(t) = —Lgpxp(t) + Bl xp_1 + Bry1Xpt1, (B.8)

which has source terms B;xk_l + Bji1Xk+1. Consider a steady state X, = 0. We have Lyxy (t) =
Xk, d + Xk,u, Where x;, is not in the kernel space of L. The Euler discretization gives

Xk(t + 1) = (I — Lk)Xk(t) + Xk,d + Xk,u- (B.9)

The layer in [14] x4 = wo(I — Lg)xk + w1Xy.q + waXy,, is a weighted variant of above step
when viewing time steps as layers.

C Proofs for Section 3

C.1 Dirichlet energy minimization perspective

Hodge Laplacian smoothing. We can find the gradient of problem [Eq. (2)|as g% = B;—B Xk +
'yBkHB,;'—HXk, thus, a gradient descent step follows as|Eq. (2)| with a step size 7).

Proof of[Proposition 3. Consider ) = 1.
D(x;") = w | B(I = Ly,a — YLiu) X} [13 + wh By (T — Lia — Ly, u) %313
= wi||(T — L—1,0)Brx, |13 + wi|(T = YLps1.0) B x4 13 €D
< wi||(T = Ly—1,u) [31Brxi |3 + wpl|(T = vLit1,a) [131Bigaxi 13

which follows from triangle inequality. By definition, we have ||I — Lj_1 4]|3 = ||I — Ly.q||3 and
IT—Lgull3 = T — Lit1,all3. Also, we have [T — Ly ||3 = max{||I — Ly q||3, [T — Lg,u||3} Thus,
we have D(x;™) < w3||T — Ly ||3D(x},) when v = 1. When w3||I — Ly||3 < 1, Dirichlet energy
D(x41) will exponentially decrease as [ increases. O

When v # 1, from (C.1), we have D(x}™) = Dg(x,™) + Dy (x4™), which follows
Da(x;) < wi||(I = Lia)l[3Da(x}) and Dy(x;™) < wil|(T = vLew)[EDu(xy)  (C2)
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When v = 1, the oversmoothing condition is ||T — Ly[|3 = max{||T — Lg.al3, [T — Leu[3} < 2
If [T — Lg||3 = ||T — Lg.al|3, under the oversmoothing condition, by not restricting v to be 1,
wg||(I — yLg )% can be larger than 1 depending on the choice, which means D, (x}) does not
necessarily decrease, so does not D(x.).

Hodge Laplacian smoothing with sources. The gradient of the objective in|Eq. (3) is given by
Lyx} — B;xk_l — Bg1Xg+1, which gives the gradient descent update in|Eq. (3) with a step size 7.

Consider the layer in [14] lerl = wO(I—Lk)Xé—I—wlxkyd—&-ngk,u with some weights. By triangle in-
equality, we have D(x5!) < w3 |[T—Ly [3D(sch ) +102 e (L) [0 3+ 103 A (L)
If the weight wy is small enough following the condition in[Proposition 3, the contribution from the
projections, controled by weights w; and ws, can compromise the decrease by wg, maintaining the
Dirichlet energy.

D Proofs for Section 4

D.1 A derivation of the spectral frequency response [Eq. (4)

SFT of x. First, the SFT of x;, is given by x5, = [i;H, 5(2,(;7 i;c]—r with the harmonic embedding
XpH = UkT’ka = U/ yxg,u in the zero frequencies, the gradient embedding Xy, ¢ = U;ka =
UZGX’WG in the gradiént frequencies, and the curl embedding X,.c = U;ka = UkT,kap in the
curl frequencies.

SFT of H; x;. By diagonalizing an SCF H;, with Uy, we have
Hyx, = UkﬁkUZXk = Uk(f‘lk ® ik) D.1)
where Hj, = diag(hy). Here, hy = [ ;. b o, b o] T is the frequency response, given by

harmonic response : hy, o= (wk a,0 + Wk o)1,
gradient response : hy, a = Zf 0 Wh,d t)‘k o+ Wkuol,
curl response : hk,C = Zt:o wkﬂl,t)\k c T wra,0l,

with (-)®* the elementwise tth power of a vector. Thus, we can express hy © Xy, as

(b ©%ps) |, (hpc ©Xpc) ' (hec ©@%ec) '] (D.2)

SFT of projections. Second, the lower projection x; 4 € im(B} ) has only a nonzero gradient
embedding X g4 = U;ka,d. Likewise, the upper projection x,, € im(Bj41) contains only a
nonzero curl embedding Xy, ,, = U;ka,u. The lower SCF Hy, 4 has ﬁkyd = ZtTiO w§€7d,t)\k?'é} as
the frequency response that modulates the gradient embedding of x;, 4 and the upper SCF H, ,, has
hy ., = Z;‘F;O w;7u7t)\k?’f0 as the frequency response that modulates the curl embedding of xy, .

SFT of y;. For the output y;, = Hk dXg,d + H;x;, + Hk’uxk’u, we have
Vi H —th@Xk:H>

YkG—hkd@Xkd+th®XkG7 (D.3)
Ve =hpc®Xpc + hpy ©Xpu

D.2 Expressive power in|Theorem 6

Proof. From the Cayley-Hamilton theorem [37]], we know that an analytical function f(A) of a
matrix A can be expressed as a matrix polynomial of degree at most its minimal polynomial degree,
which equals to the number of distinct eigenvalues if A is positive semi-definite.

Consider an analytical function Gy, q of Ly, 4, defined on the spectrum of Ly, 4 via analytical function
gk, (A) where A is in the set of zero and the gradient frequencies. Then, Gy, q can be implemented
by a matrix polynomial of Ly, q of order up to ny, ¢ where ny, g is the number of nonzero eigenvalues
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of Ly, 4, i.e., the number of distinct gradient frequencies. Likewise, any analytical function Gy, ,, of
L can be implemented by a matrix polynomial of Ly, ,, of order up to ny ¢, which is the number
of nonzero eigenvalues of Ly, ,,, i.e., the number of distinct curl frequencies.

Thus, as of the matrix polynomial definition of SCFs in a SCCNN, the expressive power of Hy, qx 4+
H xj, +Hj, yxp , is at most Gk,dxk,d +(Gg,a+Gpu)xk + G;c,uxhu’ when the matrix polynomial
orders (convolution orders) follow T}, 4 = Tk’:’d =ngqand Ty, = TI::,u = ng,c- O

D.3 Hodge-aware of SCCNN in|[Theorem 7

Proof. Consider a linear mapping T : V' — V. An invariant subspace W of T" has the property that all
vectors v € W are transformed by T into vectors also contained in W,ie.,v e W = T(v) € W.
For an input x € im(B} ), the output Hxx is in im(B} ) too, because of

Hyx = Z L} qx + Z L} . x = Z L} 4x € im(B} ) (D.4)
¢ ¢ ¢

where the second equality comes from the orthogonality between im (B, ) and im(By1). Similarly,
we can show that for x € im(By41), the output Hyx € im(By.1); for x € ker(Ly), the output
Hx € ker(Ly). This essentially says the three subspaces of the Hodge decomposition are invariant
with respect to the SCF H. Likewise, the gradient space is invariant with respect to the lower SCF
H;, 4, which says any lower projection remains in the gradient space after passed by Hj, 4; and the
curl space is invariant with respect to the upper SCF Hy, .

Lastly, through the spectral relation in the learning operator Hj, in the gradient space is
controlled by the learnable weights {wy, 4 .}, which is independent of the learnable weights {wy, v+ },
associated to the learning of Hj, in the curl space. Likewise, the lower SCF learns in the gradient
space as well but with another set of learnable weights {w}c d’t}, and the upper SCF learns in the curl
space with learnable weights {w;w.t}. From the spectral expressive power, we see that above four
independent learning in the two subspaces can be as expressive as any analytical functions of the
corresponding frequencies (spectrum). This concludes the independent and expressive learning in the
gradient and curl spaces. O

E Proofs for[Section 5

We first give the formulation of SCCNNs on weighted SCs, then we proceed the stability proof.

A weighted SC can be defined through specifying the weights of simplices. We give the definition of
a commonly used weighted SC with weighted Hodge Laplacians in [29,[39].

Definition 18 (Weighted SC and Hodge Laplacians). In an oriented and weighted SC, we have
diagonal weighting matrices M, with [M];; measuring the weight of ith k-simplex. A weighted kth
Hodge Laplacian is given by

Ly =Lga+ Ly = MB, M, ! By + B, 1M, 1B, M . (E.1)

where Ly g4 and Ly, are the weighted lower and upper Laplacians. A symmetric version fol-
lows L = M, "/*LyM,/?, and likewise, we have L] ; = M;/*B] M; ! B,M,/* and L , =

M, *By 1My 1 B], M, /2, with the weighted incidence matrix is M, "/*B,M,/* [39-41].

SCCNNs in weighted SC. The SCCNN layer defined in a weighted SC is of form
x}, = o(H Ry axi | + Hixi '+ H Ry uxil)) (E.2)

where the three SCFs are defined based on the weighted Laplacians (E.I), and the lower and
upper contributions x}, ; and x}, , are obtained via projection matrices Rg,q € R™*"-1 and

Ry, € R™ ¥+ instead of B] and By ;. For example, [14] considered R; ¢ = M;B] M;*
and Rl,u = B2M2.
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E.1 Proof of Stability of SCCNNs in|Theorem 12

For a SCCNN in (E.2) in a weighted SC S, we consider its perturbed version in a perturbed SC S at
layer [, given by

% = o(Hj o Reaxi "y + Hx! 4+ H Ricuih) (E3)
which is defined based on perturbed Laplacians with the same set of filter coefficients, and the
perturbed projection operators following relativ perturbation model.

Given the initial input x) for k = 0,1,..., K, our goal is to upper bound the Euclidean distance
between the outputs xﬁﬂ and fcﬁc forl=1,...,L,

1%}, — xll2 = [lo(H}, gRea% ) — Hy gReax )

. e (E.4)
IIl sl—1 IIl -1 IIl R sl—1 IIl R -1
+ kxk - kxk + k,zu k,uxk+1 - k,u k711Xk+1)||2'

We proceed the proof in two steps: first, we analyze the operator norm HI/-\Iff —H!||> of a SCF H},

and its perturbed version HL ; then we look for the bound of the output distance for a general L-layer
SCCNN. To ease notations, we omit the subscript such that || A|| = max|jx|,—1 || Ax||2 is the operator
norm (spectral radius) of a matrix A, and ||x|| is the Euclidean norm of a vector x.

In the first step we omit the indices &k and [ for simplicity since they hold for general k£ and [. We first
give a useful lemma.

Lemma 19. Given the ith eigenvector u; of L = UAU, for lower and upper perturbations Eq
and E, we have
Equ; = qaiv; + Equ;,  Eyu; = gyu; + Eou, (E.5)

with eigendecompositions Eq = VdeV(—lr and E, = VuQuV;r where Vg4, V collect the
eigenvectors and Qq, Qu the eigenvalues. It holds that | E1||< eqdq and ||Ez||< €,0y, with
Sa = (|[Va=Ul+1)2 =1 and 6, = (|Vu—U||+1)? — 1 measuring the eigenvector misalignments.

Proof. We first prove that Equ; = gq;u; + Eju;. The perturbation matrix on the lower Laplacian
can be written as Eq = E/d + E; withE, = UQqUT and E; = (V4 — U)Qq(Vq —U)T +
UQq(Vq—U)T + (Vg —U)QqUT. For the ith eigenvector u;, we have that

Equ; = Equ; + Eju; = qqw; + By, (E.6)

where the second equality follows from E/ju; = gqg,;u;. Since ||Eq4||< €q, it follows that ||Qq||< eq.
Then, applying the triangle inequality, we have that

B[ <[[(Va = U)Qa(Va = U)T[[+[UQa(Va — U) T +]|(Va — U)QaU||
<['Va = Ul?[Qull+2lIVa — Ul Qall|U]l< eallVa = Ul +2eal[Va —= Ul (E7)
=ca(([Va = Ull+1)* = 1) = eada,

which completes the proof for the lower perturbation matrix. Likewise, we can prove for E,u;. [J

E.1.1 Step I: Stability of the SCF H!,

Proof. 1. Low-order approximation of H — H. Givena SCF H = ZtTio wq L + ZtT;O wy LY,
we denote its perturbed version by H = S°7% wq ;LY + 31wy /LY, where the filter coefficients
are the same. The difference between H and H can be expressed as

T4 Tu
H-H=> wa(Lj—L+ ) wy (L, - L, (E.8)
t=0 t=0

in which we can compute the first-order Taylor expansion of ffi as

L = (La + EqLg + LyEq)' = L} + Dy, + Cq (E.9)
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sa5 with Dy := Y\ { (L EqL, " + LT EqLY ") parameterized by ¢ and Cq following || Cq|<
836 >r_y (')||EaLq + LaEq||"||Lal/*~". Likewise, we can expand L, as

u

L) = (L, + E,Lg + Lqu)’ = L, + D,y + C, (E.10)

g7 with Dy, := '} (LIE, L, + LI E, LY "~ 1) parameterized by ¢ and C,, following ||C, || <
838 >, ())|IEyLy + LyE,||"||Ly[[*~". Then, by substituting (E.9) and (E-I0) into (E-8), we have
Ta Ty
H-H=> wqDas+» wuDus+Fa+F, (E.11)
t=0 t=0
ss9  with negligible terms ||Fq||= O(||Eq||?) and ||Fy||= O(||E4||?) because perturbations are small
40 and the coefficients of higher-order power terms are the derivatives of analytic functions hg(\) and

841 izc()\), which are bounded [cf. [Definition 10J.

g2 2. Spectrum of (ﬁ — H)x. Consider a simplicial signal x with an SFT X = U x = [%1,..., %],
a3 thus, x = > 1" | Z;u;. Then, we study the effect of the difference of the SCFs on a simplicial signal
44 from the spectral perspective via

n Ta n Ta
(H-H)x=> & » wa:Dhw+Y &Y wyDu+Fax + Fux (E.12)
i=1 =0 i=1  t=0
845 where we have
t—1 t—1
D u; =Y (LiEJLY "+Li T EqLy "M, and DY ju; = ) (LIELL " +L M E L Hu,.
r=0 r=0
(E.13)
s46  Since the lower and upper Laplacians admit the eigendecompositions for an eigenvector u;
Law; = Aqiwi,  Lyu; = Ay, (E.14)

847 we can express the terms in as
LiEqLY "u; = LiEgAl; "y = A "Li(qaius + Eqwg) = qaidyu + A5 "LiEju,,  (E.15)
sss where the second equality holds from|[Cemma 19} Thus, we have
LM EaL = qaiu + A7 'L E ;. (E.16)
49 With the results in and (E.16), we can write the first term in (E.12) as

n Ta n Ta t—1
D E Y waDhwi =Y E > war Y 2qairiw
i=1 =0 i=1 =0 r=0
oo (B.17)
@iy waey (G LaEiw + A L En) .
i=1  ¢=0 =0
term 2
sso  Term 1 can be further expanded as
n Ta n
term 1 = 2 Z Ziqai Z twg A u; = 2 Z Fiqairailis (Aai)u; (E.18)
i=1 t=0 i=1

851 where we used the fact that Z?io twa Ny, = Adiﬁa(Adi). Using Ly = UAqU T we can write term
g2 21in (E.17) as

term2 = Y~ #;Udiag(ga;)U" Equ; (E.19)

i=1
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where gq; € R™ has the jth entry

Ta t—1 7 . .
. 2Aaihg (Aai) for j =1,
=2 w MG A+ AT A f“): SRy . oy
lgails ;) ot ; ( ai” [Aaly +Aa; " A; 73\33\\3 (ha(Adai) — ha(Aa;))  forj #i.
(E.20)
Now, substituting (E.18) and (E.19) into (E.17)), we have
n Tq n n
Z T; Z wd7thMui =2 Z i'igdi)\diil,(}(Adi)ui —+ Z fiUdiag(gdi)UTElui. (E21)
i=1  t=0 i=1 i=1

By following the same steps as in (E.17)-(E.20), we can express also the second term in (E.12) as

n Ta n n
> &Y wesDh =2 Fiqudaho(w)wi + Y #;Udlag(gu)U Eau;  (E22)
i=1 t=0 i=1 i=1

where g,; € R" is defined as

Ta t—1 7 . .

_ o 2>\m‘h ()\uz) fOI'] =1,

wili = Y Wy At.TAuT-Jr/\t.TlAuT“): A - .
(8l ; it Z ( wi | ]g wi [ ]] AuitAuj (ha(Aui) — he(Ayy))  forj # i

r=0
(E23)

ui >\uj

3. Bound of ||(H — H)x||. Now we are ready to bound ||(H — H)x|| based on triangle inequality.
First, given the small perturbations |Eq|| < €4 and ||E,|| < €,, we have for the last two terms in
(E.12)

[Fax|| < O(ed)l|xl, and [[Fux]| < O(el) | x]I- (E.24)

Second, for the first term || | &; fio wa,+D4w;]| in (E:12), we can bound its two terms in (E.I8)
and (E.19) as

n Ta n n
Z fi Z ’wd7th7tui S H2 Z -i'iQdi)\diil/G ()\di)ui + Z iiUdiag(gdi)UTElui .
i=1 t=0 i=1 i=1
(E.25)
For the first term on the RHS of (E.25), we can write
n 2 n
|23 sumdaiticOagn]| <43 P Phade0a < 42 @20

i=1 =1
which results from, first, |qa;| < eq = ||Eq|| since gq; is an eigenvalue of Eg; second, the integral
Lipschitz property of the SCF |[Ah(; (\)| < cq; and lastly, the fact that ;- |Z;]? = [|x]|? = [|x]?

and |lu;||? = 1. We then have

szi'iQdi)‘diB/G()‘di)ui < 26dcd||x||. (E.27)
i=1
For the second term in RHS of (E.25), we have
> #Udiag(ga:)U T Eqwi|| < |#]|[Udiag(ga:) U ||| Ex[]|ull, (E28)
i=1 i=1

which stems from the triangle inequality. We further have Hp‘diag(gdi)UT = ||diag(ga:)| < 2Cq
resulting from ||U|| = 1 and the cq-integral Lipschitz of hg (M) [cf. [Definition 10]. Moreover, it
follows that | Eq || < €qdq from[Lemma 19} which results in

n
> #Udiag(gai) U Equ;|| < 2Cqeadav/nlx| (E.29)
i=1

where we use that Y, |Z;| = ||x|1 < /n||x|| = v/n||x||. By combining (E-26) and (E.29), we

have

n Tq
> &> wa Dh || < 2eqcallx|| + 2Cacaday/n]|x]|. (E.30)
i=1 t=0
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Analogously, we can show that

n Tq
D &> we Dk || < 2eqc0]|x]| + 2Cuendu/n|x]|. (E31)
i=1 t=0

Now by combining (E.24), (E-30) and (E-31), we can bound ||(H — H)x|| as

| (F — H)x|| < 2eqcallx]| + 2Caeadav/nlx] + O)|x]

: (E32)
+ 26ucullx]| + 2Cuendu/allx] + O(E)]x].
By defining Aq = 2(1 + §g+/n) and A, = 2(1 + 6,+/n), we can obtain that
IH — H| < calaeq + culuen + O(2) + O(2). (E.33)

Thus, we have HH%@ — H;CH < Ck,dAk}de,d + Ck)uA]f?uehu with Al@d = 2(1 + (5k7d,/nk) and
Agy = 2(1+3k,u+/nk) Where we ignore the second and higher order terms on €, q and €y, . Likewise,

we have | HJ, ; — ﬁLdH < ¢k,alAyaér,a for the lower SCF and |HJ, , — IA{ZUH < CkuAk u€hu for
the upper SCF. O

E.1.2 Step II: Stability of SCCNNs

Proof. Given the initial input x{, the Euclidean distance between xﬁc and %}, at layer [ can be bounded
_

by using triangle inequality and the ¢, -Lipschitz property of o(-) [cf.|Assumption 11] as

1%, — XL ll2 < co (. + Ok + Bn): (E.34)

with
O =IH} g Reax ) — H aReaxi )
Dl :”Hl % ! Hka I, (E.35)
¢k,u 1:||Hk,uRk uf‘;c;l Hk,uRk,uka”
We now focus on upper bounding each of the terms.

1. Term qbk By subtracting and adding H! kxk ! within the norm, and using the triangle inequality,
we obtain

¢ < | HL (3, 1—Xk D)+ I, — B )x ) < 1l — x| (D — E x|
< 1% = x4 (cralraerd + ckulrueru) X5

where we used the SCF stability in (E.33) and that all SCFs have a normalized bounded frequency
response in Note that H, is also characterized by hc () with the same set of filter
coefficients as Héc

(E.36)

2. Term ¢}, 4 and ¢;, . By subtracting and adding a term H!, Ry, ax,_} within the norm, we have
N -
Oa < I g Rica (R4 — )| + | (HL de a — Hj 4Ry, d)X Al
< [ Ryalll%, 2 = i1+ [ g Ra —

where we used again triangle inequality and HH%c all <1 from|Assumption 11| For the term Hf(ﬁC alls

we have [Rj ol < IR 4l + [ TkallIRLgll < ria(l + ex.a) where we used |Rj, 4| < req in

(E.37)

Assumption 11|and ||J ﬁc all < €k.q. For the second term of RHS in (E.37), by adding and subtracting

H. ,R! , we have

||H§€,de-,d - HZ,de,dH = Hch,de,d - ch,ngc,d + ch,ngc,d - ng,de,d”
< || Hj, ll|Rk.a — Riall + 1Hj g — Hi gl | Rl (E.38)

!
< rk,a€k,d T Ck qDk,d€k,aTk,d
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where we use the stability result of the lower SCF H! . in (E:33). By substituting (E.38) into (E.37),
we have

gbi:,d <l R — x5+ (Pragka + 0127(1Ak,d€k,(17"k,d)||X§€__11 IB (E.39)
By following the same procedure [cf. (E.37) and (E.38)], we obtain

¢§<;7u < fk,uH*L_ﬁ k-‘rl H + (Tk ufk,u + Ck uAk u€k,ulk u) ka-i-l || (E40)

3. Bound of || %} — x!||. Using the notations ¢, t). q and t,, in[Theorem 12| we then have a set of
recursions, for k = 0,1,..., K

~ A Sl
I, — x| <C¢T(r’€dek 11 Xk 1||+tkdllx L+ 1%

.

Define vector bl as [b]), = ||} — x4 || with b? = 0. Let 3 collect the energy of all outputs at layer
I, with [3']), := [|x.!||. We can express the Euclidean distances of all k-simplicial signal outputs for

k=0,1,...,K,as

X —x el

(E41)

b! < c,Zb"! 4 ¢, TR ! (E42)
where < indicates elementwise smaller than or equal, and we have

tO tO,u 1 "A'O,u
t1a U t1,u 1,9 1 T1,u
T = and Z =
tk—1d4 tk—1 tk—1u fr—1d 1 Tr-1u
tk,d tx TK,d 1

(E43)

We.are now in.tere'sted in building a repursion for (E.42) for all layers I. We start with term xfg. Based

on its expression in (E.2), we bound it as

l - l
¢l < o (I d””de”HX o I e+ T Rl 136555 1)

1 (E.44)
<o H + [l "+ 7k u||Xk+1||)7

which holds for k£ = 0,1, ..., K. Thus, it can be expressed in the vector form as Bl =< CgZﬁl_l,
with

7= . (E45)
Tk—1d 1 Tk-1u
TK,d 1

Similarly, we have 3' " < ¢,Z3' 2, leading to 8' < ¢/ 2!3° with 3° = 3 [cf. |Assumption 11].
We can then express the bound (E.42) as

b' <, Zbl 7 4+ L TZ! 1. (E.46)
Thus, we have

b° =0, b' < ¢, TB, b2 < 2(ZTB + TZB), b < 3 (Z*TB + ZTZB + TZ?B), b* =< ...,
(E.47)
which, inductively, leads to
l

‘<Nz s (E.48)

Bt setting [ = L, we obtain the bound bl < d = ¢ Zle zlflTZL*lﬁ in[Theorem 12 O
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F Experiment details

F.1 Synthetic experiments on Dirichlet energy evolution

We created a synthetic SC with 100 nodes, 241 edges and 135 triangles with the GUDHI toolbox
[67]], and we set the initial inputs on three levels of simplices to be random sampled from U([—5, 5]).
We then built a SCCNN composed of simplicial shifting layers with weight wg and nonlinearities
including id, tanh and relu. When the weight follows the condition in[Proposition 3, from|[Fig. F.1|
(the dashed lines labled as “shift”), we see that the Dirichlet energies of all three outputs exponentially
decrease as the number of layers increases. We then uncoupled the lower and upper parts of the
Laplacians in the edge space in the shifting layers by setting v # 1. As shown in[Fig. F.1 (the dotted
lines), the Dirichlet energies of the edge outputs decrease at a slower rate than before. Lastly, we
added the inter-simplicial couplings, which overcome the oversmoothing problems, as shown by the
solid lines.

1] ;
10t 4 w 10 ~— 2 o " 102
S RN _ SS o
109 SISINI 1074 AN 10-11 4
SN ‘.
-7 NN 10~ S 102
_ == shift,node AN _ — = shift,node NN _ — = shift,node A
# 19-11 ] —— with proj.,node 0NN £ 107114 —— with proj.,node \\\\ %1029 —— with proj.,node )
B shift,edge N 2 _ shift edge \ ) shift,edge A
15 N 10715 4 \) 10738 4 )
10 with proj.,edge LK with proj..edge \\\ with proj..edge \
10194 * uncouple lower/upper,edge \\\ 10-19 * uncouple lower/upper,edge \\ 10-47 * uncouple lower/upper,edge \
| == shiftri \ — = shift,tri. \“ o | == shifttri. ‘\
107 4 —— with proj.tri \ 10729 — with proj..tri. 07— with proj.tri \
v v T T v T v . T
1 10 100 1 10 100 1 10 100
Layer Layer Layer
(a) identity, v = 2 (b) tanh, v = 2 (c)relu,y =5

Figure F.1: Oversmoothing effects of simplicial shifting and the mitigation effects of uncoupling
lower and upper adjacencies and accounting for inter-simplicial couplings.

F.2 Additional details on Forex experiments

In the forex dataset, there are 25 currencies which can be exchanged pairwise at three timestamps. We
first represented their exchange rates on the edges and took the logrithm, i.e., [x1]}; ;) = logy i =
—[x1];,i)- Then, the total arbitrage can be computed as the total curl B]x;.

We considered to recover the exchange rates under three types of settings: 1) random noise following
normal distribution such that the signal-to-noise ration is —3dB, which is spread over the whole
simplicial spectrum; 2) “curl noise” projected from triangle noise following normal distribution such
that the signal-to-noise ration is —3dB, which is distributed only in the curl space; and 3) 50% of the
total forex rates are recorded and the other half is not available, set as zero values.

Table F.1: Forex results (nmse, arbitrage) and the corresponding hyperparameters.
Methods

\ Random noise “Curl noise”

| Interpolation

Input \ 0.119 + 0.004, 25.19 + 0.874 \ 552 £ 0.027, 122.36 4+ 5.90 \ 0.717 + 0.030, 106.40 £ 0.902
£o-norm \ 0.036 + 0.005, 2.29 £ 0.079 \ .050 +0.002, 11.12 + 0.537 \ 0.534 +0.043, 9.67 £+ 0.082
SNN 0.11 4+ 0.005, 23.24 + 1.03 0.446 + 0.017, 86.947 £ 2.197 | 0.702 £ 0.033, 104.738 + 1.042
L =5F =64,T = 4, tanh L=6,F =064,T = 3, tanh L=2F=64,T =1, tanh
PSNN 0.008 + 0.001, 0.984 +0.17 0. 000 =+ 0.000, 0.000 £ 0.000 0.009 + 0.001, 1.128 + 0.329
L =6, F = 64, tanh L=5F=1T=4,id L =6,F =064,T = 4, tanh
Bunch ‘ 0.981 +0.0,22.912 + 1.228 ‘ 0.981 + 0.0, 22.912 £+ 1.228 ‘ 0.983 +0.005 , 19.887 + 6.341
MPSN 0.039 £ 0.004, 7.748 £ 0.943 0.076 £ 0.012, 14.922 +2.493 | 0.117 £ 0.063, 23.147 + 11.674
L =2,F = 64, id, sum L =4, F = 64, tanh, mean L =2, F = 64, tanh, sum
SCCNN, id 0.027 £ 0.005, 0.000 % 0.000 0.000 + 0.000, 0.000 £ 0.000 0.265 + 0.036 , 0.000 £ 0.000
L=2F=16,1T4=0,T,=3 | L=5F=1,T4=1,T, =1 L=2F=16,14=0,T, =3
SCCNN, tanh ‘ 0.002 £ 0.000, 0.325 = 0.082 ‘ 0.000 £ 0.000, 0.003 £ 0.003 ‘ 0.003 £ 0.002, 0.279 £ 0.151

L=6F=64T)=57T,=2

L=1F=64,T4=2,T,=2

L=6F=64T)=5T,=1

26



932
933
934
935
936
937
938
939
940
941
942
943
944
945

946

947

948
949
950
951
952

953
954
955
956
957
958
959
960
961

962

963
964
965
966
967
968

970
971
972
973
974
975
976

977

979
980

First, as a baseline method, we chose /s norm of the curl Box; as a regularizer to reduce the
total arbitrage, i.e., X3 = (I + wLy ) 'x; with a regularization weight w € [0,10]. For the
learning methods, we consider the following hyperparameter ranges: the number of layers to be L €
{1,2,...,6}, the number of intermediate features to be F' € {1, 16, 32,64}. For the convolutional
methods including SNN [[15], PSNN [16], Bunch [14] and SCCNN, we considered the intermediate
layers with nonlinearities including id and tanh. The convolution orders of SNN and SCCNN are set
tobe {1,2,...,5}. For the message-passing method, MPSN [17], we considered the setting from [17,
Eq. 35] where the sum and mean aggregations are used and each message update function is a two-
layer MLP. With these noisy or masked rates as inputs and the clean arbitrage-free rates as outputs,
we trained different learning methods at the first timestamp, and validated the hyperparameters at
the second timestamp, and tested their performance at the thrid one. During the training of 1000
epochs, a normalized MSE loss function and adam optimizer with a fixed learning rate of 0.001 are
used. We run the same experiments for 10 times. [Table F.T|reports the best results (nmse) and the
total arbitrage, together with the hyperparameters.

F.3 Additional details on Simplex prediction
F.3.1 Method in Detail

The method for simplex prediction is generalized from link prediction based on GNNs by [52]]: For
k-simplex prediction, we use an SCCNN in an SC of order up to k to first learn the features of
lower-order simplices up to order £ — 1. Then, we concatenate these embedded lower-order simplicial
features and input them to a two-layer MLP which predicts if a k-simplex is positive (closed, shall be
included in the SC) or negative (open, not included in the SC).

For example, in 2-simplex prediction, consider an SC of order two, which is built based on nodes,
edges and (existing positive) triangles. Given the initial inputs on nodes x, and on edges x; and
zero inputs on triangles xo = 0 since we assume no prior knowledge on triangles, for an open
triangle ¢ = [i,j, k], an SCCNN is used to learn features on nodes and edges (denoted by y).
Then, we input the concatenation of the features on three nodes or three edges to an MLP, i.e.,
MLP node([yolill[yolsll[yolx) or MLPeage ([¥]5i,51 11 [¥]15,1 11 [¥] i, to predict if triangle ¢ is positive
or negative. A MLP taking both node and edge features is possible, but we keep it on one simplex level
for complexity purposes. Similarly, we consider an SCCNN in an SC of order three for 3-simplex
prediction, which is followed by an MLP operating on either nodes, edges or triangles.

F.3.2 Data Preprocessing

We consider the data from the Semantic Scholar Open Research Corpus [53] to construct a coau-
thorship complex where nodes are authors and collaborations between k-author are represented by
(k — 1)-simplices. Following the preprocessing in [15], we obtain 352 nodes, 1472 edges, 3285
triangles, 5019 tetrahedrons (3-simplices) and a number of other higher-order simplices. The node
signal xg, edge flow x; and triangle flow x, are the numbers of citations of single author papers and
the collaborations of two and three authors, respectively.

For the 2-simplex prediction, we use the collaboration impact (the number of citations) to split the
total set of triangles into the positive set Tp = {t|[x2]; > 7} containing 1482 closed triangles and the
negative set Ty = {t|[x2]: < 7} containing 1803 open triangles such that we have balanced positive
and negative samples. We further split the 80% of the positive triangle set for training, 10% for
validation and 10% for testing; likewise for the negative triangle set. Note that in the construction of
the SC, i.e., the incidence matrix B>, Hodge Laplacians Ly ,, and Ls 4, we ought to remove negative
triangles in the training set and all triangles in the test set. That is, for 2-simplex prediction, we only
make use of the training set of the positive triangles since the negative ones are not in the SC.

Similarly, we prepare the dataset for 3-simplex (tetrahedron) prediction, amounting to the tetradic
collaboration prediction. We obtain balanced positive and negative tetrahedron sets based on the
citation signal x3. In the construction of B3, Ly ,, and L3 4, we again only use the tetrahedrons in
the positive training set.
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F.3.3 Models

For comparison, we first use heuristic methods proposed in [2] as baselines to determine if a
triangle ¢ = [i, j, k| is closed, namely, 1) Harmonic mean: s; = 3/([x1][;;-] + [Xl]g}k] + [xl][;.’lk]),
2) Geometric mean: s; = limp_,o[([xl]ﬁ,,j] + [xl]’[;k] + [xl]’[’i"k])]l/p, and 3) Arithmetic mean:
s¢ = ([Xalpig) + Xalpe + [X1][i,x))/3, which compute the triangle weight based on its three faces.
Similarly, we generalized these mean methods to compute the weight of a 3-simplex [i, j, k, m] based
on the four triangle faces in 3-simplex prediction.

We then consider different learning methods. Specifically, 1) “Bunch” by [14] (we also general-
ized this model to 3-dimension for 3-simplex prediction); 2) Message passing simplicial network
(“MPSN”) by [17] which provides a baseline of message passing scheme in comparison to the
convolution scheme; 3) Principled SNN (“PSNN”) by [[16]]; 4) SNN by [15]; 5) SCNN by [26]; 6)
GNN by [51]]; 7) MLP: providing as a baseline for the effect of using inductive models.

For MLP, Bunch, MPSN and our SCCNN, we consider the outputs in the node and edge spaces,
respectively, for 2-simplex prediction, which are denoted by a suffix “~-Node” or “-Edge”. For
3-simplex prediction, the output in the triangle space can be used as well, denoted by a suffix “-Tri.”,
where we also build SCNNs in both edge and triangle spaces.

F.3.4 Experimental Setup and Hyperparameters

We consider the normalized Hodge Laplacians and incidence matrices, a particular version of the
weighted ones [39] 29]]. Specifically, we use the symmetric version of the normalized random walk
Hodge Laplacians in the edge space, proposed by [41]], which were used in [14} 68] as well. We
generalized the definitions for triangle predictions.

Hyperparameters. 1) the number of layers: L € {1,2,3,4,5}; 2) the number of intermediate and
output features to be the same as F' € {16, 32}; 3) the convolution orders for SCCNNGs are set to be
the same, i.e., T, =Tg =T, =T, =T € {1,2,3,4,5}. We do so to avoid the exponential growth
of the parameter search space. For GNNs [51] and SNNs [15]], we set the convolution orders to be
T € {1,2,3,4,5} while for SCNNs [[19], we allow the lower and upper convolutions to have different
orders with Ty, Ty, € {1,2,3,4,5}; 4) the nonlinearity in the feature learning phase: LeakyReLU
with a negative slope 0.01; 5) MPSN is set as [64]]; 6) the MLP in the prediction phase: two layers
with a sigmoid nonlinearity. For 2-simplex prediction, the number of the input features for the node
features is 3F', and for the edge features is 3F. For 3-simplex prediction, the number of the input
features for the node features is 4F', for the edge features is 6 F' and for the triangle features is 4 F
since a 3-simplex has four nodes, six edges and four triangles. The number of the intermediate
features is the same as the input features, and that of the output features is one; and, 7) the binary
cross entropy loss and the adam optimizer with a learning rate of 0.001 are used; the number of the
epochs is 1000 where an early stopping is used. We compute the AUC to compare the performance
and run the same experiments for ten times with random data splitting.

F.3.5 Results

In [Table F.2] we report the best results of each method with the corresponding hyperparameters.
Different hyperparameters can lead to similar results, but we report the ones with the least complexity.
All experiments for simplex predictions were run on a single NVIDIA A40 GPU with 48 GB of
memory using CUDA 11.5.

F.3.6 Ablation Study

We perform an ablation study to observe the roles of different components in SCCNNS.

SC Order K. We investigate the influence of the SC order K. [Table F.3 reports the 2-simplex
prediction results for K = {1,2} and the 3-simplex prediction results for K = {1,2,3}. We observe
that for k-simplex prediction, it does not necessarily guarantee a better prediction with a higher-order
SC, which further indicates that a positive simplex could be well encoded by both its faces and other
lower-order subsets. For example, in 2-simplex prediction, SC of order one gives better results than
SC of order two (similar for Bunch), showing that in this coauthorship complex, triadic collaborations
are better encoded by features on nodes than pairwise collaborations. In 3-simplex prediction, SCs of
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Table F.2: 2- (Left) and 3-Simplex (Right) prediction AUC (%) results.

METHODS AUC PARAMETERS METHODS AUC PARAMETERS
HARM. MEAN  62.84+2.7 — HARM. MEAN  63.6%+1.6 —
ARITH. MEAN  60.8%+3.2 — ARITH. MEAN ~ 62.2+1.4 —
GEOM. MEAN 61.743.1 — GEOM. MEAN 63.1+£1.4 —
MLP-NODE 68.5£1.6 L=1F =232 MLP-TRI. 69.0+£2.2 L=3,F=32
GNN 93.9£1.0 L=5F=32T=2 GNN 96.6+0.5 L=5F=32T=5
SNN-EDGE 92.0£1.8 L=5F=32T=5 SNN-TRI. 95.1£1.2 L=5F=32T=5
PSNN-EDGE 95.6+1.3 L=5F=32 PSNN-TRI. 98.1+0.5 L=5F=32
SCNN-EDGE 96.5+1.5 L=5F=32Tqy=5T,=2 SCNN-TRI. 98.3+0.4 L=5F=32Ta=2T,=1
BUNCH-NODE 98.3+0.5 K=1L=4F=32 BUNCH-EDGE 98.5+0.5 K=3L=4F=16
MPSN-NODE 98.1£0.5 K=1L=3F =32 MPSN-EDGE 99.2+0.3 K=3L=3F=32
SCCNN-NODE  98.740.5 K=1,L=2F=32T=2 SCCNN-NODE  99.440.3 K=3L=3F=32T=3

different orders give similar results, showing that tetradic collaborations can be encoded by nodes, as
well as by pairwise and triadic collaborations.

Table F.3: Prediction results of SCCNNs with different SC order K.

METHOD 2-SIMPLEX PARAMETERS
SCCNN-NoDE  98.7+0.5 K=1,L=2,F=32,T=2
SCCNN-NODE  98.4+0.5 K=2L=2F=32T=2
BUNCH-NODE 98.3+0.4 K=1L=4F =32
BUNCH-NODE 98.0+£0.4 K=2L=4F=32
MPSN-NODE 94.5£1.5 K=1L=3F=32
MPSN-NODE 98.1£0.5 K=2L=3F=32
SCCNN-EDGE 979409 K=1,L=3,F=32T=5
SCCNN-EDGE 959+1.0 K=2L=5F=32T=3
BUNCH-EDGE 97.3£1.1 K=1L=4,F =32
BUNCH-EDGE 94.6+1.2 K=2L=4,F =32
MPSN-EDGE 94.1+£2.4 K=1L=3F=32
MPSN-EDGE 97.0£1.2 K=2L=2F=16

METHOD 3-SIMPLEX PARAMETERS
SCCNN-NODE 99303 K=1,L=2F=32T=1
SCCNN-NODE ~ 99.3+0.2 K=2,L=2F=32T=5
SCCNN-NODE ~ 99.4+0.3 K =3,L=3F=32T=3
MPSN-NODE  96.0+1.2 K=1,L=3F=32
MPSN-NODE  98.240.8 K=2L=2F=32
SCCNN-EDGE ~ 98.940.5 K=1,L=3F=32T=5
SCCNN-EDGE 992404 K =2 L=5F=32T=5
SCCNN-EDGE  99.0+1.0 K=3,L=5F=32T=5
MPSN-EDGE 96.3£1.1 K=1,L=3F=32
MPSN-EDGE 98.340.8 K=2L=3F=32
SCCNN-TRI 979407 K=2L=4,F=32T=4
SCCNN-TRI. 97.440.9 K=3,L=4,F=32T=4
MPSN-TRI. 99.140.2 K=2L=3F=32

Missing Components in SCCNNs. With a focus on 2-simplex prediction with SCCNN-Node of
order one, to avoid overcrowded settings, we study how each component of an SCCNN influences the
prediction. We consider the following settings without: 1) “Edge-to-Node”, where the projection xg
from edge to node is not included, equivalent to GNN; 2) “Node-to-Node”, where for node output,
we have xé = a(HéyuRLuxll_l); 3) “Node-to-Edge”, where the projection x; g from node to edge
is not included, i.e., we have x} = U(Hllxll_l); and 4) “Edge-to-Edge”, where for edge output, we

have x} = o(FI! Ry axf ).

Table F.4: 2-Simplex prediction (SCCNN-Node without certain components or with limited inputs).

Missing Component AUC Parameters

Missing Input AUC Parameters
— 987405 L=2F=32T=2 ~ 087405 L—2F—32.T7—2
Edge-to-Node 939408 L =5F =32T = ) B - B

Node input 982405 L=2F=32T=4
Node-to-Node 98.7£04 L=4,F=32T=2 .

B B B Edge input 98.1£04 L=2F=32,T=3

Edge-to-Edge 98.5+£1.0 L=3,F=32T=3 Node. Edec i 50.04+0.0
Node-to-Edge 988403 L=4,F=32T=3 ode, Edge nputs  50.0+0. -

From the results in [Table F.4 (Left), we see that “No Edge-to-Node”, i.e., GNN, gives much worse
results as it leverages no information on edges with limited expressive power. For cases with
other components missing, a similar performance can be achieved, however, at a cost of the model
complexity, with either a higher convolution order or a larger number of layers L, while the latter
in turn degrades the stability of the SCCNNS, as discussed in [Section 5| As studied by [17, Thm.
6], SCCNNs with certain inter-simplicial couplings pruned/missing can be powerful as well for
simplicial WC test, but if we did not consider certain component, it comes with a cost of complexity
which might degrade the model stability if more number layers are required.
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Limited Input. We study the influence of limited input data for model SCCNN-Node of order two.
Specifically, we consider the input on either nodes or edges is missing. From Table F.4] we see that
the prediction performance does not deteriorate at a cost of the model complexity (higher convolution
orders) when a certain part of the input missing except with full zeros as input. This ability of learning
from limited data shows the robustness of SCCNNss.

F.3.7 Stability Analysis

We then perform a stability analysis of SCCNNs. We artificially add perturbations to the normalization
matrices when defining the Hogde Laplacians, which resemble the weights of simplices. We consider
small perturbations Eq on node weights which is a diagonal matrix following that |Eq|| < €y/2.
We generate its diagonal entries from a uniform distribution [—€(/2, € /2) with ¢y € [0, 1], which
represents one degree of deviation of the node weigths from the true ones. Similarly, perturbations on
edge weights and triangle weights are applied to study the stability. In a SCCNN-Node for 2-simplex
prediction of K = 2, we measure the distance between the simplicial outputs with and without
perturbations on nodes, edges, and triangles, i.e., [|xF — % ||/||xL||, for k = 0,1, 2.

Stability Dependence. We first show the stability mutual dependence between different simplices in
We see that under perturbation on node weights, triangle output is not influenced until the
number of layers becomes two; likewise, node output is not influenced by perturbations on triangle
weights with a one-layer SCCNN. Also, a one-layer SCCNN under perturbations on edge weights
will cause outputs on nodes, edges, triangles perturbed. Lastly, we observe that the same degree of
perturbations added to different simplices causes different degrees of instability, owing to the number
ny, of k-simplices in the stability bound. Since Ny < N; < Ns, the perturbations on node weights
cause less instability than those on edge and triangle weights.

0%

(a) Node pert.L =1 (b) Node pert.L = 2 (c) Edge pert.L =1 (d) Tri. pert.L =1 (e) Tri. pert.L = 2
Figure F.2: The stabilities of different simplicial outputs are dependent on each other.
Number of Layers. [Fig. F.3|shows that the stability of SCCNNs degrades as the number of layers

increases as studied in[Theorem 12} As the NN deepens, the stability deteriorates, which corresponds
to our analysis of using shallow layers.

0!

10>

107

(@aL=1 (b)yL =2 c)L=3 dL=4 e)L=5

Figure F.3: The stability of SCCNNS in terms of different numbers of layers. We consider perturba-
tions on edge weights.

F.4 Additional details on Trajectory prediction
F4.1 Problem Formulation

A trajectory of length m can be modeled as a sequence of nodes [vg, vy, . . ., Umym—1] in an SC. The task
is to predict the next node v,,, from the neighbors of v,,—1, NV, _,. The algorithm in [16] first repre-
sents the trajectory equivalently as a sequence of oriented edges [[vg, v1], [U1, V2], - - ., [Um—2, Um—1]]-

Then, an edge flow x; is defined, whose value on an edge e is [x1]. = 1 if edge e is traversed by the
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trajectory in a forward direction, [x;]. = —1 if edge e is traversed in a backward direction by the
trajectory, and [x;]. = 0, otherwise.

With the trajectory flow x; as the input, together with zero inputs on the nodes and triangles, an
SCCNN of order two is used to generate a representation xi of the trajectory, which is the output on
edges. This is followed by a projection step xé, « = B1Wxy', where the output is first passed through
a linear transformation via W, then projected into the node space via B;. Lastly, a distribution over
the candidate nodes \V,,,, _, is computed via a softmax operation, n; = softmax([x{ ,];),j € MV,
The best candidate is selected as v,,, = argmax;n. We refer to [13| Alg. S-2] for more details.

Um —1°

Given that an SCCNN of order two generates outputs also on nodes, we can directly apply the node
feature output x to compute a distribution over the candidate nodes A\, _, without the projection
step. We refer to this as SCCNN-Node, and the method of using the edge features with the projection
step as SCCNN-Edge.

F4.2 Model

In this experiment, we consider the following methods: 1) PSNN by [16]; 2) SNN by [[15]; 3) SCNN
by [19] where we consider different lower and upper convolution orders Ty, T,; and 4) Bunch by [14]
where we consider both the node features and edge features, namely, Bunch-Node and Bunch-Edge.

Synthetic Data. Following the procedure in [41]], we generate 1000 trajectories as follows. First, we
create an SC with two “holes” by uniformly drawing 400 random points in the unit square, and then a
Delaunay triangulation is applied to obtain a mesh, followed by the removal of nodes and edges in
two regions. To generate a trajectory, we consider a starting point at random in the lower-left corner,
and then connect it via a shortest path to a random point in the upper left, center, or lower-right region,
which is connected to another random point in the upper-right corner via a shortest path.

We consider the random walk Hodge Laplacians [41]. For Bunch method, we set the shifting
matrices as the simplicial adjacency matrices defined in [[14]]. We consider different NNs with three
intermediate layers where each layer contains ' = 16 intermediate features. The tanh nonlinearity is
used such that the orientation equivariance holds. The final projection n generates a node feature
of dimension one. In the 1000-epoch training, we use the cross-entropy loss function between the
output d and the true candidate and we consider an adam optimizer with a learning rate of 0.001 and
a batch size 100. To avoid overfitting, we apply a weight decay of 5 - 10~ and an early stopping.

As done in [16], besides the standard trajectory prediction task, we also perform a reverse task where
the training set remains the same but the direction of the trajectories in the test set is reversed and a
generalization task where the training set contains trajectories running along the upper left region and
the test set contains trajectories around the other region. We evaluate the correct prediction ratio by
averaging the performance over 10 different data generations.

Real Data. We also consider the Global Drifter Program dataset from http://www.aoml.noaa.
gov/envids/gld/, localized around Madagascar. It consists of ocean drifters whose coordinates
are logged every 12 hours. An SC can then be created as [41] by treating each mesh as a node,
connecting adjacent meshes via an edge and filling the triangles, where the “hole” is yielded by the
island. Following the process in [16], it results in 200 trajectories and we use 180 of them for training.
In the training, a batch size of 10 is used and no weight decay is used. The rest experiment setup
remains the same as the synthetic case.

F.4.3 Results

We report the prediction accuracy of different tasks for both datasets in We first investigate
the effects of applying higher-order SCFs in the simplicial convolution and accounting for the lower
and upper contributions. From the standard accuracy for both datasets, we observe that increasing
the convolution orders improves the prediction accuracy, e.g., SCNNs become better as the orders
Tq, T, increase and perform always better than PSNN, and SCCNNs better than Bunch. Also,
differentiating the lower and upper convolutions does help improve the performance as SCNN of
orders Ty = T;, = 3 performs better than SNN of 7" = 3.

However, accounting for the node and triangle contributions in SCCNNs does not help the prediction
compared to the SCNNSs, likewise for Bunch compared to PSNN. This is due to the zero node and
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triangle inputs because there are no available node and triangle features. Similarly, the prediction
directly via the node output features is not accurate compared to projection from edge features.

Moreover, we also observe that the performance of SCCNNs that are trained with the same data
does not deteriorate in the reverse task because the orientation equivariance ensures SCCNNSs to be
unaffected by the orientations of the simplicial data. Lastly, we see that, like other NNs on SCs,
SCCNNSs have good transferability to the unseen data.

Table F.5: Trajectory Prediction Accuracy. (Left): Synthetic trajectory in the standard, reverse and
generalization tasks. (Right): Ocean drifter trajectories. For SCCNNs, we set the lower and upper
convolution orders Ty, T}, to be the same as 7'.

METHODS STANDARD REVERSE GENERALIZATION  PARAMETERS STANDARD PARAMETERS
PSNN 63.1£3.1  58.4+3.9 55.3£2.5 — 49.01+8.0 —
SCNN 65.6+£3.4  56.6+6.0 56.1£3.6 Ta=Ty =2 52.5+9.8 Ta=Ty =2
SCNN 66.5+5.8 57.7+£5.4 60.6+4.0 Ta=Ty=3 52.5+7.2 Ta=Ty=3
SCNN 67.3+2.3  56.9+4.8 59.44+4.2 Ta=Tw=4 52.5+8.7 Ta=Ty=4
SCNN 67.7£1.7 553453 61.2+3.2 Ta=Tu=5 53.0+7.8 Ta=Tu=5
SNN 65.5+2.4  53.6%6.1 59.54+3.7 T=3 52.5£6.0 T=3
BUNCH-NODE 35.4+3.4  38.1+4.6 29.0£3.0 — 35.0£5.9 —
BUNCH-EDGE 62.3+£4.0 59.6+6.1 53.943.1 — 46.0+6.2 —
SCCNN-NODE  46.847.3  44.5+8.2 31.94£5.0 T=1 40.5+4.7 T'=1
SCCNN-EDGE  64.6+3.9  57.246.3 54.0+3.0 T=1 52.5+7.2 T=1
SCCNN-NODE  43.5+9.6  44.4+7.6 32.84+2.6 T=2 45.5+4.7 T=2
SCCNN-EDGE  65.2+4.1  58.9%+4.1 56.8+2.4 T=2 54.5£7.9 T=2

F.4.4 Convolution Order and Integral Lipschitz Property

We investigate the effect of the integral Lipschitz property of the SCFs in an NN on SC. To do so,
given an NN on SCs with an SCF Hy, for k-simplicial signals, we add the following integral Lipschitz
regularizer to the loss function during training so to promote the integral Lipschitz property

Ta Ty
riL = [ Ae.chic k)| + 1Ak el c w0l = || Y twra M || + || D twkuidcf ED
t=0 t=0

for \p.c € {Mr,citity’ and Ay € {Ag,c,i}ity, which are the gradient and curl frequencies. To
avoid computing the eigendecomposition of the Hodge Laplacian, we can approximate the true
frequencies by sampling certain number of points in the frequency band (0, A;, G m] and (0, Ag,c,m]
where the maximal gradient and curl frequencies can be computed by efficient algorithms, e.g., power
iteration [69 70].

Here, to illustrate that the integral Lipschitz property of the SCFs helps the stability of NNs on SCs,
we consider the effect of regularizer r;, against perturbations in PSNNs and SCNNs with different
T4 and T, for the standard synthetic trajectory prediction. The regularization weight on ryy, is set
as 5 - 10~* and the number of samples to approximate the frequencies is set such that the sampling
interval is 0.01.

Fig. F4 shows the prediction accuracy and the relative distance between the edge outputs of the NNs
trained with and without the integral Lipschitz regularizer in terms of different levels of perturbations.
We see that the integral Lipschitz regularizer helps the stability of the NNs, especially for large
SCF orders, where the edge output is less influenced by the perturbations compared to without the
regularizer. Meanwhile, SCNN with higher-order SCFs, e.g., Ty = T, = 5, achieves better prediction
than PSNN (with one-step simplicial shifting), while maintaining a good stability with its output not
influenced by perturbations drastically.

We also measure the lower and upper integral Lipschitz constants of the trained NNs across different
layers and features, given by maxy, ,|Ax,chr,c(Ak,c)| and maxy, .|Ax,chr,c(Ar,c)|, shown in
Fig. F-5| We see that the SCNN trained with 7y, indeed has smaller integral Lipschitz constants than
the one trained without the regularizer, thus, a better stability, especially for NNs with higher-order
SCFs.
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Figure F.4: Effect of the integral Lipschitz regularizer ryg, in the task of synthetic trajectory prediction
against different levels € of random perturbations on L 4 and L, ,. We show the accuracy (Top row)
and the relative distance between the edge output (Bottom row) for different NNs on SCs with and
without r1r,. SCNN13 is the SCNN with Ty = 1 and T3, = 3.
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Figure F.5: The integral Lipschitz constants of SCFs at each layer of the trained SCNNs with and
without the integral Lipschitz regularizer ri;,. We use symbols cff, q and cff,u to denote the lower and
upper integral Lipschitz constants at layer [. Regularizer 711, promotes the integral Lipschitz property,
thus, the stability, especially for NNs with large SCF orders.
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