
Towards Open-World Grasping with Large
Vision-Language Models

Supplementary Material

A LMM prompts and response examples

A.1 Prompts

Figure 1: Referring Segmentation Text
Prompt

We present the text prompts for all use cases consid-
ered in this work, namely: referring segmentation
(Fig. 1), grounded grasp planning (Fig. 2) and grasp
ranking (Fig. 3). Fields in purple correspond to vari-
able input; either the grasping instruction in the re-
ferring segmentation prompt (i.e., user_input) or
the label ID of the target object to grasp for the plan-
ning prompt, as predicted by the LMM grounder (i.e.,
target). The visual prompts are the marked images
as explained in the methodology section of our paper
and more examples are illustrated in the next subsec-
tion. The system message is defined always as: “For
any marker IDs mentioned in your answer, please
highlight them with []."

Figure 2: Grounded Grasp Planning Text
Prompt

In this work we utilized the GPT-4v(ision) model
[1] via its alpha release in the OpenAI web API. In
the following, we summarize our key findings while
experimenting with multimodal prompts for GPT-4v.
Clarity of visual markers We find that the most com-
mon failure mode of visual marker prompting with
GPT-4v is that it sometimes struggles to discriminate
which ID corresponds to what segment. Especially
in cluttered scenes, label IDs might severly overlap
within small frame regions. Several techniques can
assist in making the markers more clear to the VLM.
We adopt the algorithm of [2] for overlaying numeric
IDs within the frame with minimal overlap. Further,
we found that coloring both the internal of each segment’s mask and its ID with the same unique color
also helps in better VLM interpretation. Colors are chosen to be visually distinguishable. Finally,
increasing the resolution of the marked image and the size layout of the markers also proves useful.

Reference Image If not highlighting the internal of each segment, we find that GPT-4v sometimes
refers to regions with wrong IDs, especially in highly cluttered scenes. But if the masks are highlighted
with high opacity, then the appearance of the object becomes less visible and GPT-4v struggles to
recognize it. We propose a technique to ameliorate this is by passing both the original (reference) and
the marked image and constructing a text prompt that explains that the latter corresponds to annotated
segments of the first.

Chain-of-thoughts Chain-of-Thought (CoT) prompting is a well-established metholodogy for guid-
ing LLMs to perform multi-step reasoning and reduce hallucinations. We find that VLMs share

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.



similar properties and prompting them to reason about their final answer before producing it can
robustify the response quality. For grounding, we ask GPT-4v to decompose the input instruction
in steps and refer to all intermediate referenced objects. For grasp planning, we ask it to explicitly
mention all objects that are blocking the target object by their numeric ID, before producing a plan.
For grasp ranking, we decompose the prompt in three steps: (i) identify the category of the target
object and provide a general description of what constitutes a good grasp for it given its shape, (ii)
list the grasp IDs that will most likely lead to contact with neighboring objects, and (iii) rank the
grasp IDs based on the previous two steps.

Figure 3: Grasp Ranking Text Prompt

Self-consistency Even with zero temperature, we
observe that the outputs of GPT-4v are not always
reproducible. The reason for this is unknown since
the actual model specifics are unknown, but a popu-
lar speculation is that GPT-4 is a Mixture-of-Expert-
based model [3] that has implicit stochasticity. We
find that sometimes GPT-4v might produce differ-
ent responses at different runs, even with exactly the
same prompt. In an attempt to reduce the effect of
this phenomenon and robustify VLM outputs, we use
the self-consistency method developed for LLMs [4].
In particular, we ask GPT-4v to provide multiple respones, parse each one separately and then perform
majority voting to determine the most consistent output.

In-context examples In-context examples have shown to be a powerful asset for allowing LLMs
to learn from a few examples [5]. In our study, we find that VLMs have similar capabilities, which
can provide improvements in the grasp planning and contact reasoning stages through in-context
examples. Please see Appendix E for further discussion.

In-context examples In-context examples have shown to be a powerful asset for allowing LLMs
to learn from a few examples [5]. In our study, we find that VLMs have similar capabilities, which
can improve the robustness of the grasp planning and contact reasoning stages. Both the image and
an exemplar response are appended to the prompt to GPT-4v, emulating conversation history as in a
chatbot setting. Similar to [6], we find that providing both a positive and a negative example (e.g.
for grasp planning, when to pick the target directly and when to attempt to declutter first) can aid in
enabling the VLM to understand the desired behavior

Structured outputs In order to ensure that the output of the VLM is parsable, we ask it to wrap its
final answer with a standard format. We find that simply mentioning the desired response format in
the input prompt is sufficient to produce parsable outputs, similar to previous instruct-tuned LLMs
[7].

A.2 Example Responses

In Figs. 7, 8, 9, we provide example responses for grounding different types of language queries in
OCID scenes. We observed that GPT-4v, augmented with marked image prompting, can ground not
just object-related queries but also complex referring expressions that require reasoning about space,
visual attributes, semantics and user-affordances. Interestingly, we find that GPT-4v responds to
queries that require symbolic reasoning concepts such as counting and negation, which are notoriously
hard to emerge in specialist grounding models. In Fig. 10, we provide some example responses
corresponding to failure cases. Main failure modes include: a) grounding a distractor instead of
the desired object, b) not finding the object of interest at all, c) providing a correct reasoning and
identifying the target in the raw image, but providing a wrong ID of an irrelevant object.

2



Name Attribute Spatial Rel. Visual Rel. Sem. Rel. Multi-hop Affordance Total
42 26 33 19 13 24 16 173

Table 1: Number of samples in grounding evaluation dataset.

B Robot experiments

B.1 Setups

Our object catalog for seen/unseen trials is shown in Fig. 4. In Gazebo, isolated scenarios are
generated by ensuring all spawned objects have a fixed 3D distance, while in cluttered scenarios
we ensure contact between the target object and neighbouring objects, by first spawning the target
and then sampling different poses for other object models around it. In real-robot experiments, we
manually setup the scenes while making sure to replicate the setup exactly for fair comparisons
between baselines. In all trial scenes that contain distractor objects, the user instruction refers to some
property that disambiguates the target instance from other objects of the same category, using names,
attributes and spatial relations. We also conduct experiments without distractors for affordance-based
queries, which require semantic reasoning to be correctly grounded.

Figure 4: Seen (left column) and unseen (right
column) object used in our robot experiments
in Gazebo (top) and the real world (bottom).

We use the default torchvision implementation of
Mask-RCNN, with the model weights provided by
PyTorch Hub. We visually inspect the segmentation
masks and determined that their output is sufficient
both for synthetic and real-world images. For grasp
synthesis, we generate a top-down orthographic pro-
jection of the scene, both for color and for depth
(i.e. reverse depth - heightmap). This is the input
we pass to the pretrained GR-ConvNet. In order to
align regions from the 2D frame where Mask-RCNN
provides segmentations and the orthograpic projec-
tion where our grasp synthesis model provides grasp
poses, we use the Hungarian matching algorithm to
match the centers of outputs from both models, after
projected to 3D and transformed to a world reference
frame (robot base). We use the 3D euclidean distance between regions as the cost function for the
algorithm.

B.2 Baseline Implementation

CROG CROG receives an single 448× 448 RGB view and a natural language query, and provides
both an instance segmentation mask for the target object, as well as a set of 4-DoF grasp proposals,
assuming that the gripper approaches the object aligned with the perspective of the camera. We use the
checkpoint provided by the original paper, trained in the multiple split of OCID-VLG dataset, which
contains 90k scene-query-grasp data from around 1,000 unique scenes from 31 object categories.
The model uses CLIP’s pretrained ResNet-50 visual and BERT text encoders, but fine-tunes them
end-to-end in OCID scenes for joint grounding and grasp synthesis tasks.
SayCan-IM We build an LLM-based baseline that follows the general architecture of SayCan,
i.e. generating the next action that the robot should take in an autoregressive fashion. We use the
gpt-4-turbo LLM engine for plan generation and prompt it with few-shot examples that follow
the reason-then-act format, as introduced in InnerMonologue, and further optimized in the ReACT
work. The primitive action library is identical to our OWG implementation, i.e. two primitive actions:
remove and pick, corresponding to picking and placing a blocking object in a pre-defined region,
and grasping the object of interest respectively. The prompt contains two in-context examples, which
demonstrate when to select to remove the closest object(s), based on the relative distance of the

3



Method Found.
Model Name Attribute Spatial

Relation
Visual

Relation
Semantic
Relation Affordance Multi-

hop Avg.

PolyFormer - 20.9 13.3 2.6 0.8 3.1 6.7 8.3 8.0
SEEM - 23.3 10.1 4.6 10.5 10.2 7.9 17.5 12.1

ReCLIP CLIP 36.9 40.0 12.7 14.2 20.1 23.0 34.0 25.9
RedCircle CLIP 33.3 21.1 19.7 15.4 18.8 24.0 47.4 25.7

FDVP CLIP 25.1 19.0 23.7 25.2 12.3 22.5 22.8 21.6
SoM GPT-4v 40.1 25.0 23.3 40.3 42.5 60.0 21.2 36.1

OWG (Ours) GPT-4v 83.3 80.1 45.7 55.4 78.8 90.3 59.4 70.4

Table 2: Segmentation - mIoU(%) results in different language input types for cluttered indoor scenes
from OCID.

target object and the rest segmented objects’ mask centers. To close the loop with vision, we further
augment the library with two visual primitives, for open-vocabulary object detection and referring
grounding. We utilise the ViLD open-vocabulary object detector, which is being prompted with a
list of all object categories included in our experiments. In order to ground referring expressions,
we allow GPT-4v to invoke CLIP in order to rank the output of the object detector according to the
query, as in the CLIP-based baselines of our grounding experiments. Finally, in order to execute the
actions, we use GR-ConvNet for grasp synthesis and a motion planner for moving the arm, as in the
OWG pipeline. In all methods, three total attempts in grasping are allowed before counting the trial
as failed.

C Instance segmentation examples

In Fig 6, we visualize segmentation masks extracted from different methods for cluttered scenes
from the OCID dataset, used in our open-ended grounding evaluation. We compare ground-truth
masks with SAM, ViLD-RPN and UOIS methods, as explained in the paper. We observe that SAM
tends to over-segment, however, we did not experiment with different hyper-parameter settings and
use the automatic mask generator out-of-the-box. Suitable fine-tuning of SAM might provide crisp
segmentations, as shown in other works. Both the RPN of the ViLD and the UOIS methods provide
reasonable segmentation masks, with most dominant failures being like under-segmenting in cases of
heavy clutter.

D Open-ended grounding experiments

D.1 Dataset Details

We manually annotate 173 images from OCID dataset with the following query types: a) name
(open-vocabulary object descriptions), b) attribute, c) spatial relations, d) visual relations, e)
semantic relations, f), multi-hop reasoning, and g) user-affordances. The number of annotations
per query type given in Table 1. We make sure to include unique test scenes from the dataset and
include images with heavy clutter. The target of each scene within a query type is unique, and we
make sure to include images with distractor objects (of the same category as the target) for all query
types that require relational reasoning (all except name and affordance).

The need for manual annotations to exhaust all possible language query inputs, as well as the need
for manual testing via online demo applications for the considered specialist end-to-end methods
(SEEM, PolyFormer) restrained us from conducting experiments in large-scale. Instead, we originally
conducted experiments in a smaller subset of 52 images. Results are given in Table 2. Results follow
similar patterns to the larger test set of the main paper. Specialist models (SEEM, PolyFormer)
struggle with even simple name queries, scoring below 15% on average. This is potentially due to
the high discrepancy between the training distribution of RefCOCO and Visual Genome and our
test data, as well as the lack of relational and affordance-based language in these datasets. GPT-4v-
based methods still compare favourably to CLIP-based baselines, even in the SoM setting where

4



Figure 5: Example output segmentation masks of different grounding methods for OCID scenes.

single marked image is used. Overall, our OWG-grounder achieves an averaged mIoU score of
70.4%, which is almost ×2 from the previous approach. Regarding our custom FGVP-CLIP baseline
(FGVP∗), we present analytical comparisons and ablation in the following subsection.

D.2 Baselines Implementation and Ablations

We utilize the provided demo applications for the end-to-end methods (SEEM, PolyFormer) to
conduct grounding experiments manually. For CLIP-based baselines, we re-implement all methods
from the corresponding papers (ReCLIP, RedCircle, FGVP) . We use the ViT-B visual encoder to
extract features from image segments and the default BERT text encoder to represent the input query.
CLIP-based baselines compute the cosine similarity between segment and text features to rank them
and select the most similar segment as the final result via the argmax operator. Ground-truth masks

w/ Crop w/ White-Back. w/ Blur-Rev w/ Gray-Rev w/ Multi Temp. Rect. Ellipse Mask mIoU

% 18.3
% 31.1

% 34.8
% % 33.7

% % 24.6
% % 26.3
% % % 34.9
% % % % 41.5
% % % % % 43.0

% % % % % % 51.8
% % % % % % % 51.2

Table 3: Component ablation studies for CLIP-based visual prompting. Results in %.

5



are used for all CLIP-based baselines, similar to GPT-4v ones. We would like to highlight that in
the original papers, the aforementioned baselines use potential post-processing steps to enhance the
grounding capabilities of CLIP. In particular, ReCLIP uses syntactic parsing to extract entity and
relation words/phrases from the input query, as well as spatial relation resolution heuristics (e.g.
’left’, ’on’ etc. - designed specifically for the RefCOCO dataset) to process the relations analytically
and combine CLIP predictions only for the entities. RedCircle and FGVP additionally utilize a
"subtraction" post-processing step, where they further subtract from the similarity values the average
in a set of mined hard-negative queries (again selected for a specific dataset). We believe that such
steps constitute domain-aware hand-crafted efforts, which even though helpful, do not represent the
challenges of open-ended generalization, which is the primary focus of this work. As a result, we do
not consider such post-processing steps in our baseline implementation.

To further analyze the performance of CLIP-based baselines, we conduct ablation studies where we
use specific elements of each method. In particular, we study: a) effect of using multi-templates
for the text prompt, where we average text embeddings from multiple versions of the query, using
templates from the original paper, b) averaging similarity scores from the visual prompt and crops of
each segment, as originally proposed in ReCLIP, c) different visual prompt schemes, like drawing
a boundary (rectangle or ellipse - as in RedCircle), converting to grayscale or blurring the rest
of the frame (as proposed in FGVP), as well as a prompt that we discover ourselves works good,
using a white background for the rest of the frame. We note that in our paper’s results the element
combinations we used are the following:
ReCLIP: rectangle prompt, multi-templates, blur-reverse + crop,
RedCircle: ellipse prompt, multi-templates, gray-reverse + blur-reverse,
FGVP: mask prompt, multi-templates, gray-reverse + blur-reverse

Ablation results are shown in Table 3. Our findings are the following: 1) drawing a rectangle prompt
outperforms ellipse and mask (object contours) in itself, but ensembling rectangles and masks gives
the best result, 2) using multiple text templates outperforms single-template only when ensembling
multiple visual inputs, c) the most effective component is our method of replacing the rest of the frame
with white background, compared to grayscale and reverse operators of FGVP, while ensembling all
together gives the best performance. We call our custom FGVP baseline FGVP∗.

References

[1] Gpt-4v(ision) system card. 2023. URL https://api.semanticscholar.org/CorpusID:
263218031.

[2] J. Yang, H. Zhang, F. Li, X. Zou, C. yue Li, and J. Gao. Set-of-mark prompting unleashes
extraordinary visual grounding in gpt-4v. ArXiv, abs/2310.11441, 2023. URL https://api.
semanticscholar.org/CorpusID:266149987.

[3] N. M. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean.
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. ArXiv,
abs/1701.06538, 2017. URL https://api.semanticscholar.org/CorpusID:12462234.

[4] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. H. hsin Chi, and D. Zhou. Self-consistency
improves chain of thought reasoning in language models. ArXiv, abs/2203.11171, 2022. URL
https://api.semanticscholar.org/CorpusID:247595263.

[5] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, and et. al. Language models
are few-shot learners. ArXiv, abs/2005.14165, 2020. URL https://api.semanticscholar.
org/CorpusID:218971783.

[6] Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, and L. Wang. The dawn of lmms:
Preliminary explorations with gpt-4v(ision). ArXiv, abs/2309.17421, 2023. URL https:
//api.semanticscholar.org/CorpusID:263310951.

6

https://api.semanticscholar.org/CorpusID:263218031
https://api.semanticscholar.org/CorpusID:263218031
https://api.semanticscholar.org/CorpusID:266149987
https://api.semanticscholar.org/CorpusID:266149987
https://api.semanticscholar.org/CorpusID:12462234
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:263310951
https://api.semanticscholar.org/CorpusID:263310951


Figure 6: Comparison of different segmentation models for seven example cluttered indoor scenes
from OCID dataset

[7] OpenAI. (mar 14 version) [large language model]. 2023.

7



RObject Brand Name

User: Feh package
GPT-4v: To find the object that matches the description "Feh package," I will
first look at the raw image to identify any packages that could potentially match
the description. Upon examining the raw image, I notice a package with the
text "Feh" on it. This package is located towards the left side of the image,
standing upright, and appears to be a box of some sort. Next, I will look at the
marked image to find the same package and determine its unique ID. The
package with the text "Feh" on it in the raw image corresponds to the package
in the marked image with the ID [12] on it. The package is in the same position
in both images, confirming that this is the correct object.
My final answer is: [12].

RObject Content Type

User: noodles
GPT-4v: To find the object that matches the description "noodles," I will first
examine the raw image to identify any items that could be noodles. Upon
inspection, I see a package with an image that appears to represent noodles on
the left side of the table. Next, I will look at the marked image to find the same
package and determine its unique ID. The package with the noodles is
highlighted with a unique color and is associated with the ID [5].
My final answer is: [5].

RObject Functionality

User: red soft thing for the hair
GPT-4v: To find the object that matches the description "red soft thing for the
hair," I will follow these steps: 1. Identify any red objects in the raw image, 2.
Determine which of these red objects could be described as "soft" and used for
the hair. In the raw image, there is a red object with white text that appears to
be a towel, which is typically soft and can be used for drying hair. This object is
located in the center of the image, draped over other items. Now, I will look at
the marked image to find the same object and its corresponding ID. The red
towel in the marked image has been highlighted with a unique color and is
labeled with the ID number 4.
My final answer is: [4].

RObject Attribute: Maturity

User: non ripe pear
GPT-4v: To find the 'non ripe pear,' I will first identify the pears in the raw
image. There are two pears visible on the floor. To determine which one is not
ripe, I will look for visual cues such as color. Typically, a non-ripe pear may
have a greener and firmer appearance compared to a ripe one, which would be
more yellow and possibly softer looking. In the raw image, the pear on the left
appears greener and is likely the non-ripe pear, while the pear on the right
seems more yellow and could be considered ripe. Now, I will look at the
marked image to find the ID corresponding to the greener pear. In the marked
image, the greener pear on the left has the ID [4]. Therefore, this is the ID that
corresponds to the 'non ripe pear.'
My final answer is: [4]

RObject Attribute: Shape

User: cube
GPT-4v: To find the object that matches the description "cube," I will first
look at the raw image to identify any objects that have a cubic shape. In the raw
image, there is an object that appears to be a cube towards the right side of the
image, slightly above the center. It has a rusted appearance and seems to be a
cube due to its equal-length edges and square faces. Now, I will look at the
marked image to find the same object with its corresponding ID. The object
with the cubic shape in the same location is highlighted with a color and has the
ID number 9 next to it.
My final answer is: [9]

RObject Attribute: Colors

User: green and red corn flakes
GPT-4v: To find the "green and red corn flakes," I will first look at the raw
image to identify the box of corn flakes. In the image, there are two cereal
boxes visible. One of them has a predominantly green color scheme with some
red elements, which matches the description of "green and red corn flakes."
This box is on the right side of the image, next to another cereal box with a blue
and yellow color scheme. Now, I will switch to the marked image to find the
same box of corn flakes with the corresponding ID. The box with the green and
red color scheme is highlighted with the same color as the ID number 9.
My final answer is: [9].

Figure 7: Example GPT-4v responses (1/3): object-related queries

8



Figure 8: Example GPT-4v responses (2/3): relational reasoning queries

9



Figure 9: Example GPT-4v responses (3/3): semantics-related queries

10



User: stapler next to the marker
GPT-4v: To find the stapler standing next to the marker, I will first identify
these objects in the raw image and then locate their corresponding IDs in the
marked image. In the raw image, I can see a stapler to the left of a black
keyboard, and immediately to the right of the stapler is a marker. Now, I will
switch to the marked image to find the IDs that correspond to these objects. In
the marked image, the stapler has a unique color and ID next to it, and the
marker also has a different color and ID. The stapler is marked with the ID [7],
and the marker is right next to it with the ID [6].
My final answer is: [7].

User: blue and black marker
GPT-4v: ITo find the "blue and black marker," I will first look at the raw
image to identify any markers that match this description. In the raw image,
there are several markers on the table. I can see one marker that appears to have
a blue cap and a black body, which is located towards the bottom right of the
table. Now, I will switch to the marked image to find the same marker with the
corresponding ID. The marker with the blue cap and black body in the marked
image has a unique color and ID number next to it. It is the same marker that I
identified in the raw image, and it has the ID number [12] next to it.
My final answer is: [12].

User: canned food
GPT-4v: To find the "canned food" in the raw image, I will look for an object
that resembles a can or a container typically used for preserving food. In the
raw image, I can see a box of what appears to be cereal on the right side, but
that is not canned food. However, there is no object that clearly resembles a
traditional metal can used for canned food. Since there is no object that matches
the description of "canned food" in the raw image, I cannot provide an ID from
the marked image. Therefore, there is no label ID to match the description of
"canned food" in these images.
My final answer is: there is no label ID for "canned food" in the provided
images.

User: corn flakes that is laying on its side

GPT-4v: To find the "corn flakes box that is laying on its side," I will first
look at the raw image to identify the box that resembles a corn flakes box and is
positioned on its side. In the raw image, there is a box with what appears to be
a corn flakes design on the bottom right, and it is indeed laying on its side.
Next, I will look at the marked image to find the same box and determine its
unique ID. The box that matches the description in the marked image is
highlighted with a color and has the number 2 next to it.
My final answer is: [2].

Figure 10: Example of GPT-4v response failures.

11


	LMM prompts and response examples
	Prompts
	Example Responses

	Robot experiments
	Setups
	Baseline Implementation

	Instance segmentation examples
	Open-ended grounding experiments
	Dataset Details
	Baselines Implementation and Ablations


