
A Experiment setups1

In this section, we provide additional details of our experiments.2

Unsupervised object proposals. When pretraining on the uncurated dataset, acquiring ground3

truth object bounding boxes using human annotations can be expensive. However, automatically4

generating unsupervised region proposal is well studied. We use Selective Search as the unsupervised5

proposal generation method. Following ORL [9] we first generate the proposals using selective6

search. Then we filter the proposals with 96 pixels as the minimal scale, maximum IOU of 0.5 and7

aspect ratio between 1/3 to 3. For every image we generate maximum of 100 proposals and randomly8

select any image as the object image.9

OpenImages dataset. We use the OpenImages subset as proposed in [7]. This is a subset created10

from the full OpenImages dataset. In this subset each image has alteast 2 classes present and each11

class has atleast 900 instances. So this subset is a balanced subset of OpenImages with an average12

of 12 object present in an image. OpenImages subset is a very good proxy for mimicing real world13

multi-object images and hence we used it as the main dataset in our paper. More details of this dataset14

can be found in [7].15

INPMix dataset. We sample a subset of the Place-205 [10] dataset to test the discriminative16

capacity of the representations on the scene images. Specifically, we randomly sample 1, 300 training17

images from each of the 205 classes, and then combine them with the ImageNet-100 [8] to form a18

dataset of 305 classes in total. We provide the code to reproduce the dataset in the supplementary19

material.20

Object and Scene image augmentations. We find that small objects are always detrimental to the21

performance. Therefore, when sampling the objects using bounding boxes, we drop those bounding22

boxes with size width × height ≤ 56 × 56. Further, when sampling objects for the Euclidean23

branch, if the size of a bounding box width × height ≤ 256× 256, we slightly expand it to either24

256× 256 or the maximal size allowed by the original image size. We also applied a small jittering25

to the width and height to include different contexts around the objects. Next, we apply random26

cropping and resizing with the same scale (0.2, 1.) with MoCo [4]. Instead, when sampling objects27

for the hyperbolic branch, we do not apply jittering and random cropping, but only filtering the small28

boxes and resizing to ≤ 224× 224. To crop the scene images, we sample another 1 to 5 bounding29

boxes and merge with the selected object bounding box.30

B Additional experimental results31

B.1 Robustness under Corruption.32

We calculate the mCE error as calculated in Hendrycks et al. [5] . We compare our HCL model33

trained on OpenImages and lineval on ImageNet dataset with the baseline model without using HCL34

loss. We see an improvement of 1.9m CE over the baseline model, demonstrating that our HCL35

model learns more robust representations as compared to the vanilla MoCo.36

B.2 Fine-grained class classification37

Method Cars [6] DTD [2] Food [1]

HCL/Lhyp 31.92 68.46 58.66
HCL 32.02 68.19 58.79

Table 1: Fine grained classification results.

In Table 1 we show results on more fine grained classification results. We can see that on fine grained38

classification our model does not exhibit much performance improvement. This could be due to the39

fact that these datasets have more or less very similar context, hence the hyperbolic objective does40

not help too much in this case.41

1



B.3 More ImageNet Examples42

Smallest norms (objects) Largest norms (scenes)

Figure 1: More images from ImageNet training set sorted by their representation norms.
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Smallest norms (objects) Largest norms (scenes)

Figure 2: More images from ImageNet training set sorted by their representation norms.
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C Additional ablation studies43

In this section, we provide more ablation experiments on hyperbolic linear evaluation, model archi-44

tecture, and the radius of Poincare ball. All the models are trained on the OpenImages dataset and45

evaluated on the ImageNet-100 (IN-100) or ImageNet-1k (IN-1k) the top-1 accuracy reported.46

Radius of the Poincare ball In Table 2 we show results by varying the radius of Poincaré ball. The47

hyperbolic objective improves the performance over all the tested radius. We find that a too small48

radius may lead to a smaller improvement due to the stronger regularization.49

Configuration of the encoder head In our experiments, the Euclidean and hyperbolic branches50

share the weights in both the backbone and the head of the encoders. We also try using a separate51

head for the hyperbolic branch. As shown in Table 3, this leads to a more stable training when larger52

learning rate is applied. However, we did not see any improvements brought by this modification.53

Hyperbolic linear evaluation Apart from the common linear evaluation in the Euclidean space,54

we show the hyperbolic linear evaluation results with different optimizers and learning rates in Table55

4. The idea is to test if the representations are more linearly separable in the hyperbolic space. We56

follow the same setting of hyperbolic softmax regression [3] and train a single hyperbolic linear layer.57

However, we find the optimization with SGD can easily causes to overflow. Instead, Adam works58

much more stable with appropriate learning rates.59

c IN-1k

1 58.08
0.5 58.31
0.1 58.29
0.05 58.51
0.01 58.49

Table 2: Results by
varying the radius r of
Poincaré ball. c = 1

r2 .

Head λ IN-100

N/A 0 77.36

shared 0.1 79.08
0.5 0

splitted 0.1 77.88
0.5 77.58

Table 3: Different configurations
of head in the the Euclidean and
hyperbolic branches.

SGD Adam
lr IN-100 lr IN-100

0.1 63.82 0.001 67.64
0.2 64.22 0.0005 70.32
0.3 1 0.0001 72.58
0.4 1 0.00005 70.5

Table 4: Results of hyperbolic lin-
ear evaluation with different opti-
mizers and learning rates.60
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