
Published as a conference paper at ICLR 2023

Supplementary Material

A ANALYTICAL FORMULATION OF D, UNIQUENESS OF THE OPLC
SOLUTION, AND UNBOUNDED VARIABLE

Set D is of problem dependent. For example, in DC-OPF problems, D represents the interested
load input domain which is set by the system operator, e.g., feasible load within [100%, 130%] of
the default load. For others applications, D represents region of possible feasible problem inputs.
Calculating the analytical representation of the feasible region of θ is known as projection of a
polyhedral set to lower dimension subspace. That is, D can be analytically obtained by projecting
the following set

P = {(θ,x)|Aθθ ≤ bθ, and(1), (2) hold}
onto the subspace of θ, which is still a convex polytope. The goal can be achieve using the
Fourier–Motzkin elimination technique. Nevertheless, in our design, we do not need to access the
full analytical formulation of D. Instead, we introduce a set of auxiliary variable x̃ associated with
each θ. That is, the constraint θ ∈ D is indeed represented as {Aθθ ≤ bθ, gj(x̃, θ) ≤ ej ,∀j ∈ E}.

A.1 UNIQUENESS OF THE OPLC SOLUTION

We would like to further discuss the assumption of the uniqueness of the OPLC solution. First,
many OPLC are unique given their objective functions are strictly convex. Such a condition holds
for DC-OPF problems in power systems (Pan et al., 2019) and model-predictive control problems in
control systems (Bemporad et al., 2000). As proved in (Pan et al., 2020a), if the optimal solution is
unique, the input-solution mapping is continuous while the DNN function is also continuous, which
forms the underlying reason why DNN can be applied to learning such a mapping from the Universal
Approximation Theorem of DNN for continuous functions.

We would like to further discuss the situation if the optimal solution is not unique, which is an open
problem and the challenge of the existing end-to-end DNN design.

Given a OPLC that admits multiple optimal solutions for the input, there indeed does not exist
an injective mapping between input to solution, i.e., there exist multiple input-solution mappings.
Consider the DNN training in this case, if the ground-truth training data are from different input-
solution mappings, the DNN could present unsatisfactory performance as solutions to closely related
instances may exhibit large differences and the learning task can become inherently more difficult
(Kotary et al., 2021a; Huang & Chen, 2021; Pan et al., 2023). Nevertheless, our approach is still ap-
plicable to such a scenario as the first obtained DNN-FG after determining the sufficient DNN size
can still guarantee universal feasibility. As introduced in Sec. 4.1 and Sec. 4.2, deriving the cali-
bration rate and determining the sufficient DNN size is only related to the OPLC constraints. These
steps only require obtaining one of the continuous feasible mappings but not optimality. Towards
the Adversarial-Sample Aware algorithm, it is straightforward to adopt the approaches in (Kotary
et al., 2021a; Huang & Chen, 2021; Pan et al., 2023) by improving the training data quality, applying
the unsupervised learning idea, or learning the high-dimensional input+initial point to optimal solu-
tion mapping, which we leave for future work. Finally, the simulations on non-convex optimization
(can have non-unique optimum) in Appendix N show that the ASA algorithm can still work well,
showing the robustness of the design.

A.2 UNBOUNDED DECISION VARIABLES

There are two approaches to handle the unbounded variables: 1) setting xi or x̄i to be some arbitrar-
ily small/large numbers. 2) only includes the bounded constraints into (4)-(5) and (6), e.g., for the
variables 1) without lower bound, the DNN output is x̂i = −σ (x̄i − (WohNhid + bo)i) + x̄i; 2)
without upper bound x̂i = h̃i; 3) without both upper and lower bound, x̂i = (WohNhid + bo)i.

B HANDLING EQUALITY AND NON-LINEAR CONSTRAINTS

We remark that for general OPLC and other constrained optimizations, we can always removing
the equality constraints explicitly/implicitly. Given N + p variables and p (linear) equality con-

14

Published as a conference paper at ICLR 2023

straints, we can remove these equalities and representing p variables by the remaining N variables
using the equality constraints, e.g., applying the coefficient matrix inversion as discussed in Ap-
pendix L without losing optimality. We thus focus on OPLC with inequality constraints only. The
similar predict-and-reconstruct idea is proposed in (Pan et al., 2019; Donti et al., 2021). In addition,
we note that the proposed preventive leaning framework is also applicable to non-linear inequality
constraints, e.g., AC-OPF problems with several thousand buses, but with additional computational
challenges in solving the related programs corresponding to the required steps. We leave the appli-
cation to optimization with non-linear constraints and non-convex objective with large DNN size for
future study.

In this work, we consider the variation of the RHS of the linear inequality constraints. It is also inter-
esting to study the varying aj , bj , ej . We believe our approach is still applicable to such a case while
may have additional computational challenges as the problem turn to be non-linearly constrained.
Nevertheless, it is also great interest to study problems whose parameters are not varying. For ex-
ample, in DC-OPF, aj , bj , ej are determined by power network topology, which will not change
significantly over a long time scale, e.g., months to years. Hence, it is reasonable and practical to
study OPLC with varying inputs only.

C MIXED-INTEGER REFORMULATION OF BI-LEVEL LINEAR PROGRAMS

Consider the following the linear constrained bi-level min-max problem:

min
θ

max
x

cTx (13)

s.t. Ax ≤ b+ Fθ, (14)
θ ∈ D, (15)

where A ∈ Rp×N , b ∈ Rp, F ∈ Rp×M .

The above linear constrained bi-level program can be reformulated by replacing the inner maxi-
mization problem by its sufficient and necessary KKT conditions (Boyd & Vandenberghe, 2004).
We present the reformulated program in the following:

min
θ,x,y

cTx (16)

s.t. Ax ≤ b+ Fθ, (17)

ATy = c, (18)
yi ≥ 0, i = 1, . . . , p, (19)

yi(a
T
i x− bi − fTi θ) = 0, i = 1, . . . , p, (20)

θ ∈ D. (21)

Here ai and fi denote the i-th row of matrix A and F respectively. We remark that the non-linear
Complementary Slackness condition in (20) can be reformulated to be mixed-integer linear using the
Fortuny-Amat McCarl linearization (Fortuny-Amat & McCarl, 1981):

yi ≤ (1− ri)C, aTi x− bi − fTi θ ≥ −riC. (22)

Here the non-linear complementary slackness conditions are reformulated with the binary variable
ri and the large non-binding constant C for each i = 1, . . . , p. Therefore, problem (16)-(21) can be
reformulated to be the mixed-integer linear program (MILP).

We remark that if νf∗ = 0, implying that the system is too binding, e.g., for DC-OPF problem,
some line/generator must always be at its capacity upper bound. Such a restrictive condition seldom
happen in practice for the power system safety operation. Under such a scenario, one can consider a
smaller input region D such that the input is not so extreme and there could always exist an interior
for the input region.

D MINIMUM SUPPORTING CALIBRATION REGION

We remark that the obtained uniform calibration rate on each constraints forms the outer bound of
the minimum supporting calibration region defined as follows:

15

Published as a conference paper at ICLR 2023

Definition 1 The minimum supporting calibration region is defined as the set of calibration rate
{ηj}j∈E and for each θ ∈ D, there exist an x such that (2) and (3) hold. Meanwhile, there exist a
θ ∈ D and there does not exist an x such that (2) and (3) hold under {ηj + δj}j∈E for any δj ≥ 0
and at least one δj > 0.

The minimum supporting calibration region describes the set of maximum calibration rate such that
1) the input parameter region is maintained, and 2) any further calibration on the constraints will
lead some input to be infeasible. We remark that such minimum supporting calibration region is not
unique. See the following example and the approach to obtain (one of) such minimum supporting
calibration region.

We first provide a toy example to demonstrate the non-uniqueness of the minimum supporting cali-
bration region defined in Def. 1. Consider the following modified network flow problem:

min x2
1 + x2

2 + x2
3 (23)

s.t. 0 ≤ x1 ≤ 90, (24)
0 ≤ x2 ≤ 90, (25)
x3 ≤ 70, (26)
x1 + x2 ≤ 90, (27)
x2 + x3 ≤ 90, (28)
x1 + x2 + x3 = l. (29)

Here l is the input load within [0, 100] and x1, x2, and x3 can be seen as the network flow on the
edges. Similar to the analysis in Sec. 4.1, the constraints (26)-(28) can be calibrated by at most
37.5% uniformly. However, such a calibration region is not the minimum one while forms the outer
bound of it. Denote the calibration rate on (26)-(28) as (x, y, z), it is easy to see that any combination
such that 7x+ 9y = 6 and z = 8/9− y is the minimum supporting one.

We further provide the follow procedures to determine (one of) the minimum supporting region.

• Step 1. Solve (4)-(5) to obtain the uniform maximum calibration rate ∆. Let k = 1.
• Step 2. For constraint gk, solve

min
θ∈D

max
x

êk − gk(θ,x)

|ej |
(30)

s.t. (2)

gj(θ,x) ≤ êj , ∀j ∈ E , (31)
where êk = ek × (1ek≥0(1−∆) + 1ek<0(1 + ∆)). Denote the optimal value of (30)-(31)
as δk, which represent the maximum additional individual calibration rate of constraint gk
considering all other constraints’ calibrations.

• Update êk to be ek × (1ek≥0(1−∆− δk) + 1ek<0(1 + ∆ + δk)) and proceed to the next
iteration k + 1. Go to Step 2.

We remark that after each update of êk, the next gk+1 is studied on a tighter region described by
{êj , j = 1, . . . , k}. After solving the programs for each gk, one can easily see that the calibration
region {∆ + δj}j∈E is the minimum supporting calibration region.

In this work, we consider the uniform calibration rate ∆ for further analysis. We remark that the
uniform calibration method may introduce the asymmetry on the calibration rate as large limit would
have large calibration rate. An alternative approach is to set the individual calibration rate ηj for each
constraint while maintain the supported input region as discussed above. However, the choice of
such individual calibration rates is not unique due to the non-uniqueness of the minimum supporting
calibration region. We leave the analysis of such individual constraints calibration for future study.

E DETAILS OF APPLYING Danskin’s Theorem TO THE BI-LEVEL PROBLEM TO
DETERMINE THE SUFFICIENT DNN SIZE

We provide the details of applying Danskin’s Theorem to solve the bi-level mined-integer non-linear
problem (9)-(10).

16

Published as a conference paper at ICLR 2023

To solve such bi-level optimization problem, we optimize the upper-level variables (W,b) by gra-
dient descent. This would simply involve repeatedly computing the gradient w.r.t. (W,b) for the
object function, and taking a step in this negative direction. That is, we want to repeat the update

W := W − α · ∇W(max
θ

νf (W,b,θ)), (32)

b := b− α · ∇b(max
θ

νf (W,b,θ)). (33)

Here maxθ ν
f (W,b,θ) denotes the maximum violation among the calibrated inequality constraints

within the entire inputs domain D, given the specific value of DNN parameters (W,b). Note that
the inner function itself contains a maximization problem. We apply the Danskin’s Theorem to
compute the gradient of the inner term. It states that the gradient of the inner function involving
the maximization term is simply given by the gradient of the function evaluated at this maximum.
In other words, to compute the (sub)gradient of a function containing a max(·) term, we need to
simply: 1) find the maximum, and 2) compute the normal gradient evaluated at this point (Dong
et al., 2020b; Danskin, 2012). Hence, the relevant gradient is given by

∇W(max
θ

νf (W,b,θ)) = ∇Wνf (W,b,θ∗), (34)

∇b(max
θ

νf (W,b,θ)) = ∇bν
f (W,b,θ∗), (35)

where

θ∗ = arg max
θ

νf (W,b,θ). (36)

Here the optimal θ∗ depends on the choice of DNN parameters (W,b). Therefore, at each iterative
update of (W,b), we need to solve the inner maximization problem once. Note that the optimal θ∗
may not be unique. However, the gradient of νf (W,b,θ∗) w.r.t. (W,b) can still be obtained given
a specific θ∗, which is (one of the) gradient that optimizes the deep neural network. We remark
that such approach is indeed widely adopted in existing literature (Dong et al., 2020b; Danskin,
2012). In addition, though the involved program is a mixed-integer linear problem, we observe
that the solver can indeed provide its optimum efficiently, e.g., <20 mins for Case300 in DC-OPF
problem in simulation. Nevertheless, we remark that finding a (sub-optimal) feasible solution for
the inner maximization problem can be easily obtained by a heuristic trial of some particular θ,
e.g., the worst-case input at the previous round as the initial point and the associate integer values
in the DNN constraints (7)-(8), which are fixed given the specification of DNN parameters. Such a
solution can still be utilized for the further steps to calculate the sub-gradient of the DNN. One can
see the analogy between it and DNN training with stochastic gradient decent method.

In addition, note that to obtain the upper bound ρ, we do not need to access any feasible point of
the inner maximization problem. The upper bound is provided by the relaxation in the branch-and-
bound algorithm, e.g., relax (some) integer variables to continuous. This can be efficiently obtained
by the solvers, e.g., APOPT or Gurobi. Such an upper bound is applied to verify whether universal
feasibility guarantee is obtained and whether the DNN size is sufficient.

E.1 DETERMINING THE VALUES OF hmax,k
i /hmin,k

i

hmax,ki /hmin,ki are constants and fixed during solving the (inner) MILP in optimization (9)-
(10) (Tjeng et al., 2018). These numbers represent the maximum/minimum bounds on the values of
the neuron outputs, which should be large/small enough numbers to let the DNN constraints not be
binding in the reformulation (7)-(8). In our design, we follow the technique in (Venzke et al., 2020)
to obtain such (tighter) upper/lower bounds for each updated (W,b). In particular, we minimize
and maximize the output of each neuron subject to the linear relaxation of the binary variables (to
be continuous within 0 and 1) in the DNN constraints with parameters (W,b) in (7)-(8) and en-
tire input region D. Such upper/lower bounds can be efficiently obtained by solving the LPs after
relaxation, which guarantees that the neuron output will not exceed the corresponding values. We
note that for different DNN parameters (W,b), hmax,ki /hmin,ki could take different values that can
always be efficiently obtained from the LPs after linear relaxation.

17

Published as a conference paper at ICLR 2023

F PROOF OF PROPOSITION 1

Proof: Consider the DNN with Nhid hidden layers each having Nneu neurons and parameters
(Wf ,bf) and ρ ≤ ∆. Since ρ is an upper bound on the optimal value of the bi-level problem
(9)-(10), we have

(gj(θ, x̂)− êj)/|ej | ≤ ρ,∀θ ∈ D,∀j ∈ E . (37)

Therefore, we have for any θ ∈ D and j ∈ E{
gj(θ, x̂)− ej(1−∆) ≤ ρ · ej , if ej ≥ 0;

gj(θ, x̂)− ej(1 + ∆) ≤ −ρ · ej , otherwise,
(38)

which is equivalent to {
gj(θ, x̂) ≤ ej + (ρ−∆) · ej , if ej ≥ 0;

gj(θ, x̂) ≤ ej + (∆− ρ) · ej , otherwise.
(39)

Since ρ ≤ ∆, we have

gj(θ, x̂) ≤ ej ,∀θ ∈ D,∀j ∈ E . (40)

This completes the proof of Proposition 1.

G UNIVERSAL APPROXIMATION CAPABILITY OF DNN

We highlight the Universal Approximation of DNNs for approximate the input-solution for the
OPLC in the following proposition.

Proposition 5 (Hornik, 1991) Assume the target function to learn is continuous, there always exists
a DNN whose output function can approach the target function arbitrarily well, i.e.,

max
θ∈D

‖h(θ)− ĥ(θ)‖ < ε,

hold for any ε arbitrarily small (distance from h to ĥ can be infinitely small). Here h(θ) and ĥ(θ)
represent the target mapping to be approximated and the DNN function respectively.

Furthermore, given the fixed depth Nhid of the DNN, the learning ability of the DNN is increasing
monotonically w.r.t. the width of the DNN. That is, consider two DNN widthN1

neu andN2
neu such that

N1
neu > N2

neu, we have

min
h∈CN1

neu

max
θ∈D

‖h(θ)− ĥ(θ)‖ ≤ min
h∈CN2

neu

max
θ∈D

‖h(θ)− ĥ(θ)‖,

where CN1
neu and CN2

neu denote the class of all functions generated by a Nhid depth neural network
with width N1

neu and N2
neu respectively.

Proposition 5 provides as the strong observation and theoretical basis for designing the iterative
approach to determine the sufficient DNN size in guaranteeing universal feasibility.

H MINIMAL SUFFICIENT DNN SIZE

We remark that the obtained sufficient DNN size by doubling the DNN width may be substantial,
introducing additional training time to train the DNN model and higher computational time when
applied to solve OPLC. One can also determine the corresponding minimum sufficient DNN size by
a simple and efficient binary search between

• the obtained sufficient DNN size N∗neu and the pre-obtained DNN size N∗neu/2 (before
doubling the DNN width) which fails to achieve universal feasibility, if the initial
tested DNN can not guarantee universal feasibility;

18

Published as a conference paper at ICLR 2023

• the initial tested DNN size and some small DNN, e.g., zero width DNN, if the initial
tested DNN size is sufficient in guaranteeing universal feasibility.

Such a minimum sufficient DNN size denotes the minimum width required for a given DNN struc-
ture with depth Nhid to achieve universal feasibility within the entire input domain. We use N̂neu to
denote the determined minimum sufficient DNN size and propose the following proposition.

Proposition 6 Consider the DNN with Nhid hidden layers each having N̂neu neurons, any DNN
with depth Nhid and a smaller width than N̂neu can not guarantee universal feasibility for all input
θ ∈ D. Meanwhile, any DNN with depth Nhid and at least N̂neu width can always achieve universal
feasibility.

I DESCRIPTION OF ADVERSARIAL-SAMPLE AWARE ALGORITHM

We outline the Adversarial-Sample Aware algorithm in Algorithm 2. As seen, the Adversarial
Sample-Aware algorithm pre-trains the DNN model (line 3) and starts the iteration (line 5). Each
iteration verifies whether the worst-case prediction error is within the room (maximum calibration
rate) (lines 6 - 13). If the maximum constraints violation of the adversarial input exceeds the de-
termined calibrated rate, the Adversarial-Sample Aware algorithm incorporates a set of adversarial
samples into the existing training set and updates the DNN parameters (line 14 - 19), expecting the
constraints violation of the adversaries are eliminated.

We expect that after a few training epochs, the post-trained DNN can restore feasibility at the iden-
tified adversarial sample θt and the points around it in St. This is inspired by the observation that
after adding the previously identified training pairs St into the training set, the DNN training loss is
dominated by the approximation errors and the penalties at the samples in St. Though the training
loss may not be optimized to 0, e.g., still has violations w.r.t. the calibrated constraints limits, the
DNN solution is expected to satisfy the original inequality constraints after such preventive training
procedure. Therefore, the post-trained DNN is capable of preserving feasibility and good accuracy
at these input regions. Simulation results in Sec. 6.2.1 show the effectiveness of the propose al-
gorithm. We provide the following proposition to state the guarantee of the algorithm in ensuring
universal feasibility.

J PROOF OF PROPOSITION 3

Proof idea: Here we consider the post-trained DNN with Nhid hidden layers each having N∗neu
neurons. Given current iteration i, for ∀j ≤ i, suppose it can always maintain feasibility at the cor-
respondingly constructed neighborhoods around the identified worst-case input, i.e., D̂j , by training
on T i+1 that combines T 0 and all the auxiliary subset Sj around the identified adversarial input
θj ,∀j ≤ i. Therefore, when the number of iterations is large enough, the union of the feasible
regions D̃i>C = D̂1 ∪ D̂2 ∪ . . . D̂i can cover the entire input domain D. That is, the post-trained
DNN can ensure feasibility for each small region D̂i within the input domainD, and hence universal
feasibility is guaranteed. Such observation is similar to the topic of minimum covering ball problem
of the compact set in real analysis.

Such a condition generally requires the DNN to preserve feasibility within some small regions by
especially including the input-solution information during training, which may not be hard to sat-
isfy. This can be understood from the observation that the worst-case violation in the smaller inner
domain can be reduced significantly by training on the broader outer input domain (Venzke et al.,
2020; Nellikkath & Chatzivasileiadis, 2022) as the adversarial inputs are always element-wise at
the boundary of the entire input domain D, which echoes our simulation findings in Sec. 6. There-
fore, the post-trained DNN is expected to perform good feasibility guarantee in all small regions
D̂j ,∀j ≤ i after the preventive training procedure on T i+1, the training set on the entire domain
D. We remark that after gradually including these subsets Si into the existing training set, the loss
function is determined by the joint loss among all samples in these regions. After the training pro-
cess, the post-obtained DNN is hence expected to maintain feasibility at the points in the training
set and the regions around them.

19

Published as a conference paper at ICLR 2023

Algorithm 2: Adversarial-Sample Aware Algorithm

1: Input: ∆, Initial training set T 0, Training epochs T , Number of iterations I
2: Output: DNN model with parameters (W∗,b∗)
3: Pre-train the DNN model on T 0 using loss function (11) for T epochs
4: Save DNN parameters as (W0,b0)
5: for i = 0 to I do
6: Find the maximum violation of (Wi,bi) by solving:

θi = arg max
θ∈D

νf s.t. (7)− (8), 1 ≤ i ≤ Nhid, 1 ≤ k ≤ Nneu, (10).

7: Set γ = νf (θi)
8: if γ ≤ ∆ then
9: Set W∗ = Wi,b∗ = bi; Break

10: else
11: Construct Si by randomly sampling around θi
12: Set T i+1 = T i ∪ Si and (Wi

0,b
i
0) = (Wi,bi)

13: end if
14: for t = 0 to T do
15: Train the DNN on T i+1 using loss function (11) and update DNN parameters to

(Wi
t+1,b

i
t+1)

16: Feed each θ ∈ Si in the DNN model to obtain predicted solution x̂
17: if Each x̂ is feasible w.r.t. (1)- (2) then
18: Break
19: end if
20: end for
21: Set (Wi+1,bi+1) = (Wi

t+1,b
i
t+1)

22: end for

K RUN-TIME COMPLEXITY OF THE FRAMEWORK

The computational complexity of the framework consists of the complexity of using DNN to predict
the solutions, which is O

(
NhidN

2
neu

)
(Pan et al., 2020b). Recall that Nhid denote the number of

hidden layers in DNN (depth), and Nneu denotes the number of neurons at each layer (width). In
practice, we set Nhid to be 3 and observe that the DNN with width Nneu of O (N) can achieve
satisfactory optimality performance with universal feasibility guarantee. Therefore, the complexity
of using DNN to predict the N variables is O

(
N2
)
.

Note that the number of decision variables to be optimized is N . After taking O (|E|M) operations
to calculate the value of bTj θ for each j ∈ E , the computational complexity of interior-point methods
for solving such programs is O

(
N4
)
, measured by the number of elementary operations assuming

that it takes a fixed time to execute each operation (Ye & Tse, 1989). Therefore, the traditional
method for solve the OPLC has a computational complexity of O

(
N4 + |E|M

)
.

We remark that the computational complexity of the proposed framework is lower than that of tra-
ditional algorithms.

L IMPLEMENTATIONS OF DEEPOPF+

Recall that the DC-OPF formulation is given as

min
PG, Φ

∑
i∈G

ci (PGi) (41)

s.t. Pmin
G ≤ PG ≤ Pmax

G , (42)
M · Φ = PG − PD, (43)
− Pmax

line ≤ Bline · Φ ≤ Pmax
line . (44)

20

Published as a conference paper at ICLR 2023

We first reduce the number of decision variables (without losing optimality) by adopting the predict-
and-reconstruct framework (Pan et al., 2019). Specifically, it leverages that the admittance matrix
(after removing the entries corresponding to the slack bus) M̃ is of full rank B − 1, where B = |B|
and is the size of the set of buses. Thus, given eachPD, once the non-slack generations {PGi}i∈G\n0

(n0 denotes the slack bus index) are determined, the slack generation and the bus phase angles of all
buses can be uniquely reconstructed:

P slack
G =

∑
i∈B

PDi −
∑

i∈G\n0

PGi, (45)

Φ̃ = M̃−1
(
P̃G − P̃D

)
, (46)

where n0 and P slack
G denote the slack bus index and slack bus generation respectively. P̃G and

P̃D are the (B − 1)-dimensional generation and load vectors for all buses except the slack bus.
Consequently, the line flow capacity constraints in (44) can be reformulated as

− Pmax
line ≤ B̃lineM̃

−1
(
P̃G − P̃D

)
≤ Pmax

line , (47)

where B̃line is the line admittance matrix after removing the column of slack bus.7 Therefore, the
reformulated DC-OPF problem takes the form of

min
P̃G

∑
i∈G\n0

ci (PGi) + cn0

∑
i∈B

PDi −
∑

i∈G\n0

PGi

 (48)

s.t. (47),

Pmin
Gi ≤ PGi ≤ Pmax

Gi ,∀i ∈ G\n0, (49)

Pmin
slack ≤

∑
i∈B

PDi −
∑

i∈G\n0

PGi ≤ Pmax
slack . (50)

Therefore, we can solve DC-OPF by employing DNNs to depict the mapping between PD and P̃G.

L.1 REMOVING NON-CRITICAL INEQUALITY CONSTRAINTS

L.1.1 REMOVING NON-CRITICAL BRANCH LIMITS.

We propose the following program for each branch i to remove the non-critical branch limits given
the entire load and generation space:

max
P̃G,PD

νi − 1 (51)

s.t. (49),

PD ∈ D, (52)

ν = |X̃
(
P̃G − P̃D

)
|. (53)

Here we assume the load domain D = {PD|AdPD ≤ bd,∃P̃G : (47) − (50 hold}) is restricted
to a convex polytope described by matrixAd and vector bd and the corresponding constraints. (49)
enforces the feasibility of non-slack generations. (53) represents the normalized power flow level
at each branch, where X̃ is obtained from (47) by dividing each row of matrix B̃lineM̃

−1 with the
value of corresponding line capacity and ν ∈ R|E|.
We remark that problem (51)-(53) can be reformulated as two linear programmings to perform the
inference of the absolute sign of power flows in (53):

max
P̃G,PD

/ min
P̃G,PD

ν̃i (54)

s.t. (49), (52),

ν̃ = X̃
(
P̃G − P̃D

)
. (55)

7The matrix B̃lineM̃
−1 is well-known as “Power Transfer Distribution Factors” (PTDF) matrix (Chatzi-

vasileiadis, 2018).

21

Published as a conference paper at ICLR 2023

If the optimal value of the above maximization (respectively minimization) problem is smaller or
equal (respectively greater or equal) than 1 (respectively -1), then the optimal value of (54)-(55) is
non-positive for some branch i. Therefore, such non-critical inequality constraint does not affect the
feasible solution space such that it is always respected given any input load PD and can be removed
from the DC-OPF problem. By solving (54)-(55), we can derive the set E of critical branch capacity
constraints whose optimal objectives are positive.8

L.1.2 REMOVING NON-CRITICAL SLACK BUS GENERATION LIMITS.

We provide the formulation to identify the critical slack generation limits given the entire load and
generation space and the possible violation degree w.r.t. the upper and lower bounds here.

max
P̃G,PD

νuslack (56)

s.t. (45), (49), (52),

νuslack =
P slack
G − Pmax

slack

Pmax
slack − Pmin

slack
, (57)

and

max
P̃G,PD

νlslack (58)

s.t. (45), (49), (52),

νlslack =
Pmin

slack − P slack
G

Pmax
slack − Pmin

slack
, (59)

respectively. Here (57) and (59) denote the (normalized) exceeding of slack bus generation exceed-
ing its upper bound and lower bound, respectively. Therefore, if the optimal values of these proposed
optimization problem is non-positive, such slack generation limit is non-critical and does not affect
the load-solution feasible region.

We remark that problems (56)-(57), and (58)-(59) are indeed linear programs and can be efficiently
solved by the state-of-the-art solvers such as CPLEX or Gurobi. We find that all three test cases
could have both critical upper bound and lower bound limits, i.e., both (56)-(57) and (58)-(59) have
positive optimal values.

L.2 MAXIMUM CONSTRAINTS CALIBRATION RATE

To determine the maximum constraints calibration rate while preserving the input region, we solve
the following bi-level optimization program:

min
PD

max
PG

νc (60)

s.t. (42), (45)− (47), (52),

|PFij | = |
1

rij
(φi − φj) |, ∀ (i, j) ∈ E , (61)

Puslack = (Pmax
slack − P slack

G)/(Pmax
slack − Pmin

slack), (62)

P lslack = (P slack
G − Pmin

slack)/(Pmax
slack − Pmin

slack), (63)

νc ≤
Pmax
Tij − |PFij |

Pmax
Tij

,∀ (i, j) ∈ E , (64)

νc ≤ Puslack, (65)

νc ≤ P lslack, (66)

where PFij denotes the power flow on branch (i, j) ∈ E . Puslack and P lslack represent the relative
upper and lower bounds redundancy on slack bus, respectively. Constraint (52) describes the convex
8For the critical branch constraints not in E , it is possible to encounter such load input and generation solution
profiles using the DNN scheme with the upper/lower bounds truncate ReLU functions in (6) at output layer
under the worst-case scenarios with which the power flow on branch i exceeds its transmission limit.

22

Published as a conference paper at ICLR 2023

polytope ofPD. Constraints (42) and (45)-(46) denote the feasibility of the correspondingPG. Con-
straints (64)-(66) enforce νc as the maximum calibration rate. We employ the KKT-based approach
in Sec. 4.1 to solve the above bi-level problem and obtain the calibration rate for DeepOPF+.

L.3 DNN LOSS FUNCTION IN DC-OPF PROBLEM

When adopting the Adversarial-Sample Aware algorithm, we design the loss function L consisting
of two parts to guide the training process.

Similar to (Pan et al., 2019), we first represent the feasible active power generation PGi that satisfies
(42) as:

PGi = Pmin
Gi + αi ·

(
Pmax
Gi − Pmin

Gi

)
, αi ∈ [0, 1] , i ∈ G. (67)

Therefore, instead of predicting {PGi}i∈G\n0
, we use DNNs to generate the corresponding scaling

factors and reconstruct the {PGi}i∈G\n0
and remaining variables in implementation. The first term

of the loss function is the sum of mean square error between the generated scaling factors α̂i and the
reference ones αi of the optimal solutions:

LPG
=

1

|G − 1|
∑

i∈G\n0

(α̂i − αi)2
. (68)

The second part consists of penalty terms (denoted as Lpen) as the summation of the violations for
line flow limits and slack bus generation:

Lline
pen =

1

|E|

|E|∑
k=1

max

((
X
(
P̃G − P̃D

))2

k
− 1, 0

)
Lslack
pen =

1

|E|
max

(
P slack
G − Pmax

slack

Pmax
slack − Pmin

slack
, 0

)
+

1

|E|
max

(
Pmin

slack − P slack
G

Pmax
slack − Pmin

slack
, 0

)
(69)

Here matrix X is obtained from (47) by dividing each row of matrix B̃lineM̃
−1 with the value of

corresponding line capacity. The first and second terms of Lslack
pen denote (normalized) the violations

of upper bound and lower bound on slack generation, respectively. We remark that after the con-
straints calibration, the penalty loss is with respect to the adjusted limits. Note here the non-slack
generations are always feasible as we predict the (0, 1) scaling factors in (67). The total loss is a
weighted sum of the two:

L = w1 · LPG
+ w2 · Lpen, (70)

where w1 and w2 are positive weighting factors representing the balance between prediction error
and penalty. We apply the widely-used stochastic gradient descent (SGD) with momentum (Qian,
1999) method to update DNN’s parameters (W,b) at each iteration.

L.4 RUN-TIME COMPLEXITY OF DEEPOPF+

According to Appendix K, the computational complexity of DeepOPF+ to predict the non-slack
generations {PGi}i∈G\n0

is O
(
B2
)
. Reconstructing the phase angles Φ can be achieved by (46),

which requires O
(
B2
)

operations. Overall, the computational complexity of DeepOPF+ is
O
(
B2
)
. For the traditional solver, the computational complexity of interior-point methods for solv-

ing DC-OPF is O
(
B4
)
, measured by the number of elementary operations. We remark that the

computational complexity of DeepOPF+ is lower than that of traditional algorithms.

M DETAILS OF DEEPOPF+ DESIGN

We present the detailed result of each step in DeepOPF+ design in this appendix.

23

Published as a conference paper at ICLR 2023

Table 2: Maximum calibration rates for IEEE Case30/118/300.
Case30 Case118 Case300

Maximum
calibration rate 7.0% 16.7% 21.6%

Table 3: Parameters for test cases.

Case Number of
buses

Number of
generators

Number of
load buses

Number of
branches

Case30 30 6 20 41
Case118 118 19 99 186
Case300 300 69 199 411
* The number of load buses is calculated based on the default

load on each bus. A bus is considered a load bus if its default
active power consumption is non-zero.

Table 4: Parameters settings of DeepOPF+ for IEEE Case30/118/300

Test case Variants
Calibration

rate
Neurons per
hidden layer

Case30
DeepOPF+-3 3.0% 60/30/15
DeepOPF+-7 7.0% 32/16/8

Case118
DeepOPF+-3 3.0% 200/100/50
DeepOPF+-7 7.0% 128/64/32

Case300
DeepOPF+-3 3.0% 360/180/90
DeepOPF+-7 7.0% 256/128/64

Table 5: Preprocessing time to setup DeepOPF+ for IEEE Case30/118/300 in heavy-load regime

Test case Variants
Determine

Calibration rate
Determine
DNN size

ASA algorithm Total time

Case30
DeepOPF+-3 0.2 seconds 0.15 hours 0.83 hour 0.98 hour
DeepOPF+-7 0.2 seconds 0.15 hours 0.73 hour 0.88 hour

Case118
DeepOPF+-3 20.9 seconds 5.47 hours 7.94 hour 13.42 hour
DeepOPF+-7 20.9 seconds 5.47 hours 5.31 hour 10.79 hour

Case300
DeepOPF+-3 1185.7 seconds 178.46 hours 25.72 hour 204.51 hour
DeepOPF+-7 1185.7 seconds 178.46 hours 10.52 hour 189.31 hour

Table 6: Preprocessing time to setup DeepOPF+ for IEEE Case30/118/300 in light-load regime

Test case Variants
Determine

Calibration rate
Determine
DNN size

ASA algorithm Total time

Case30
DeepOPF+-3 0.2 seconds 0.15 hours 0.81 hour 0.96 hour
DeepOPF+-7 0.2 seconds 0.15 hours 0.72 hour 0.87 hour

Case118
DeepOPF+-3 20.9 seconds 5.47 hours 6.99 hours 12.47 hours
DeepOPF+-7 20.9 seconds 5.47 hours 4.79 hours 10.27 hours

Case300
DeepOPF+-3 1185.7 seconds 178.46 hours 52.46 hours 231.25 hours
DeepOPF+-7 1185.7 seconds 178.46 hours 15.82 hours 194.61 hours

First, for determining the maximum calibration rate, the obtained result in shown in Table 2, rep-
resenting the room for DNN prediction error. We note that the off-the-shell solver returns exact
solutions for the problem in (4)-(5).

24

Published as a conference paper at ICLR 2023

Table 7: Average cost and runtime of SOTA DNN schemes in heavy-load regime.

Case Scheme
Average

cost ($/hr)
Average running

time (ms)
DNN scheme Ref. DNN scheme Ref.

Case30

DNN-P 732.5

732.2

0.58

45.6

DNN-D 732.4 0.63
DNN-W 732.2 53.02
DNN-G 732.5 1.78

DeepOPF+-3 732.4 0.50
DeepOPF+-7 732.9 0.49

Case118

DNN-P 121074.7

120822.1

2.13

124.9

DNN-D 121112.1 15.60
DNN-W 120822.1 55.33
DNN-G 121299.6 7.72

DeepOPF+-3 121051.3 0.56
DeepOPF+-7 121313.9 0.55

Case300

DNN-P 926660.6

925955.0

3.33

83.5

DNN-D 926590.1 57.92
DNN-W 925955.0 77.48
DNN-G 926512.3 31.55

DeepOPF+-3 926198.4 0.61
DeepOPF+-7 926500.4 0.60

Table 8: Average cost and runtime of SOTA DNN schemes in light-load regime.

Case Scheme
Average

cost ($/hr)
Average running

time (ms)
DNN scheme Ref. DNN scheme Ref.

Case30

DNN-P 619.8

619.7

0.50

42.4

DNN-D 619.8 0.50
DNN-W 619.7 46.93
DNN-G 620.4 1.75

DeepOPF+-3 619.9 0.50
DeepOPF+-7 619.8 0.49

Case118

DNN-P 101843.2

101673.0

1.71

115.4

DNN-D 101873.6 5.02
DNN-W 101673.0 55.55
DNN-G 102983.3 4.37

DeepOPF+-3 101852.3 0.58
DeepOPF+-7 102049.3 0.57

Case300

DNN-P 778342.4

777878.4

1.71

78.7

DNN-D 778404.3 25.93
DNN-W 777878.4 75.77
DNN-G 780368.9 32.30

DeepOPF+-3 778070.6 0.60
DeepOPF+-7 778675.2 0.60

Second, for determining the sufficient DNN size, we show the change of the difference between
maximum relative constraints violation and calibration rate during iterative solving process via the
Danskin’s Theorem in Fig. 3. From Fig. 3, we observe that for all three test cases, the proposed
approach succeeds in reaching a relative constraints violation no larger than the corresponding cal-
ibration rate ∆, i.e., ρ ≤ ∆, indicating that the verified DNNs, i.e., 32/16/8 neurons, 128/64/32
neurons and 256/128/64 neurons, for IEEE 30-/118/300-bus test cases respective, have enough size
to guarantee feasibility within the given load input domain of [100%, 130%] of the default load. Note
that we can directly construct DNNs to ensure universal feasibility for the three IEEE test cases. We
further evaluate the performance of the DNN model obtained following the steps in Sec. 4.2.2 with-
out using the Adversarial-Sample Aware algorithm. While ensuring universal feasibility, it suffers
from an undesirable optimality loss, up to 2.31% and more than 130% prediction error.

25

Published as a conference paper at ICLR 2023

(a) Case30. (b) Case118. (c) Case300.

Figure 3: Maximum relative constraints violation compared with calibration rate (νf −∆) at each
iteration for IEEE Case30, Case118, and Case300 test case.

(a) Case118. (b) Case300.

Figure 4: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Case118 and IEEE Case300 in light-load regime with 7% calibration rate.

(a) Case118. (b) Case300.

Figure 5: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Case118 and IEEE Case300 in heavy-load regime with 7% calibration rate.

(a) Case118. (b) Case300.

Figure 6: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Case30/118/300 in light-load regime with 3% calibration rate.

Third, the DNN models trained with the Adversarial-Sample Aware algorithm achieve lower opti-
mality loss (up to 0.19%) while preserving universal feasibility. The observation justifies the effec-
tiveness of Adversarial-Sample Aware algorithm. We further present the relative violation (νf −∆)
on IEEE 30-/118/300-bus test cases at each iteration in both light-load and heavy-load regimes for

26

Published as a conference paper at ICLR 2023

(a) Case30. (b) Case118. (c) Case300.

Figure 7: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for IEEE
Case30/118/300 in heavy-load regime with 3% calibration rate.

illustration in Fig. 4 and Fig. 5 with a 7% calibration rate. The above observations show that the
Adversarial-Sample Aware can efficiently achieve universal feasibility guarantee within both light-
load and heavy-load regimes for IEEE 118-/300-bus test cases with at most 52 iterations. We remark
that for Case30, the initial worst-case violation of the trained DNN with 7% calibration rate is less
than zero (-9.28% and -2.93% in light-load and heavy-load regimes respectively) and hence without
the need for adversarial training. The results under the 3% calibration rate are presented in Fig. 6
and Fig. 7, for which we observe that the ASA would take a longer number of iterations to achieve
the universal feasibility guarantee due to the smaller room for prediction errors, e.g., at most 152 it-
erations. For Case30 under light-load regime with 3% calibration rate, its initial worst-case violation
is less than zero (-7.53%) and hence without the need of ASA iterations.

Furthermore, we present the parameters of three IEEE test cases and the settings of two DeepOPF+
schemes in Table 3 and Table 4 respectively. The detailed runtime and cost and the time to configure
the framework are listed in Table 6-Table 8 for each test case. Note that though a single DC-OPF may
be efficient solved by the existing solver, due to increasing uncertainty from renewable generation
and flexible load, grid operators now need to solve DC-OPF problems under many scenarios in a
short interval, e.g., 1000 scenarios in 1 minutes, to obtain a stochastically optimized solution, e.g.,
∼2 minutes for the iterative solvers to solve a large number of DC-OPF problems for Case118,
resulting the fail of real-time operation. In contrast, the developed DNN scheme can return the
solution with ×228 speedups, i.e., less than 0.6 seconds in total. In addition, though our method
takes additional training efforts, 1) it is conducted offline, once the DNN is configured, it can be
continuously applied to many test instances such that the complexity is amortized, e.g., < 0.5 ms
for DC-OPF problems if the system operator needs to solve DC-OPF per 5 minutes over 1000
scenarios over a year; 2) as illustrated, the obtained DNN outperforms the existing approaching
in avoiding any post-processing and resulting in a lower real-time runtime complexity, showing its
advantage; 3) our theoretical analysis shows that the design can always provide the corresponding
useful upper/lower bounds in each step of the framework in polynomial time, which can still be
utilized for constraints calibration and DNN performance analysis; 4) the process can be further
accelerated by applying advanced computation parallel techniques. Finally, we remark that if an
impractically large DNN size is required, it would introduce an additional computational challenge,
which can require more configuration efforts of the approach and it can be a potential limitation.
It is also an interesting direction for solving the constrained program w.r.t. the DNN parameters
and determining the sufficient DNN size more efficiently. We would like to leave how to set up the
DNNs more efficiently and accelerate the corresponding steps as future work, which is non-trivial
and still an open problem in DNN scheme design.

N NON-CONVEX OPTIMIZATION EXAMPLE

We further consider solving a non-convex linearly constrained program with a non-convex objec-
tive function and linear constraints adapted from (Donti et al., 2021). We examine this task for
illustration:

min
y∈Rn

1

2
yTQy + pT sin(y), s.t. Ay = x,−h ≤ Gy ≤ h, (71)

27

Published as a conference paper at ICLR 2023

for constants problem parameter Q ∈ Rn×n, p ∈ Rn, A ∈ Rneq×n, G ∈ Rnineq×n, h ∈ Rnineq . Here
x ∈ Rneq is the problem input and y ∈ Rn denotes the decision variable. nineq and neq are the
number of inequality and equality constraints. Here we focus on the non-degenerate case such that
neq ≤ n. Therefore, the DNN task aims to learn the mapping between x to the optimal y. Similar
to (Donti et al., 2021), Q is set to be a diagonal matrix whose diagonal entries are drawn i.i.d.
from the uniform distribution on [0, 1]. The entries of A,G are drawn i.i.d. from the unit normal
distribution. The problem input region of x is set to be [−1, 1] for each dimension. To ensure the
problem feasibility, we set hi =

∑
j |(GA+)ij |, where A+ is the Moore-Penrose pseudoinverse of

A. The feasibility of the problem can be seen that the point y = A+x is feasible. However, such
a point can be generally non-optimal with large optimality loss. In our simulation, we set n = 50,
neq = 25, and nineq = 25. Therefore, the considered optimization has 50 variables, 25 equality
constraints, and 100 inequality constraints.

We follow the procedures in the preventive learning framework to generate the DNN with universal
feasibility guarantee and achieve strong optimality performance.

N.1 REFORMATTING THE PROBLEM WITH ONLY INEQUALITY CONSTRAINTS

We reformulate the non-convex optimization with only n − neq independent variables of y2. Note
that the equality constraints can be reformulated as

[A1, A2]

[
y1

y2

]
= x (72)

Here A1 ∈ Rneq×neq , y1 ∈ Rneq and A2 ∈ Rneq×(n−neq), y2 ∈ Rn−neq . Therefore, given x and y2,
the corresponding y1 can be uniquely recovered, i.e., y1 = A−1

1 (x − A2y2). Based on the above
reformulation, the inequality constraints are given as

[G1, G2]

[
y1

y2

]
≤ h, −[G1, G2]

[
y1

y2

]
≤ h (73)

and hence

G1A
−1
1 x+ (G2 −G1A

−1
1 A2)y2 ≤ h, G1A

−1
1 x+ (G2 −G1A

−1
1 A2)y2 ≥ −h (74)

The objective can be equivalent modified by replacing the terms w.r.t. y1 to be y2 from y1 =
A−1

1 (x−A2y2). This completes the pre-reformulation of the above non-convex optimization.

N.2 DETERMINE THE MAXIMUM ALLOWABLE CALIBRATION RATE

We first examine that all inequality constraints are critical, i.e., exist a y such that the constraint is
binding. We then further determine the maximum calibration rate. From the description in Sec. 4.1,
the program to determine the maximum calibration rate is given as

min
x∈[−1,1]

max
y,νc

νc (75)

s.t. (74)

νc ≤ (hi − (G1A
−1
1 x+ (G2 −G1A

−1
1 A2)y2)i)/hi, i = 1, ..., nineq, (76)

νc ≤ (hi + (G1A
−1
1 x+ (G2 −G1A

−1
1 A2)y2)i)/hi, i = 1, ..., nineq. (77)

Note that given x, the inner problem is an LP and can be equivalently expressed by its sufficient
and necessary KKT conditions. Following the MILP steps in Sec. 4.1, we solve the above program
to determine the maximum allowable calibration rate, we observe that the Gurobi solver with the
branch-and-bound provides its optimal solution with zero optimality gap within 42ms. The corre-
sponding optimal νc∗ = 100%, implying we can set h = 0 such that problem is still feasible for
each problem input x ∈ [−1, 1].

N.3 DETERMINE THE SUFFICIENT DNN SIZE TO GUARANTEE UNIVERSAL FEASIBILITY

In our simulation, we consider a DNN with 3 hidden layers and each layer has 50 neurons. Following
the steps in Sec. 4.2, we observe that such a DNN size is sufficient to guarantee universal feasibility.
The corresponding program is given as

28

Published as a conference paper at ICLR 2023

(a) 5% calibration rate. (b) 10% calibration rate.

Figure 8: Worst-case violation of Adversarial-Sample Aware algorithm at each iteration for the non-
convex optimization example with 5% and 10% calibration rate.

min
W,b

max
x∈[−1,1]

νf (78)

s.t. (7)− (8), 1 ≤ i ≤ Nhid, 1 ≤ k ≤ Nneu,

νf = max
i=1,...,nineq

{
(G1A

−1
1 x+ (G2 −G1A

−1
1 A2)ŷ2)i/hi

−(G1A
−1
1 x+ (G2 −G1A

−1
1 A2)ŷ2)i/hi

}
. (79)

Here ŷ2 is the prediction of the DNN. We observe that the tested DNN size is sufficient to guarantee
universal feasibility by achieve an upper bound of the relative violation of ρ−νf as−9.3% within∼
6 minutes. It implies that the tested DNN size is sufficient to guarantee universal feasibility. Recall
that the obtained DNN-FG achieves unsatisfactory optimality performance (71.38% optimality loss)
as it only focuses on feasibility.

N.4 APPLICATION OF ADVERSARIAL-SAMPLE AWARE TRAINING ALGORITHM

We hence implement the proposed ASA training algorithm to further improve the optimality per-
formance of the DNN with 5% and 10% calibration rates respectively. The time to obtain the cor-
responding (Pre-DNN-5, Pre-DNN-10) with 5% and 10% calibration rate are < 52 minutes and
< 44 minutes respectively.

We compare our approach against the classical non-convex optimization solver IPOPT and the other
DNN schemes DNN-P, DNN-D,DNN-W, and DNN-G. The number of training data is 15,000, and
the number of test data is 3,000. The DNN size is set as 3 hidden layers and each layer has 50
neurons. The results are listed in Table 9, and the worst-case violation at each iteration in the ASA
training algorithm are given in Fig. 8. Here the optimality Loss metric is calculated as the average of
(DNN objective−Optimal objective)/|Optimal objective|. The negativity of Scheme and Ref simply
means that the obtained DNN objective and Optimal objective of optimization (71) is negative.

Table 9: Simulation results of different DNN schemes for the non-convex optimization example.

Scheme Average objective Average running time (ms) Feasibility
rate (%)

Worst-case
violation (%)Scheme Ref. Loss (%) Scheme Ref. Speedup

DNN-P -5.44

-5.47

0.40 1.36

86.6

85.7 39.8 68.3
DNN-D -5.44 0.42 0.79 117.0 39.8 41.5
DNN-W -5.47 0 86.6 1.02 100 0
DNN-G 53.69 1076.0 1.00 87.0 100 0

Pre-DNN-5 -5.45 0.34 0.60 144.9 100 0
Pre-DNN-10 -5.43 0.67 0.60 145.3 100 0
* Feasibility rate and Worst-case violation are the results before post-processing. Feasibility rates (resp Worst-case violation) after post-processing

are 100% (resp 0) for all DNN schemes. We hence report the results before post-processing to better show the advantage of our design. Speedup
and Optimality loss are the results after post-processing of the final obtained feasible solutions.

* The correction step in DNN-D (with 10−4 rate) is faster compared with l1-projection in DNN-P, resulting in higher speedups.

We remark that our obtained DNN schemes (Pre-DNN-5, Pre-DNN-10) with 5% and 10% cali-
bration rates outperform the existing DNN scheme in ensuring universal feasibility and maintaining
minor optimality loss. The speedups of our scheme are also significantly larger than the other meth-
ods as post-processing steps to recover solution feasibility are avoided.

29

	Analytical formulation of D, uniqueness of the OPLC solution, and unbounded variable
	Uniqueness of the OPLC solution
	Unbounded decision variables

	Handling Equality and Non-linear Constraints
	Mixed-Integer Reformulation of Bi-Level Linear Programs
	Minimum Supporting Calibration Region
	Details of applying Danskin's Theorem to the Bi-level Problem to Determine the Sufficient DNN Size
	Determining the values of hmax,ki/hmin,ki

	Proof of Proposition 1
	Universal Approximation Capability of DNN
	Minimal Sufficient DNN Size
	Description of Adversarial-Sample Aware Algorithm
	Proof of Proposition 3
	Run-time Complexity of the Framework
	Implementations of DeepOPF+
	Removing Non-Critical Inequality Constraints
	Removing Non-critical Branch Limits.
	Removing Non-critical Slack Bus Generation Limits.

	Maximum Constraints Calibration Rate
	DNN Loss Function in DC-OPF Problem
	Run-time Complexity of DeepOPF+

	Details of DeepOPF+ Design
	Non-convex optimization example
	Reformatting the problem with only inequality constraints
	Determine the maximum allowable calibration rate
	Determine the sufficient DNN size to guarantee universal feasibility
	Application of Adversarial-Sample Aware training algorithm

