
A ESTIMATION AND IDENTIFIABILITY

Proposition 1. If the neighbourhood proposed by M i.e. M(i) always contains the true neighbour-
hood Ni, and is sufficiently larger than Ni, then under the exposure assumption we can treat ∆Z as
approximately gaussian.

Proof. Under A7 we can rewrite the exposure under M as:

ei(M) =
X

j∈M(i)

ϕ(zj , Xi) =
X

j∈M(i)∩Ni

ϕ(zj , Xi) +
X

j∈M(i)−Ni

ϕ(zj , Xi)

Now, since allocation of device level treatments are independent, Zi ⊥⊥ Zj , as well as its in-
dependent of Xi, the individual exposure terms ϕ(Zj , Xi) ⊥⊥ Zi for any i ∈ M(i) − Ni. If
|M(i)| >> |Ni|ϕ(zj , Xi), then the central limit theorem implies that the sum is approximatelyP

j∈M(i)−Ni
ϕ(zj , Xi) as N(ϕ̄, |M(i)−Ni|V ar(ϕ)) ≈ N(ϕ̄, |M(i)|V ar(ϕ))

Proposition 2. Our model is identifiable if 1) ∀x, µY (x, z) is continuously differentiable everywhere
as a function of z, and 2) ∀x, ∂zµY (x, z) ̸= 0

Before arguing the previous proposition, we first state Theorem 1 from Schennach & Hu (2013). Our
presentation broadly follows that of Pöllänen & Marttinen (2023).

Theorem 1 from Schennach & Hu (2013): Let y, z, z∗, ∆z, ∆y be scalar real-valued random
variables related through

y = g(z∗) +∆y (3)
z = z∗ +∆z, (4)

and y, z are observed while all remaining variables are not and satisfy the following assumptions:

Assumption 1. The variables z∗, ∆z, ∆y, are mutually independent, E[∆z] = 0, and E[∆y] = 0
(with E[|∆z|] < ∞ and E[|∆y|] < ∞).

Assumption 2. E[eiξ∆z] and E[eiγ∆y] do not vanish for any ξ, γ ∈ R, where i =
√
−1.

Assumption 3. (i) E[eiξz∗
] ̸= 0 for all ξ in a dense subset of R and (ii) E[eiγg(z∗)] ̸= 0 for all γ in a

dense subset of R (which may be different than in (i)).

Assumption 4. The distribution of z∗ admits a uniformly bounded density fz∗(z∗) with respect to
the Lebesgue measure that is supported on an interval (which may be infinite).

Assumption 5. The regression function g(z∗) is continuously differentiable over the interior of the
support of z∗.

Assumption 6. g′(z∗)! = 0 almost everywhere, and fz∗(z∗) is continuous and nonvanishing

Theorem 1. Let Assumptions 1-6 hold. Then the following holds:

1. g(z∗) is not of the form
g(z∗) = a+ b ln(ecx

∗
+ d) (5)

for some constants a, b, c, d ∈ R. Then, fz∗(z∗) and g(z∗) (over the support of fz∗(z∗))
and the distributions of ∆z and ∆y are identified.

2. If g(z∗) is of the form (5) then, neither fz∗(z∗) nor g(z∗) in Model 1 are identified iff z∗
has a density of the form

fz∗(z∗) = A exp(−BeCx∗
+ CDx∗)(eCx∗

+ E)−F , (6)

with c ∈ R, A,B,D,E, F ∈ R+
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Next, we argue how Theorem 1 implies Proposition 2.

Consider the conditional versions of our, i.e. consider the restricted version where the covariates
X have been fixed. It is clear from Proposition 1 and Assumption A2 that Equations (3) and (4)
are satisfied for such a model. Assumption 1 of Theorem 1 also follows from Proposition 1 and
Assumption A2.

Assumptions 2,3 are technical conditions satisfied by most distributions ( including Gaussian, Uniform
and exponential family distributions). Assumption 4 is satisfied because Ẽ|E is approximately normal.
Furthermore it will also hold for a variety of bounded continuous distributions. Assumption 5,6 hold
from the assumption on µY stated in the proposition. With the assumptions of Theorem 1 satisfied,
the conditional mean function E[Y |Z.X = x] are identified based on the two conditions Theorem 1
except for when µY (x, z

∗) might be of the form a+ b ln(ecz
∗
+ d).

Since the conditional means µY (Z,X = x) is identifiable for all x, the overall function µY (Z,X) is
also identified.

A.1 RELATION OF OUR MODEL TO SCHENNACH & HU (2013) METHOD

Schennach & Hu (2013) proposed estimating the function g in Equation 3 through the following
optimization.

g = argmax
g

max
f1,f2,f3

ln

Z
f1(y − g(z∗)f2(z − z∗)f3(z∗)dz∗ (7)

where f1, f2, f3 are restricted to be probability densities. This method is effectively maximizing the
log-likelihood of the observed data under a latent variable framework. The latent variable, denoted as
z∗, is integrated out within the objective which is a normalized density. Comparing this equation with
our Equation 2, it becomes apparent that these methods are related. Specifically, the log-likelihood
in Equation 2; can be obtained from Equation 7 by replacing z∗ with e and z by ẽ. The two key
differences between our objective and that of Schennach & Hu (2013) is a) that our likelihoods model
conditioned on covariates X , and b) we can use specifics form for the densities f2, f3. The first
difference is natural as we are fitting conditional models, unlike Schennach & Hu (2013). The choice
of specific densities is also not an issue in our scenario. As the experimenter, we already know the
data generating density f3 function, and by Proposition 1, f2 is well approximated by a Gaussian.
This such eliminates the need to learn these densities in our approach. Given ideal conditions, such
as fully flexible posteriors and exact optimization, our proposed method converges towards the same
solution as that obtained by the method of Schennach & Hu (2013).

A.2 ESTIMATION

Here we describe obtaining the estimate of treatment effect τ̂ from the model learnt in Section 4.2. We
note that the variational posterior qϕ is providing us the estimate of the latent exposures E, while the
model pθ(Y |E,X) is learning the outcome models. Specifically, since pθ(Y |E,X) is a GLM-style
model, one can directly obtain the mean counterfactual outcome from it. Next these estimated means
can be plugged in Equation 1 to get τ̂ .

Under A2, this computation is further simplified by noting that output of c0 is independent of the
treatment z. Furthermore, we can see from A2 that the mean E[Y |E,X] is direct sum of the output
of the networks c0, c1, w when provided the corresponding inputs. As such one can directly obtain
the treatment effect using the following equation:

τ̂ =
1

n

nX

i

µ̂Y (⃗1, xi)− µ̂Y (⃗0, xi)

=
1

n

nX

i

h
c1(xi) + g(w(xi)

T ei(⃗1, xi))
i

Here c1, g, w etc are neural networks whose parameter was estimated in learning pθ.
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B EXPERIMENTAL DETAILS

B.1 AIRBNB MODEL

The model used in these experiments is a version of the buyer and listing simulator developed by Li
et al. (2022). The original model is a simulator for rental listings and their bookings for a two-sided
marketplace scenario, with treatments affecting which seller listings are applied to by a buyer.

We adapt this simulator for our purposes, replacing customers with devices and listings with users.
Each device and customer have a latent category, and the probability of watching an ad is significantly
higher if the user and device category match. We assume that the watches all ads that it has decided
to watch, and then with a certain probability clicks on only of the ads it sees. Effectively, there is
no temporal component in the treatments. The observed outcome (Yi) is 1 if device i successfully
receives a click on the ad. Since only one click is possible, the more ads are watched by the user, the
lesser is the click rate at a single device, leading to interference. In our terminology, the experimental
units are devices and the interference units are the users. The outcomes at an experimental unit is
influenced by other experimental units that are incident on the the same interference unit. Consistent
with prior literature (Li et al., 2022; Johari et al., 2022; Brennan et al., 2022), we use a 20 latent type
matching model. To match consideration probabilities as mentioned in Brennan et al. (2022) the
ad-watching probability under the control assignment is 0.016 if the device and user share the same
type. Similarly, the click probability was set to match acceptance probabilities mentioned in Brennan
et al. (2022). The treatment tested is a recommendation algorithm, which increases the probability
that a user watches an ad on the treated device.

B.2 SYNTHETIC GRAPHS

The Erdos-Renyi (ER) model is commonly used for analyzing interaction networks in various
experimental settings, particularly in the realm of social media (Seshadhri et al., 2012) and epidemic
control (Kephart & White, 1992; Wang et al., 2003). In social media platforms, where connections
form organically, ER graphs provide a reasonable simulation of how friendships, followerships, or
interactions might evolve in an online community (Erdos et al., 1960). Additionally, in the context of
epidemic control, ER graphs are valuable for studying disease spread (Wang et al., 2003).

We sample different random Erdos-Renyi Graphs and run repeated experiments on these graphs with
randomized bernoulli treatment assignment. The baselines include the POLY(Prop/Num) estimator is
a polynomial regression on the exposure as computed by the fraction/number of treated nodes in the
neighbourhood. The DM estimator signifies the classic difference in mean/ SUTVA estimator which
is is simply the average outcomes on treated vs un-treated units. The ER graphs are made with an
expected neighbourhood of size 20. The outcome model is similar to the potential outcomes model
as in Cortez et al. (2022):

Yi(z) = ci,∅ +
X

j∈Ni

c̃i,1zj +

βX

ℓ=2

 P
j∈Ni

c̃ij,2zjP
j∈Ni

c̃ij,2

!ℓ

, (8)

where i ̸= j, c̃ij,2 = vi,2|Ni|/
P

k:(k,j)∈E |Nk|. The coefficient ci,∅, c̃i,1, vi,2 are obtained from the
device covariates Xi.

We also provide the signed relative bias and RMSE plots from these experiments in Figure 7

B.3 POWER PLANT EMISSION EXPERIMENTS

Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are effective
emission reduction technologies used in industrial settings, and their effectiveness in pollution has
been supported in literature (Papadogeorgou et al., 2019). As ambient pollution is heavily influences
by spatio-temporally adjacent sources of pollution, interference is a key component in the study of air
pollution. We employ the identical dataset as Papadogeorgou et al. (2019) to appraise the effect of
SCR/SNCR adoption on ambient ozone levels. This openly accessible dataset encompasses 473 coal
or gas-fired power generation facilities in USA. The dataset provides covariate details encompassing
power plant characteristics, weather conditions, and demographic information in the surrounding
regions. Due to the knowledge of geographical proximity, spatial-interference aware estimation
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(a) Bias
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(b) RMSE

Figure 7: Visualization of the impact of neighbourhood sizes on GATE estimation. Negative fraction
of neighbours indicate the case when M(i) ⊂ Ni i.e. we missed pertinent neighbours. The bias tends
to be high when gives small neighbourhoods, as they miss pertinent edges. As the neighbourhood
sizes increase, the bias reduces, but the uncertainty widens.

methods can be used to provide plausible estimates of the treatment effect (Papadogeorgou et al.,
2020). The POLY(Prop/Num) estimator is a polynomial regression on the exposure as computed by
the fraction/number of treated nodes in the neighbourhood. The EXP estimator is the augmented
inverse propensity estimator used by Papadogeorgou et al. (2020), using a spatial exposure model.
DM is the direct difference in mean estimate. For the DM estimate, a unit is considered treated if
the nearest power-station adopted pollution reduction measures. The Poly and EXP require oracle
neighbourhoods which can be obtained using latitude and longitude information. However, for our
method we will not leverage such information for identification of the interfering neighbourhood
sites, and instead use clusters based on the 9 census divisions as specified by the US Census Bureau.
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