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A APPENDIX

A.1 ALGORITHM OF STLLM

Algorithm 1: The STLLM Learning Algorithm
Input: The spatial-temporal graph G, the maximum epoch number E, the learning rate η;
Output: Regional Embedding H
and trained parameters in Θ;

1 Initialize all parameters in Θ;
2 Design the spatial-temporal prompt P;
3 Obtain the Embedding matrix F via LLM and P;
4 Train the framework STLLM by Equation 6
5 for epoch = 1, 2, ..., E do
6 Generate the subgraph G1 via teh random walk algorithm;
7 Send G1 and the corresponding adjacent matrix to GCN Encoder;
8 Obtain the embedding matrix H of N samples of subgraphs;
9 Minimize the loss L by Equation 6 using gradient decent with learning rate η;

10 for θ ∈ Θ do
11 θ = θ − η · ∂L

∂θ
12 end
13 end
14 Return H and all parameters Θ;

In this algorithm, the framework begins by designing a spatial-temporal prompt, which serves as input.
The prompt is then passed into a Large Language Model (LLM) to generate an embedding matrix
F. Subsequently, a Graph Convolutional Network (GCN) encoder is trained to generate another
embedding matrix H using the GCN equation 2 and optimizing it with the specified loss function 6.
Steps 2 and 3 are repeated until convergence, ensuring that the resulting region embedding matrix is
representative and captures the desired spatial-temporal information.

A.2 DETAILED ANALYSIS FOR STLLM

In this section, we provide a comprehensive theory analysis based on the work of Oord et al. (2018)
on representation learning. This analysis forms the foundation for our approach of spatial-temporal
graph contrastive learning using embeddings from a Large Language Model (LLM). The key concept
is to leverage the principles outlined in Oord et al. (2018)’s work to enhance the effectiveness of our
spatial-temporal graph contrastive learning framework.
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A.3 DESCRIPTION OF BASELINES

We compare our model, STLLM, with baseline techniques from three research areas: graph represen-
tation, graph contrastive learning, and spatial-temporal region representation. This comprehensive
analysis allows us to evaluate the strengths and advancements of our model in terms of graph
representation, contrastive learning, and spatial-temporal information encoding.
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Table 3: Data Description of Experimented Datasets
Data Census Taxi TripsCrime Data POI Data House Price

Description of Chicago data234 regions 54,420 319,733 3,680,125 POIs (130 categories) 44,447
Description of NYC data 180 regions 128,566 60,002 20,659 POIs (50 categories) 22,540

Network Embedding/GNN Approaches. We contrast our model STLLM with a number of typical
network embedding and graph neural network models in order to assess its performance. To create
region embeddings, we apply these models to our region graph G. Following is a description of
each baseline’s specifics: Node2vec Grover & Leskovec (2016): Using a Skip-gram algorithm
based on random walks, it encodes network structure information. GCN Kipf & Welling (2017): It
carries out the convolution-based message transmission along the edges between neighbor nodes
for embedding refinement. It is a graph neural design that permits information aggregation from
the sampled sub-graph structures, as stated in the text after the GraphSage Hamilton et al. (2017).
Graph Auto-encoder encodes nodes into a latent embedding space with the input reconstruction
aim across the graph structures, according to GAE Kipf & Welling (2016). By distinguishing the
degrees of significance among nearby nodes, the Graph Attention Network improves the classification
capabilities of GNNs. GAT Veličković et al. (2018): By varying the relevance levels among nearby
nodes, the Graph Attention Network improves the capacity of GNNs to discriminate.

Graph Contrastive Learning Methods.We compare our model STLLM with two graph contrastive
learning models, and in addition to the aforementioned graph representation and GNN-based models,
namely, GraphCL You et al. (2020): Based on the maximizing of mutual knowledge, this strategy
generates many contrastive viewpoints for augmentation. The goal is to ensure embedding consistency
across various connected views. RGCL Li et al. (2022): This cutting-edge graph contrastive learning
method augments the data based on the intended rationale generator.

Spatial-Temporal Region Representation Models. We contrast it with contemporary spatial-
temporal representation techniques for region embedding as well. The following are these techniques:
HDGE Wang & Li (2017): It creates a crowd flow graph using human trajectory data and embeds
areas into latent vectors to maintain graph structural information. ZE-Mob Yao et al. (2018): This
method uses region correlations to create embeddings while taking into account human movement
and taxi moving traces. MV-PN Fu et al. (2019): To represent intra-regional and inter-regional
correlations, an encoder-decoder network is used. CGAL Zhang et al. (2019): An adversarial learn-
ing technique that takes into account pairwise graph-structured relations to embed regions in latent
space. MVURE Zhang et al. (2021): In order to simulate region correlations with inherent region
properties and data on human mobility, it makes use of the graph attention mechanism. MGFN Wu
et al. (2022): In order to aggregate information for both intra-pattern and inter-pattern patterns, it
encodes region embeddings with multi-level cross-attention. GraphST Zhang et al. (2023b): A
robust spatial-temporal graph augmentation is achieved using this adversarial contrastive learning
paradigm, which automates the distillation of essential multi-view self-supervised data. By enabling
GraphST to adaptively identify challenging samples for improved self-supervision, it improves the
representation’s resilience and discrimination capacity.

A.4 CATEGORY-SPECIFIC CRIME PREDICTION RESULTS

In the supplemental materials, we present the comprehensive evaluation findings on various criminal
offense types for the cities of Chicago and New York in terms of the MAE and MAPE of 14 techniques.
The foundational method for the other 14 methods is ST-SHN. The results in Table 4 demonstrate that
our method STLLM consistently produces the best results on all crime categories for the two cities.
This clearly demonstrates the substantial advantages that our region’s embedding learning framework
model brings. We credit the effectiveness of the spatial-temporal region graph’s graph encoding
in extracting useful regional features for region representation, as well as the various contrastive
learning tasks, such as the contrastive learning paradigm for pulling close from the embedding matrix
from LLM to that of GCN encoder. Besides, capturing global-view spatial-temporal graph knowledge
via LLM is also beneficial to boosting the representation ability of our method.

A.5 SPATIO-TEMPORAL PROMPT EXAMPLE

In this section, we provide an illustrative example of a spatio-temporal prompt, as depicted in Figure
7. This example highlights the effectiveness of incorporating spatial information in improving the
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Table 4: Overall performance comparison in crime prediction on both Chicago and NYC datasets.

Chicago New York City
Model Theft Battery Assault Damage Burglary Larceny Robbery Assault

MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE
Node2vec 1.1472 0.9871 1.7701 0.8945 1.9781 0.9764 1.9103 0.9712 4.8328 0.8572 0.6697 0.3974 1.1272 0.9566 0.9753 0.7020

GCN 1.1143 0.9675 1.3057 0.8123 1.5578 0.8126 1.5144 0.8173 4.7211 0.8428 0.6288 0.3470 1.0213 0.8626 0.7564 0.6637
GAT 1.1204 0.9708 1.3214 0.8408 1.5942 0.8231 1.5317 0.8188 4.7801 0.8215 0.6301 0.3518 0.9301 0.9293 0.7549 0.6329

GraphSage 1.1241 0.9765 1.3653 0.8609 1.6133 0.8643 1.5801 0.8506 4.7930 0.8448 0.6587 0.3952 0.9673 0.9056 0.7346 0.6423
GAE 1.1134 0.9675 1.3188 0.8193 1.5413 0.7998 1.4997 0.8066 4.7875 0.8395 0.6226 0.3504 0.9492 0.8643 0.7502 0.6308

GraphCL 1.0893 0.9012 1.0628 0.8419 1.3021 0.5261 1.2783 0.6429 4.3819 0.6528 0.6328 0.3562 0.7018 0.4312 0.6189 0.5503
RGCL 1.0790 0.8990 1.0567 0.8312 1.2078 0.5672 1.2084 0.6214 4.3792 0.6458 0.6450 0.3561 0.6901 0.4284 0.6184 0.5497
HDGE 1.0965 0.9123 1.0976 0.8005 1.3987 0.7304 1.3780 0.7367 4.5311 0.7582 0.6655 0.3916 0.8061 0.7049 0.7564 0.6637

ZE-Mob 1.1022 0.9604 1.3246 0.8309 1.5367 0.8201 1.5176 0.8284 4.5414 0.7523 0.6542 0.3870 0.7314 0.6944 0.7355 0.6401
MV-PN 1.0878 0.9201 1.1082 0.7906 1.4032 0.7405 1.3606 0.7245 4.4832 0.7360 0.6518 0.3831 0.7028 0.6871 0.7362 0.6399
CGAL 1.0896 0.9112 1.0876 0.7912 1.3986 0.7351 1.3607 0.7233 4.4935 0.7446 0.6564 0.3898 0.6958 0.5078 0.6572 0.6034

MVURE 1.0863 0.8932 1.0578 0.7983 1.3655 0.6382 1.2985 0.6607 4.4068 0.6663 0.6390 0.3708 0.6813 0.4677 0.6324 0.5882
MGFN 1.0824 0.8953 1.0765 0.7904 1.2943 0.5986 1.2507 0.6299 4.3767 0.6494 0.6595 0.3689 0.6901 0.4530 0.6278 0.5586

GraphST 1.0722 0.4764 0.8933 0.8424 1.1796 0.4387 0.9044 0.4714 4.3564 0.6455 0.6362 0.3430 0.6802 0.4035 0.6083 0.5337
STLLM 1.0717 0.4697 0.8392 0.7892 1.1651 0.4217 0.8940 0.4508 4.3430 0.6402 0.6213 0.3261 0.6766 0.3848 0.6028 0.5075
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Figure 6: Results on NYC and CHI crime for four crime types w.r.t different data density degrees.

performance of summary generation. Additionally, we demonstrate how ChatGPT can generate
summaries specifically tailored to the functions of different regions. In the first case, we showcase
the impact of spatial information on summary generation. By considering the spatial context of
the regions, we observe improved summarization results. Furthermore, ChatGPT leverages this
spatial information to generate more informative summaries that capture the unique characteristics
and functionalities of each region. In the second case, we investigate the influence of temporal
information on the summarization process. By incorporating temporal dynamics, such as traffic flows
and temporal semantics, ChatGPT is able to deduce additional connections and relationships among
regions. This leads to more comprehensive and nuanced summaries that reflect the temporal aspects
of the regions. In summary, by examining these cases, we highlight the significance of both spatial
and temporal information in spatio-temporal prompt generation. The integration of these factors
enhances the summarization capabilities of ChatGPT, allowing for more contextually-aware and
informative summaries tailored to specific regions and their temporal dynamics.

 Region r_10_11_s 
 School,  post office, 

theatre,…
 There are 2364.195 

distance from r_10_11_s to 
r_144_12_s

Spatio-temporal Prompts Summarizations of ChatGPT-3.5

 r_10_11_s is an important centric region with various facilities such as social facilities, schools, theaters, 
post offices, places of worship, bicycle parking, drinking water points, banks, ATMs, fast food restaurants, 
cafes, restaurants, pharmacies, post boxes, ice cream shops, waste baskets, community centers, bars, 
dentists, benches, libraries, shelters, public bookcases, and bicycle rental and charging stations. 

 It is located at a distance of approximately 2364.20 units from r_144_12_s. It is also connected to 
r_10_14_s, which shares similar facilities.

 Region r_147_12
 Toilets, school, social 

facility,…
 There are 5 traffic flow from 

r_147_12 to r_9_13 at 
Tuesday

 r_147_12 is a centric region that has traffic flows to multiple connected regions, including r_9_13, r_8_13, 
r_120_13, and r_119_13. 

 It has the highest traffic flow to r_9_13 on Tuesday with 5 flows. On Wednesday, it has 5 traffic flows to 
r_9_13, 14 traffic flows to r_8_13, 2 traffic flows to r_120_13, and 2 traffic flows to r_119_13. 

 This suggests that r_147_12 is an important region in terms of traffic connections to other regions.

Figure 7: The spatio-temporal prompt example of STLLM.
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