A Proofs

A.1 Proof of Proposition 4.1]

Proof. Denote the function I}, : X — {0, 1} as I;(x) = 1 if x belongs the k-th cluster, and otherwise
I.(x) = 0. Then, we have

| minlot) - el
xeX k

:/mkin Plax) - ffk H
:/mkin (k( X) — ka X,y Ik( y . JJ k(x y)In(x )Ik)( )dXdY> dx

S Ie(y ([ Tn(y)dy
= / ézk(x) <k(x, 2 kj‘fi’ LI kx}’z:(yX)g;( )dxdy) i
:/ilk(x) Xxdx—szkX?Z In(y)dxdy
:/ fo’“wﬁ:;c o (y)dxdy

/ xxdx—Z//hk k(x, y) ey )dxdy

=R(H,P).

The proof is complete.

O
A.2  Proof of Proposition
Proof. Ttis easy to check that
ESR(EI, P,)
. ) -
=Eg 2 Z ( X, X;) Zk x;,%;)h )hk(xj)>
1,j=1 k=1 1
. :
<Es n2 Z ( Xuxz Zk Xiy Xy hk xl)hk(xj)>
2,j=1 k=1 1
(Because {hy i is the optimal solution on training dataset S.)
n K
1 * *
:ﬁ Z [( XZ,X1 / Zk(xiaXj)hk(xi)hk(xj)dxidxj>‘|
i,j=1 XisXj k=1
1 n K
=52 Kk( / / PBLICS y)hi(x)hi(y)dxdy)]
i,j=1 XY k=1
=R(H*,P).
The proof is complete.
O

14



A.3  Proof of Theorem

To prove Theorem[5.2] we need the following two lemmas. The first lemma is Lemma 3 in [24].
Lemma A.1. [24] Let A be a n x n Hermitian matrix and let B be a Hermitian perturbation. Let
(A, v) be the eigenvalue/vector pair of A+B corresponding to (X\;, v;) of A, let 6 = minj; |A—\;
where {\;}7_, are all the eigenvalues of A; then

i

B,
sinf(v,v;) < ” (SH L,
where (v, v;) is defined as
VTVi
O(v,v;) = arccos ————.
[vilflvil

Lemma A.2. Let A be an x n Hermitian matrix and let B be a (n — 1) x (n — 1) matrix which
is constructed by deleting the i-th row and i-th column of A. Assume that \y > --- > A\, and
1 > -+ > ln—1 are the eigenvalues of A and B, respectively. Then,

M2 222 X1 2 -1 = Ay,

always holds.
Proof. Let y,z; € R™ ! be two vectors which are denoted as y = [y1, - ,y,]' and z; =
[2j1,++ ,2jn] |, respectively. We then define x, u; € R(™~1*1 as follows:
T T
X= (Y1, Y1 Yit 1, 5 Ynl u; = [Zjh T Rgi—1 Bgi41, ,Zjn]
delete i-th component of y delete i-th component of z;
Then, by Courant-Fischer Minimax Theorem [7], we have
T
A=  m y Ay
j = min max =
z1,,25-1 ylz, Yy
s=1,---,j—1
T
S : y Ay
>  min max -
Z1,0 2 -1 ylzs y'y
s=1,--,j—1
;=0
. x'Bx
= min max
up, - ,Uj-1 xlug XTX
s=1,m0r,j—1
= u]'
Applying Rayleigh-Ritz Theorem [7], we have
y Ay yT Ay x'Bx
A1 = max - ZMaX = = maxX ——_— = (1.
y Yy y-);O y'y x XX
Moreover, by Courant-Fischer Minimax Theorem [7]], we have
T
Ajr1 = max min y Ay
g+l 21, 3 Zn—j ylzg yTy
s=1,--- ,n—j
T
< ¥ Ay
<  max min T
21, Zn—j ylz, Yy
s=1,--- ,n—j
y;=0
. x " Bx
= max min =
U, Up—j xlug X'X
s=1,-,n—j
Applying Rayleigh-Ritz Theorem [7], we have
. . y'Ay . x'Bx
An = min <min “"—=— =min —— = fp_1.
y yy vizo ¥ Y x X'X
The proof is complete. O
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Now, we complete the proof of Theorem [5.2]

Proof. Notice that hy(x) = aex) " (Z;;l h/jk¢(x_j)>. Letting aj, = >, hjr¢(x;), then we
have

¢ww&fﬂ -
)

Denote that ® = [¢(x1), ..., p(x,)]" € R"*P, where D is the dimension of feature space H.

Performing rank-n singular value decomposition (SVD) on ®, we have ® = HXV T, where
H ¢ R™*™, ¥ € R™ ™ is a diagonal matrix whose diagonal elements are the singular values of

®,and V € RP*", Denote that V = [vy, ..., v,,]. We can obtain that a;, = ® 'h, = VEH h,.
Notice that

SH'h, =3X0,...,1,..,0]" =0,...,0%,...,0] .

K 2
S 1 - (14)
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For the k-th item in Eq.(T4), we have

1 1 IR
=Tr <nAkaV]I — TXi;Vkvl;r + T)\;;:Vkvg — T)\}Cvk (Vk) )
2 2
1 1 1 LT (15)
2
1 1 2 N2
=2 (- ) T (vl Vi (v )
(mk n)\§€> * g T veve = Vi (Vi)
A B

We first bound A in Eq.(T5). Let LK\ be the empirical kernel matrix whose i-th sample ¢(x;) = 0,

and )\22 v,\f be its k-th eigenvalue/vector pair. Then, we have

(= A% = (= A+ A =202 <20 — )2+ 200 — AD)2 (16)

By Weyl inequality,
T _ N\NT
e <A+ ~Mi (<I><I>T — o\ (@V) ) .

Moreover,
A (q@T X (Q\i)T>
=\ <<I><I>T ~ 3\ 3" + 3\ e — 3V (<1>\i)T>
<n (2@ - @VeT) 4 <¢\iqﬁ _ g\ (q)\i>—r>

. . N T
< max x ((tI’ - <I>\Z) <I’T) X+ ”m”aX x| <<I>\Z (<I> — <I’\Z> ) X
x||=1

lIx|l=1
n n T

:ﬁllglziaﬁ(xi)T > zi0(x;)) + max D ozio(x)) | wid(xi) (17)
=1 i#i

< max, il | D |zi0" (x)e(x)] | + max il [ D o (x;)d(xi)]

Jj=1

Thus, A\ < )\;i + % On the other hand, denote %K;’ as a matrix constructed by deleting the i-th row

and i-th column of LK,,. Then, %K)f and %K;l have the same non-zero eigenvalues. By Lemma
we have A (1K) > Ay (SRY) = (EKY), des A 2 A Thus, 20y — A))? < 2
holds. In the same way, we have Q(A;i — A2 < %. Then, we can obtain

2 4ct 32¢*

i\2 Cc i 7 i
5 (A= AL)" < ﬁ(()\k S N =AY <

AL ——m—
~ (nARAL)

(18)
n
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We then bound B in Eq.(T3).

2c? any PN e TY
B SFTT (vkv,j — v> (v,\C ) + v, (V; ) — Vi (v}g) )

4c2 . NTN\Z  4e2 , T o 2
Sn—CZTr <v;,cv,;r — v;z (V,\cz) > + n—ZTr (v,\cz (v,\;> — vy (V}C)T> .

To bound the first item in Eq.(T9), we need the help of Lemma[A.T} We can deduce that

, TN 2 N2 , ,
Tr <vkv,j - v;' (v,\j) > =2-2 (V,Iv,\gl) = 2(1 — cos? G(Vk.,v,\cl)) = 25sin? G(Vk,v,\j).

To apply Lemma we must study the relationship between minimum eigenvalue gap of %Kn

and ¢ in this lemma. By Lemma we have \p,_1 > A\, > )\21 > Ag+1. Thus, 6 = min{Ap_q1 —

AUAY = Apgr} IE6 = Aoy — A\, we can obtain that § > Ay — Ay > ¢p. If 6 = A —
2 2

Ak+1, We can obtain that & > Ap — A1 — % > ¢ — 7 > 5 because \p < )\ki + T

N T )
On the other hand, by the same derivation in Eq.(]ﬂ[) and ' & = (i’\z) @\Z, we can obtain

1T L <<I>\i)T P\

2 NT 2
-\ (1<I’T<I> _1 (@\1) <I>\1) < % Above all, we have
n n n
op

2

11T 1 (@V)T p\i
Tr T \i(\i)T 2< i i op o 10
ViV, —V A% - .
KTk k k - c% - c%n

, N o 2
The same bound of Tr (v,\j (V;Z) -V (vfg)—r> can also be obtained by above process. Thus,

we have )
128¢
< . 20
S 203 (20)
Combining Eq.(T8), Eq.(20) and Eq.(T3), we know that there exist a constant ¢y such that
~ ~ C()K
l H) -1 HY)| < .
1Gey, H) =16y, HO)l < 200
holds. The proof is complete. O

A.4 Proof of Theorem [5.4]
Proof. By the triangle inequality, we have
|l(Xa Yy, ﬁa) - l(X, Yy, FICZ!1)|
=|l(x,y, Ho) = U(x,y, Hai) + (%X, 5, Hoi) — U(x,y, H..)
<|l(x,y, H,) — I(x,y, Ho:)|+ |l(x,y7]?]ai) - l(x,yJ?Ifxi) .
A B

For B, because K, = Z;’;l a?)Kp is a kernel matrix and meets the conditions in Theorem B

can upper bounded by O (%)

Let al®, ... (™ € R™ be the vectors which satisfy:

ca® = q.

« P~ and a® differ only by the p-th element (p € [m — 1]).
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* The p-th element of (P is equal to the p-th element of &’ (p € [m — 1]).
. a(m) o ai
By construction, .4 can be bounded as

= |l(x, y,ﬁ ) — l(x,y,ﬁai)

i ’l <x Y, a(pfn) -1 (x,y,ﬁa(p))‘ _

p=1

Denote the k-th eigenvalue/vector pair of 2K, ;) and 2K 1) as (ux, vi) and (1, v},), respec-
tively. Then, by the proof of Theorem[5.2] we have

K 5
l(,,H 71>—l(,,H >’<§ Tr | — - r(v!
‘ X,y, Hgymp-1) x,y,HHow _k:1 T n,ukaVk n/ﬁcvk (Vk)

K 1 1\* 2 T2
SZ 2 — - — +(n,uk) Tr(vkvk—vk(vk) )

Ny N

C D

By Weyl’s inequality, we can upper bound item C in the above equation as follows:

(e —1p)* _c* o (1 )2 “1)?
= “r)? =n2 1\ <a§f’)) (o)) %,

2
c 2 1
77,2( ap) (p 1)) > A2 (nKp>
L( - 1))
n2
4
— n2 =

On the other hand, denote that ®,, = [a; ®1, -, @, Py ]. Then, we can obtain that

2
T T
H‘I’a(p—l)q)a(P*U - ‘I’a(m ’I’a@)

op
2
T T T T
= H‘I’a@—l)q’a@m P o1 Pae) T P Pae — P Paw

op
2 - 2
<2 Hq’a@ H (Paow-ny —Pawm)|| +2 H(‘I’a<p—1> -P,0n) Pow
op op
. 2 2
=2 H((I)a(pfl) - (I)a(p)) @a(pfl) + 2 H(I)a(p) (@a(pfl) — @a(p)) op
1 2 1 1 2 2 2
—9 (a;p— ) _ a;m) (a p— )) ||K 12, (al()p— ) _ a}(}ﬁ)) (al()p)) 1K, |12,

§4n2772.
By the same technique in the proof of Theorem[5.2] we can upper bound item D as follows:
2c? 2
D S%Tr (Vkv,;.r - vy (V;f)T)

2
2 2 4H(I>a(,, 1)<I’a(p 1)/’11— a(p)(I)a(p)/n

op
sz c
32¢2

_C%?
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Thus, we can obtain that ‘l (x, y, PNIO‘(pfl)) —1 (X, y, I;Ta(p)) ’ has an upper bound as O (%)

Above all, we have that there exists a constant ¢y such that
comK co K
+ .
n ny/n

‘l(xay»ﬁa) - l(X7Ya ﬁ;’) <

A.5 The Optimization of SimpleMKKM

SimpleMKKM aims to solve the following kernel alignment-based optimization problem:

min F(a) 1)

where F(a) = maxg +Tr (KoHH' ), st H'H = Ig, and A = {a € R™[Y" o =
1, Qyp >0, VP S [m]}

OF(a) _
dap
20Ty (K, H'H' ), where H' = argmaxyygs_g, 1Tr (KaHH). Then, a reduced gradi-
ent descent algorithm [26] is adopted to optimize Eq.(ZI). To keep the reduced gradient in an
appropriate size, we scale it as

VF(a)], = 1 (8F(a) 3 8F(a))

nmK Oay Oay,

( ()  OF(a) )

an pLptu Oay, Oay,

where w is the index of the largest element of a. In fact, the reduced gradient adopted in this paper is
the original one [20] divided by m, and it can also make SimpleMKKM converge within several
iterations by the rescaled reduced gradient. Then, the descent direction d = [dy,--- ,d,,]" for
optimizing the kernel weights a can be computed as

0, if ap=0& [VF(a)], >0,
dp = —[VF(a)],, if op>0&p#u,
- [VF(a)],, if p=u.
The updating scheme of v is o +— ¢ + £d, where ¢ is the learning step size. The optimal & can be
selected by Armijo’s rule.

F(«) in Eq.(ZT) is proven differentiable and the p-th component of the gradient is

and

[VE(e)lu

A.6  Proof of Theorem

Proof. Denote the kernel weights obtained by performing SimpleMKKM on S and S? as « and 3,

respectively. After ¢ iterations, denote that a® and ,B(t) are the corresponding kernel weights, and
H,, Hzt) are the clustering indicator matrices obtained by %Kam , %Kzﬁ(t) , respectively. Denote
the maximal learning step as &.

Then, for any p € [m], we have
|Oé(t+1) ﬁz()t+1)| _ |Oé(t) _ ﬂ(t)|

<2¢(m );E?X] ana(t)tr(H(t)K H)) — —ﬁ tr((H{,)) K}, H(t))‘

<2§pn€1%nx] %a(t)tr(H(t)K H) — 2Kﬂ< tr(HH K, H(t))‘ (1)
+25;2% —ﬁ tr(H(Tt)KpH(t))—T;(B;ﬂtr((ﬂzt))TK,,Hgt)))‘ (2)
26 |2 500 (8) TR H) — A0 () TG 9
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For Item (1), we have

tr(H K,H;)
_ ) _ gy, ) (t) _ g
(1) 255161%\% By | e <2{[a™ - B|x-

For Item (2), let I1 ;) = H(t)HE';) and IT’ Hét) (Hft))—r. We can obtain

Bt =
(2) =2¢ max ﬂ(t) tr &(H w — I )
pelm] ¥ nk" p

2& K, H ;

<= —_— . H t) — HIL t

=K peim) | n F o #e
2 tr(K3) ;

S? zfrel%f] n2 HHO‘“) - B R

F

2 [tr2(K i
Sé ;Ielfz(] % Hﬂa(t) — g + g — g

2 2 .
S% [T — Mg ||, + é Hﬂgm — 50

.
K T K T
We can decompose IT, ;) and Hﬁm asI i =D x—1 hrhy and Hﬁm =) k—1 Uruy , where hy,

and uy, are the k-th eigenvectors of %Kau) and %K s, respectively. Then, using Lemma and
the same deduction of Theorem[5.2} we have

K K
E hkh;ﬁr — E l,lkl,l;r
k=1 k=1

K
<2 [y = weug |
k=1

Mo~ Mo =

F

K
> \/TI" (heh] — weu)])’
k=1

2K || 7 Kaw = 3 Kgoll,,

C1

e (o) - (3) ) x,
a
() - )
a1
o = 30| |of) + 8|
C1
Ky |of + B0

C1

2K

op

[
n~ Pllop

2K 3700,

IN

2K Y

2
o =B

A

4K
ZHa(t} _ﬁ(t)Hoo-

Similar, we can obtain that

1 1yei
2K TLKﬁ(” - HKzam op 4K
< <

F C1 - Cl\/’ﬁ'

[

igm
Thus, Item (2) can be bounded as

8¢

1

8¢
Cl\/ﬁ.

(2) < =lal? =0 +
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For Item (3), we have

(3) —;2% Nk (Kp — ») (t)( (t)) )
< 2 o |K, K |1 )T
~ nK pem] FT®YE®0) e
2&
= max HK ~K) +K) - K}
n pelm F
2 . 2 . )
< f max [|K, — KY[ + 2 max Ky - K,
pE[m] F n pe[m] F
:%max ikZ(xix-)+ik2(xin)+gmax 2Zk2x x;) + k2(x}, x})
n pe[m] = p biniav) por P ] N pelm) oy 70 ] X X5
2€ n 2§ n . , )
< = max (23 k(%) + = max (2 (x],%5)| + [kp(x], x|
n pelm] = n pelm] i
< 4‘/55.
=/

Combining the upper bounds of Item (1), (2) and (3), we can obtain that there exists a constant

cg > 1 such that

(t+1)

—ﬂ(t)Hoo+ ¢

75

< COHQ(t)

_ ﬂ(t+1) oo

lex

Assume that the number of iterations is 7". Then, by the same initialization, we know that

Ha(T)

_ _ C
B0 < col|al™ - BT ”Hoﬁ\/—%

_ — Co
< e = BT o + (14 o) —=
< 7
<

C

§c0T||a<0>—ﬁ<°>||oo+(1+cO+-~-+c0T*1)7%
< —Tcg.
<

The proof is complete.
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B Further Experimental Results

B.1 The Details of Datasets

The detailed information of five benchmark datasets, including FloI 7} Flo102) DIGITF} Cal1027|and
Reutersﬂ are listed in Table 3] The information of three large-scale datasets, including NUS WIDEﬂ
AwA|and MNIST["|and YVided} are reported by Table[d] Among these datasets, NUSWIDE is an
object image dataset that has 30000 samples and 31 classes. AwA is about the attributes of animals,
which consists of 30475 images of 50 animal classes depicted in 6 views. To construct multiple views
of MNIST, we adopt VGG19 [28]], DenseNet121 [[11], and ResNet101 [10] as the feature extractors
for three views, respectively. The three deep neural networks are pre-trained on the ImageNet[S]].
YtVideo is a dataset that consists of 101499 videos from Youtube.

Table 3: Benchmark datasets Table 4: Large-scale datasets used in the experi-
Datasets | Samples | Kernels | Clusters ments
Flo17 1360 7 17 Dataset Samples | View | Clusters
DIGIT 2000 3 10 NUSWIDE | 30000 5 31
CCV 6773 3 20 AwA 30475 6 50
Flo102 8189 4 102 MNIST 60000 3 10
Reuters 18758 5 6 YtVideo 101499 5 31

B.2 Clustering Performance with Different Numbers of Landmarks

To study the clustering performance of the proposed method with different numbers of landmarks,
we conduct relevant experiments on CCV and Flo102. Specifically, we vary the number of landmarks
in [200, - - - ,2000] and record the corresponding ACC in Figure The magenta curve denotes the
variation of the proposed method. As a reference, we use the brown curve to illustrate the ACC of the
original SimpleMKKM. As seen, as the number of landmarks increases, the ACC of the proposed
method is approaching SimpleMKKM, and tends to be stable. Notice that the sample numbers of
CCV and Flo102 are 6773 and 8189, respectively. It shows that we don’t need too many landmarks
for the comparable clustering performance of the original SimpleMKKM.

cev Flo102
225 ! : - : : : : : 44 ! - - - : : : :
A A A A A A A A D
A A A A A m‘
- e
215 _
& S
a2 3 40
Q Q
< <
205
=~ Proposed 38 =—O— Proposed
20 F == SimpleMKKM B —A— SimpleMKKM

19.5 L L L L L L L L 6% L L L L L L L L k|
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Landmarks Number of Landmarks

Figure 1: ACC comparison with different numbers of landmarks.

4
5

www.robots.ox.ac.uk/ vgg/data/flowers/17/
www.robots.ox.ac.uk/~vgg/data/flowers/102/
*http://ss.sysu.edu.cn/py/
"www.vision.caltech.edu/Image_Datasets/Caltech101/
$http://kdd.ics.uci.edu/databases/reuters21578/
“http://1ms.comp.nus.edu.sg/wp- content/uploads/2019/research/nuswide/NUS-WIDE.
html
"“http://cvml.ist.ac.at/AwA/
"http://yann.lecun.com/exdb/mnist/
Zhttp://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
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B.3 Empirical Analysis of Convergence

In this paper, we change the reduced gradients used in [20]. To study the optimization effect with
new reduced gradients defined in Section[A.3] we record the variation of the objective function after
each iteration in Figure 2] As illustrated, the algorithm still converges within 5 iterations. Moreover,
it also indicates that the number of iterations 7' can be regarded as a constant.
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Figure 2: Convergence of SimpleMKKM

B.4 Empirical Study of the Eigenvalues of Kernel Matrix

To verify the assumptions about the eigenvalues of the empirical kernel matrix in Theorem[5.2] we
conduct experiments on the first view of MNIST with different kernel functions. Table[5]and Table [6]
report the largest 11 eigenvalues of the kernel matrices constructed by Gaussian and linear kernel with
different sample numbers, respectively. The sample numbers vary in [1000, - - - , 15000]. As seen,
the eigenvalues and their gap are stable with the variation of the sample number. This demonstrates
that our assumptions are rational.

Table 5: The eigenvalues of kernel matrix constructed by Gaussian kernel function k(x,y) =
exp(—||x — y|?/o?) with different sample number. The used dataset is uniformly sampled from the
first view of MNIST.

Sample Number A1 [ A2 [ A3 [ A4 [ As [><1(§\E‘5 [ Az [ As [ Ao [ Ao [ A1
1000 383.38 | 60.41 52.85 | 44.62 | 36.63 | 31.01 29.55 | 25.77 | 22.34 | 2095 | 5.28
2000 383.01 60.34 | 54.19 | 45.25 3487 | 31.30 | 27.90 | 2542 | 21.82 | 20.12 | 5.24
3000 382.87 | 60.42 | 5338 | 42.48 | 35.64 | 30.88 | 29.16 | 23.10 | 22.53 | 20.94 | 527
4000 383.05 | 61.30 | 52.41 43.80 | 3585 | 32.04 | 27.66 | 24.04 | 2258 | 21.30 | 5.26
5000 382.67 | 58.24 | 52.04 | 44.88 | 35.06 | 31.24 | 28.69 | 2430 | 22.51 20.75 | 5.25
6000 382.86 | 60.30 | 52.34 | 43.64 | 36.09 | 31.26 | 28.75 | 24.14 | 2236 | 21.01 5.35
7000 382.91 59.82 | 53.51 | 43.47 | 35.15 | 31.65 | 28.17 | 2438 | 22.35 | 21.38 | 5.26
8000 382.88 | 59.91 53.49 | 43.21 35.61 31.23 | 2894 | 2377 | 22.57 | 21.28 | 5.29
9000 382.84 | 60.09 | 5224 | 44.60 | 35.40 | 31.37 | 28.55 | 24.00 | 22.31 2092 | 5.22
10000 382.86 | 59.52 | 53.52 | 44.05 35.16 | 31.39 | 2847 | 24.09 | 2259 | 21.50 | 5.26
11000 382.82 | 59.53 | 5291 43.74 | 35.68 | 31.56 | 28.57 | 24.03 | 22.43 | 21.08 | 529
12000 382.85 | 60.15 | 5329 | 44.00 | 35.72 | 31.21 28.54 | 24.15 | 2239 | 2097 | 5.21
13000 382.79 | 59.69 | 53.11 44.16 | 35.39 | 31.12 | 28.62 | 24.06 | 22.32 | 21.04 | 523
14000 382.81 59.98 | 52.85 | 44.13 | 3548 | 31.25 | 28.53 | 24.06 | 2235 | 21.08 | 5.27
15000 382.82 | 60.01 53.12 | 44.01 3540 | 31.19 | 28.55 | 24.05 | 22.37 | 21.10 | 5.24

B.5 Experiments on Other Multiple Kernel Clustering Algorithms

To give more empirical studies of the proposed method, we conduct additional experiments on
three classic algorithms, i.e., average multiple kernel k-means (AMKKM), multiple kernel k-
means (MKKM) [12] and multiple kernel k-means clustering with matrix-induced regularization
(MKKMMR) [21]]. The results are reported in the following three tables. As seen from Table[/|and
Table[8] our method achieves comparable clustering performance in comparison with the standard
AMKKM and MKKM, while the running time is far less. However, as shown in Table E], the results
of our method fluctuate more dramatically when we apply it to MKKMMR. Two main reasons
cause it: 1) The hyper-parameter of MKKMMR makes the kernel weights unstable; 2) The optimal
hyper-parameter of MKKMMR on landmarks is different from the whole training dataset. Through
the experimental results and our empirical analysis, our method would be more effective in the
parameter-free multiple kernel clustering algorithms.
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Table 6: The eigenvalues of kernel matrix constructed by linear kernel function k(x,y) = x | y with
different sample number. The used dataset is uniformly sampled from the first view of MNIST.

Sample Number M [ X [ x [ X [ X >[< 10/\765 [ 27 T 28 [ 2 [ 2o [ A
1000 721.76 69.18 56.74 39.65 27.80 2341 16.92 11.52 10.04 7.20 2.27
2000 721.97 65.85 59.94 39.72 27.48 22.36 17.36 11.49 10.12 7.55 227
3000 722.41 65.88 59.47 39.24 26.94 2297 17.47 11.33 10.27 7.63 247
4000 721.16 67.05 58.54 40.65 26.59 23.29 17.13 11.70 10.27 7.27 241
5000 720.70 67.71 60.08 39.82 26.57 22.54 17.03 11.29 10.36 7.56 2.40
6000 720.04 66.73 59.43 41.08 27.19 22.76 17.16 11.57 10.13 7.68 2.40
7000 720.83 66.69 59.57 40.26 27.48 22.64 17.33 11.19 10.18 7.56 2.37
8000 720.66 66.97 59.15 40.10 27.46 22.80 17.55 11.23 10.14 7.66 2.36
9000 720.63 66.56 59.69 40.50 27.20 22.44 17.42 11.39 10.27 7.60 2.39
10000 721.12 66.09 58.60 40.93 27.52 22.77 17.55 11.51 10.22 747 2.36
11000 721.43 66.22 59.10 40.41 27.09 22.75 17.57 11.31 10.25 7.52 2.39
12000 720.87 65.94 58.85 41.01 27.45 22.96 17.43 11.43 10.25 7.51 2.39
13000 720.73 66.41 59.16 40.45 27.32 22.92 17.41 11.41 10.26 7.62 2.40
14000 720.98 66.59 58.71 40.55 27.50 2275 17.40 11.38 10.24 7.60 2.38
15000 720.99 66.23 59.05 40.53 27.39 22.84 17.44 11.40 10.24 7.58 2.38

Table 7: Experimental results of the proposed method in comparison with AMKKM.

Flo17 Digit CCV Flo102 Reuters
AMKKM Approx. AMKKM Approx. AMKKM Approx. AMKKM Approx. AMKKM Approx.
ACC 51.03 54.41 88.75 90.70 19.74 19.70 27.29 32.13 45.00 45.15
NMI 50.19 52.33 80.59 84.15 17.16 17.11 46.32 51.08 27.32 26.73
Purity 51.99 5441 88.75 90.70 23.98 24.42 32.28 37.64 65.48 65.67
Time 0.05 0.004 0.09 0.01 1.66 0.02 6.08 0.02 89.19 0.07

Table 8: Experimental results of the proposed method in comparison with the original MKKM.

Flol17 Digit CCV Flo102 Reuters
MKKM Approx. MKKM Approx. MKKM Approx. MKKM Approx. MKKM Approx.
ACC 45.37 46.69 47.00 47.55 18.01 17.75 21.96 23.26 44.99 45.12
NMI 45.35 46.28 48.16 48.62 15.22 13.81 42.30 43.14 27.29 26.73
Purity 46.84 48.82 49.70 50.15 22.25 21.97 27.61 27.68 65.50 65.66
Time 0.37 0.13 0.53 0.15 7.05 0.14 27.09 0.13 168.5 1.83

Table 9: Experimental results of the proposed method compared with the original MKKMMR.

Flo17 Digit CCV Flo102 Reuters
MKKMMR Approx. MKKMMR Approx. MKKMMR Approx. MKKMMR Approx. MKKMMR Approx.
ACC 58.01 53.82 90.90 89.45 2237 23.45 40.13 33.70 45.70 47.61
NMI 55.47 54.44 83.70 81.91 18.62 19.17 5727 50.75 27.64 29.01
Purity 59.04 55.51 90.90 89.45 25.66 25.99 46.39 39.38 65.72 67.04
Time 2.50 0.77 1.79 1.49 25.80 7.14 73.63 25.14 4732 3.63
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