
Inverse MDP Models – Supplementary Material472

A List of Notation473

Symbol Type Explanation
⊥ undefined
[[bool]] ∈{0,1} =1 if bool=True, =0 if bool=False
d ∈N number of states
k ∈N number of actions
i,j ∈N time index/step
{i :j} ⊂Z Set of integers from i to j (empty if j<i)
s,s′,...,si ∈{1:d} state at time step 1,2,...,i
a,a′,...,ai ∈{0:k−1} action at time step 1,2,...,i
b,b′,...,bi ∈{0:k−1} alternative action at time step 1,2,...,i
a:i := aa′...ai sequence of i actions
a<i := aa′...ai−1 sequence of i−1 actions
ṡ,s̈ ∈{1: ḋ} parts of state, usually s=(ṡ,s̈)
ε >0 small number >0
p(...) ∈ [0;1] (conditional) probability distribution over states and actions
π(a|s) ∈ [0;1] policy. Probability of action a in state s
Ma,W a ∈ [0;1]d×d transition-policy tensor Ma

ss′ =p(s′|sa)·π(a|s) for each action a, W =q
Ba ∈ [0;1]d×d inverse 1-step model Ba

ss′ =p(a|ss′) for each action a
Ba++

ss′′′ ∈ [0;1] 3-step first-action inverse model p(a|ss′′′)
J,K,∆ ∈Rd×d action-independent d×d “transition” matrices
+

+ ·n→· index summation, e.g. M+
s+=

∑
as′M

a
ss′

· (·,·)→· matrix multiplication: [AB]ss′′ =
∑

s′Ass′Bs′s′′

⊙ (·,·)→· element-wise multiplication of matrix elements: [A⊙B]ss′ =Ass′Bss′

⊘ (·,·)→· element-wise division of matrix elements: [A⊘B]ss′ =Ass′/Bss′

⊗ (·,·)→· tensor product: [Ṁ⊗M̈]ss′ :=Ṁṡṡ′M̈s̈s̈′ with s=(ṡ,s̈) and s′=(ṡ′,s̈′)

B Characterizing M and W for which EqIM(1) holds474

Ma⊘M+=W a⊘W+ ⇐⇒ W a=Ma⊙J with J :=W+⊘M+

That is, J is independent of a. Phrased differently475

For any M and W , EqIM(1) is satisfied iff W a⊘Ma is independent a. (14)

For a given M , this allows to determine all W consistent with EqIM(1), by just multiplying with any476

a-independent J≥0. Not all J though lead to W consistent with (7). In order to also satisfy (7), J477

needs to be restricted as follows: With ∆ss′ :=Jss′−1, (7) becomes478

0
!
= W a

s+−Ma
s+ =

∑
s′

Ma
ss′(∆ss′+1)−Ma

s+ =
∑
s′

Ma
ss′∆ss′ (15)

For each fixed s, these are k homogenous linear equations (one for each a) in d variables. Given M ,479

all and only the W consistent with EqIM(1) and (7) can be obtained via W a=Ma⊙(1+∆) with ∆480

satisfying M ·
s·∆s·=0.481

As a special case, ∆=0 necessarily if and only if the rank of M ·
s· is ≥d for every s. This gives the482

precise conditions as stated in Proposition 1 under which (i) is true. We will next show that EqIM(2)483

removes this limitation.484

13

C Characterizing M and W for which EqIM(1) and EqIM(2+) hold485

From Appendix B we know that the most general Ansatz for W a satisfying EqIM(1) is Ma⊙(1+∆).486

Plugging this into (31) and expanding in ∆, we get487

0 = MaM+⊙(M+)2−MaM+⊙(M+)2

+ MaM+⊙[M+(M+⊙∆)+(M+⊙∆)⊙M+]−[(Ma⊙∆)M+Ma(M+⊙∆)]⊙(M+)2]

+ MaM+⊙(M+⊙∆)2−(Ma⊙∆)(M+⊙∆)⊙(M+)2

This is a collection of quadratic equations in ∆. The ∆-independent first line is 0. We can write this488

in canonical form:489

ΣklA
a
ss′′,kl∆kl = Ra

kl(∆) with (16)

Aa
ss′′,kl := (Σs′M

a
ss′M

+
s′s′′)(M

+
skM

+
ks′′δls′′+M+

slM
+
ls′′δsk−M

a
skM

+
ks′′δls′′−M

a
slM

+
ls′′δsk)

Ra(∆) := (Ma⊙∆)(M+⊙∆)⊙(M+)2−MaM+⊙(M+⊙∆)2

Let us consider Aa as a d2×d2 matrix for each a, ∆ as a vector of length d2, and (wrongly) presume490

Ra≡0 at first. Aa is a sum of 4 terms. The second and fourth terms are block-diagonal matrices491

(d blocks of size d×d in the diagonal) due to the δsk. The first and third terms are scrambled492

block-diagonal matrices due to the δls′′ , or more precisely, consist of d×d blocks, each bock being493

a d×d diagonal matrix. If Ma has full rank, each of the four terms has full rank d2, but Aa itself494

can have lower rank, 0-eigenvalues due to some cancellations. Random M apparently achieves the495

highest rank, but even then, Aa itself has only rank d(d−1).496

Actually, Aa∆=0 is required to hold for all a, so the rank of A as a kd2×d2 matrix may still be d2.497

But A+≡0 for k=2 implies A0=−A1, hence the rank is still at most d(d−1). k>2 may rectify498

this, but there is an alternative, which works for all a: ∆ also needs to satisfy (15), which can be499

rewritten as500 ∑
kl

Ca
s,kl∆kl = 0 with Ca

s,kl := Ma
slδsk (17)

These give another kd constraints, and apparently often d new ones from random M . If we combine501

A′ :=
(
A·

C·

)
, this implies that A′ has often rank d2, so A′∆=0 can only be satisfied for ∆=0. For502

k=2, A+=0, so inclusion of either A0 or A1 in A′ would suffice, but C0 and C1 are potentially503

independent, so both have to be included.504

Let us now return to the real case of Ra ̸=0 for full random M , hence full-rank A′. With R′ :=
(
R·

0

)
,505

we need to solve A′∆=R′. Note that R′=R′(∆) is not a constant, but a (homogenous) quadratic506

function of ∆ itself. Consider any ∆=Θ(ε), then A′∆=Θ(ε) while R′(∆)=Θ(ε2), which is a507

contradiction for sufficiently small ε (this argument can be made rigorous). This implies that no ∆508

with 0< ||∆||<ε can satisfy A′∆=R′(∆). In conclusion,509

Proposition 3 (Random M and full-rank A′)510

If A′ has full rank and W is close to M , then EqIM(1) and EqIM(2) imply W =M511

Empirically A′ has full rank for random M512

which of course implies EqIM(i)∀i and also (iv). Globally, i.e. if W is not close to M , these513

implications may not hold.514

We have yet to establish sufficient conditions which Ma lead to full-rank A′. Empirically, this has515

been true for random Ma, so should hold almost surely if M are sampled uniformly. One might516

conjecture that full-rank Ma are sufficient, but this is not the case. For instance, if Ma is independent517

a, then A′≡0.518

Zero A and R for full-rank Ṁa. We finally we note that A and R can have low rank, indeed A≡519

0≡R even for a-dependent full-rank Ma: Consider the example Ṁa from (21) or its generalization520

(26): First, if for two matrices Ma and Ma′
only one s′ (depending on s and s′′) contributes to521

the sum in MaMa′
then (Ma⊙J)(Ma′⊙J)=MaM b⊙K for some K. This makes (18) valid for522

Ma :=Ṁa and W a :=Ṁa⊙J for any J , since for aa′ ̸=bb′ both sides are 0 by construction of Ṁa523

(the ⊙K does nothing to it), and are trivially equal for aa′=bb′. By summing over a′bb′, also (31) is524

valid for any J , hence of course also for J=1+∆ for any ∆. Since (16) is equivalent to (31), (16)525

holds for any ∆. This can only be true for A≡0 and R≡0. This degeneracy in itself does not violate526

(ii), since the probability constraints require W =M , as established earlier.527

14

D EqIM(1)∧EqIM(2+)̸→EqIM(3) for full low rank M?528

The following numerical approach may lead to counter-examples with full support to (v) without529

any divisions by 0 (M+
ss′ >0 and W+

ss′ >0 ∀ss′). We now consider full Ma but of rank r<d. The530

most interesting case is where all Ma span the same row-space, i.e. Ma =La ·R, where La are531

d×r matrices and R is a r×d matrix. Recall A′ :=
(
A·

C·

)
with Aa and Ca defined in (16) and (17).532

Empirically, for k=2, the rank of A′ typically is min{d2,(3r−1)d−r(r−1)}, never more, and only533

in degenerate cases less. Hence for r=2, A′ is singular for d≥5. Hence for d≥5, there exist ∆ ̸=0534

with A′∆=0,535

For ∆0 :=∆=Θ(ε), this is an approximate Θ(ε2) solution of A′∆=R′(∆). By iterating ∆←536

∆0+A
′+R′(∆), where A

′+ is the pseudo-inverse of A′, we get an Θ(εi)-approximation after i−2537

iterations. This should rapidly converge to an “exact” non-zero(!) solution A′∆=R′(∆). This would538

show that (ii) can fail for full M . Generically, this solution also violates EqIM(3), i.e. also (vi) can539

fail. By this we mean, for randomly sampled La and R (for a=r=2 and d≥56) and performing the540

procedure above, EqIM(3) does not hold. There is a caveat with this argument, namely if R′ is not in541

the range of A′, then this construction fails.542

E EqIM(1) does not imply EqIM(2) (⊙-version)543

We have already given a simple example that violates (v) in Section 3, but the example and method-544

ology provided here generalizes to (vi) and even larger i. We consider deterministic reversible545

forward dynamics for any policy π(a|s)>0 ∀as. For simplicity we assume k=2 and uniform policy546

π(a|s)= 1
2 . We defer a discussion of 0/0 to the end of the next Appendix.547

We consider Ma and W a that permute states. That is, M ·
ss′ :=[[s′=π·(s)]] and W ·

ss′ :=[[s′=σ·(s)]]548

for some permutations π·,σ· : {1,...,d} → {1,...,d}. Strictly speaking, we should multiply this549

by π(a|s) = 1
k , but this global factor plays no role here, so will be dropped everywhere. Matrix550

multiplication corresponds to permutation composition: [M ·W ·]ss′′ =[[s′′=σ·(π.(s)]]. We denote551

example permutation (matrices) by [π]=[π(1)...π(d)].552

We now construct a counter-example for (v): For d=4, let M0=W 0= Id=[1234] be the identity553

matrix/permutation. Let W 1=[2341] be the cyclic permutation 1→2→3→4→1, and M1=[2143]554

the cycle pair 1↔2 and 3↔4. We know from (14) that EqIM(1) holds iff W a⊘Ma is independent555

a (= J) iff W a⊘Ma =W b⊘M b ∀a,b ∈ {0,1} iff W a⊙M b =Ma⊙W b. Case a= b is trivial,556

so only W 0⊙M1 =M0⊙W 1 needs to be verified. Now M ·⊙W · of two permutations matrices557

is not a permutation matrix (unless M · =W ·). It still a 0-1 matrix with at most one non-zero558

entry in each row and column. We can generalize the permutation notation to “sub-permutations”559

by defining π(s) = ∅ if row s is empty. For instance M1⊙W 1 = [2∅4∅]. EqIM(1) holds, since560

W 0⊙M1=[∅∅∅∅]=M0⊙W 1.561

Similarly EqIM(2a) holds iff W aW a′⊘MaMa′
is independent a,a′ iff562

W aW a′
⊙M bM b′ = MaMa′

⊙W bW b′ ∀a,a′,b,b′. (18)

But for a=a′=0 and b=b′=1 we have563

(W 0)2⊙(M1)2 = [1234]⊙[1234] = [1234] ̸= [∅∅∅∅] = [1234]⊙[3412] = (M0)2⊙(W 1)2

hence EqIM(1) does not necessarily imply EqIM(2). The advantage of formulation (18) over (8) is564

that matrix sums M+ and W+ are more complicated objects than the sub-permutation matrices (18).565

Like random matrices, permutation matrices, have full rank, but unlike random matrices they can566

violate (ii), (iv), and (vi).567

F EqIM(1a)∧...∧EqIM(ia) do not imply EqIM(i+1) (⊙-version)568

Counting variables and equations made the possibility of violating (v) for k<d plausible (cf. positive569

result for k≥d). A similar counting argument indicates that (vi) and higher i analogues might actually570

hold. Unfortunately this is not the case. I.e. even providing inverse models for all action sequences up571

to length i is not sufficient to always uniquely determine the probability of longer action sequences.572

This is true even for deterministic reversible forward dynamics for any policy π(a|s)>0 ∀as. As for573

i=1, we assume k=2, π(a|s)= 1
2 , gloss over 0/0, and don’t normalize M and W .574

15

For i=2, M0 :=W 0 :=Id=[123456] and W 1 :=[234561]=:σ (σ for ‘cycle’) and M1 :=[231564]=:π575

can be shown to satisfy EqIM(1) and EqIM(2a) but violate EqIM(3). The calculations are not to576

onerous, but lets consider directly the general i case: Consider even d=:2d′ and identity and cycle577

(pair)578

M0 = W 0 = Id = [1,2,...,d−1,d],
W 1 = [2,3,...,d,1], M1 = [2,3,...,d′,1,d′+2,...d−1,d,d′+1]

EqIM(ia) holds iff W aW a′
...⊘MaMa′

...=W+W+...⊘M+M+... is independent aa′... iff579

W aW a′
...W ai

⊙M bM b′ ...M bi = MaMa′
...Mai

⊙W bW b′ ...W bi ∀aa′...ai,bb′...bi (19)

(While this looks like k2i matrix equations, by chaining, checking ki pairs suffices, which is the580

same number as in EqIM(ia)). Now W aW a′
...W ai

consists of only two types of matrices, a581

cycle for W 1 = σ and identity W 0. The W 0 = Id can be eliminated, leading to (W 1)a
+

, where582

a+ :=a+a′+...+ai. Similarly M bM b′ ...M bi =(M1)b
+

, etc. Hence we only need to verify583

(W 1)a
+

⊙(M1)b
+

= (M1)a
+

⊙(W 1)b
+

for 0≤a+,b+≤ i (20)
584

(W 1)a
+

= [a++1,a++2,...,d,1,2,...,a+], while

(M1)b
+

= [b++1,...,d′,1,...,b+,d′+1+b+,...,d,d′+1,...,d′+b+]

hence (W 1)a
+⊙(M1)b

+

=[∅...∅]=0 for 0≤a+ ̸=b+<d′. For a+=b+ both sides of (20) are equal585

too. Hence if we choose d′= i+1, (20) and hence EqIM(1)...EqIM(ia) are all satisfied. If we choose586

d′= i, a+=d′, b+=0, (20) reduces to587

(W 1)d
′
⊙(M1)0 = [d′+1,...,d,1,...,d′]⊙Id = 0, and

(M1)d
′
⊙(W 1)0 = Id⊙Id = Id

which are of course not equal. Hence EqIM(i) fails for d′= i. Summing over all a′...ad
′

and b′...bd
′
,588

and noting that all other terms are 0 or cancel, shows that EqIM(i+) fails too. Together this shows589

for d′= i+1 that EqIM(1)...EqIM(ia) do not imply any version of EqIM(i+1).590

Despite Ma having full rank, A and A′ defined in Appendix C have very low rank, indicating591

potentially many more consistent W .592

A downside of this example is that it strictly only applies to the ⊙-version (19). Many entries of593

M+ and W+ and powers thereof are 0, so (8) contains many divisions by zero. We were not able to594

extend this example by mixing in e.g. a uniform matrix as done in the first counter-example to (v).595

Many real-world MDPs are sparse. Only a subset G⊆S×S of transitions s→s′ is possible. For596

(s,s′) ̸∈G, p(s′|sa)=0 ∀a, or formally Ma
ss′ =M+

ss′ =0. In this case, no action causes s→s′ and597

p(a|ss′)=Ma
ss′/M

+
ss′ being undefined is actually appropriate. So we could restrict (s,s′) to G (and598

analogously (s,...,si) and (ssi) by chaining G) in the conditions and conclusions of the various599

conjectures. It is then also natural to restrict the model class toM :={M · :M+
ss′ >0 ⇔ (s,s′)∈G}.600

For unknown G, the condition M,W ∈M then becomes M+
ss′ > 0 ⇔ W+

ss′ > 0. Unfortunately601

the above counter-example does not even satisfy this weaker condition, but the more complicated602

example of Appendix G does.603

G Non-Uniqueness of Inverse MDP Models for i≥2604

In Appendices E/F we provided conjectured/unsatisfactory counter-examples to EqIM(1 : i)⇒605

EqIM(i+1). Here we provide a fully satisfactory counter-example that avoids the “bad” 0/0.606

EqIM(1) and EqIM(2a) do not imply EqIM(3). Consider two matrices Ṁ0 and Ṁ1 with607

disjoint support, i.e. Ṁ0⊙Ṁ1=0. In this case Ṁa⊘Ṁ+∈{0,1,⊥}ḋ×ḋ is a partial binary matrix608

with entry undefined (⊥) wherever Ṁ+=0 but otherwise 0 wherever Ṁa=0 and 1 wherever Ṁa>0.609

That is, it is insensitive to the actual (non-zero) values of Ṁa. A simple such Ṁ is Ṁ0=
(
1 0
0 1

)
and610

Ṁ1=
(
0 1
1 0

)
, ignoring normalization. For now we ignore ss′ for which Ṁ+

ss′ =0 and return to this611

issue later.612

16

We consider Ma and W a that permute states. That is, M ·
ss′ :=[[s′=π·(s)]] and W ·

ss′ :=[[s′=σ·(s)]]613

for some permutations π·,σ· : {1,...,d}→{1,...,d}. Strictly speaking, we should multiply this by614

e.g. π(a|s)= 1
k , but this global factor plays no role here, so will be dropped everywhere. Matrix615

multiplication corresponds to permutation composition: [M ·W ·]ss′′ =[[s′′=σ·(π.(s)]]. We denote616

example permutation (matrices) by [π]=[π(1)...π(d)]. Consider now617

Ṁ0Ṁ0 = [123456]

Ṁ0 := [456123] =: [π0] =⇒ Ṁ0Ṁ1 = [564312] (21)

Ṁ1 := [231645] =: [π1] Ṁ1Ṁ0 = [645231]

Ṁ1Ṁ1 = [312564]

No column contains the same number twice, hence this not only satisfies Ṁ0⊙Ṁ1=0 but also618

ṀaṀa′
⊙Ṁ bṀ b′ = 0 unless a=b and a′=b′ (22)

That 6→5→4→6 is in reverse oder to 1→2→3→1 is crucial for making Ṁ0 and Ṁ1 not commute.619

Note that (22) remains valid if each 1-entry of Ṁa is replaced by a different non-zero scalar, since620

(22) is purely multiplicative. So if Ẇ a=Ṁa⊙J̇ for some J >0, then Ẇ aẆ a′
=ṀaṀa′⊙K for621

some K>0. Let Ẇ a be such a matrix. Then [Ẇ aẆ a′⊘Ẇ+Ẇ+]ṡṡ′′ =1 if [ṀaṀa′
]ṡṡ′′ >0 and 0622

(or undefined) otherwise, i.e. is independent of the choice of J . So such Ẇ ̸=Ṁ satisfies EqIM(2a).623

Unfortunately the probability constraints W a
s+=1 require Ja

ss′=1 when M+
ss′>0, and hence W=M .624

But the general idea is sound and can be made work as follows:625

We split one state, e.g. s=6 into two states s=6a and s=6b. We leave the permutation structure626

intact, except that all deterministic transitions into s=6 are split into stochastic transitions to s=6a627

and s=6b, and transitions from 6a and 6b will be to the same state as from original 6. Condition (22)628

is still satisfied, so the above argument still goes through, but now we can choose different stochastic629

transitions to s=6a and s=6b in W and M .630

Finally, we have to show violation of EqIM(3). EqIM(ia) holds iff W aW a′
...⊘MaMa′

... =631

W+W+...⊘M+M+... is independent aa′... iff632

W aW a′
...W ai

⊙M bM b′ ...M bi = MaMa′
...Mai

⊙W bW b′ ...W bi ∀aa′...ai,bb′...bi (23)

(While this looks like k2i matrix equations, by chaining, checking ki pairs suffices, which is the same633

number of equations as in EqIM(ia)).634

It is easier to split every state into two states: s := (ṡ,s̈) with ṡ∈ {1,...,6} as before and splitter635

s̈∈{0,1}. Ma
ss′ := Ṁa

ṡṡ′M̈
aṡ
s̈s̈′ . Note that M̈ is flexible enough to expand each 1-entry in Ṁa to a636

different 2×2 (stochastic) matrix, while the 0-entries become
(
0 0
0 0

)
. This flexibility is important: M̈637

independent a or independent ṡ would not work. Now let us write out638

[MaMa′
Ma′′

]ss′′′ =
∑
ṡ′ṡ′′

Ṁa
ṡṡ′M̈

a′

ṡ′ṡ′′Ṁ
a′′

ṡ′′ṡ′′′

∑
s̈′s̈′′

Ṁaṡ
s̈s̈′M̈

a′ṡ′

s̈′s̈′′M̈
a′′ṡ′′

s̈′′s̈′′′ (24)

The crucial difference to the i=2 case (22) is that now there are difference permutation sequences639

leading to the same permutation, for instance Ṁ0Ṁ0Ṁ1 = Ṁ1 = Ṁ1Ṁ0Ṁ0. Let us choose640

aa′a′′ = 001 and ṡ= 1, then only ṡ′ = π0(ṡ) = 4 and ṡ′′ = π0(ṡ
′) = 1 contribute to the sum and641

ṡ′′′=π1(ṡ
′′)=2. For this choice, (24) becomes 1·1·1·[M̈01M̈04M̈11]s̈s̈′′′ . If we replace aa′a′′ in642

(24) by bb′b′′ and then choose bb′b′′=100 and again ṡ=1, then only ṡ′=π1(ṡ)=2 and ṡ′′=π0(ṡ
′)=5643

contribute and ṡ′′′=π0(ṡ
′′)=2. For this choice, (24) becomes 1·1·1·[M̈11M̈02M̈05]s̈s̈′′′ . We now644

define W a
ss′ :=Ṁa

ṡṡ′Ẅ
aṡ
s̈s̈′ . Since Ṁ remains the same, the same action and state sequences above645

lead to the same result for W , just with M̈ replaced by Ẅ . If we plug the four expressions into (23)646

(for i=3) we get647

Ẅ 01Ẅ 04Ẅ 11⊙M̈11M̈02M̈05 = M̈01M̈04M̈11⊙Ẅ 11Ẅ 02Ẅ 05

Since this expressions involves 10 different 2×2 stochastic matrices, there are plenty of choices to648

make both sides different. If we choose all 2×2 matrices to have full support, then by construction,649

W and M have the same support, hence constitute a proper counter-example to EqIM(3). We now650

extend this construction to i>2.651

17

EqIM(1a)∧...∧EqIM(ia) do not imply EqIM(i+1). The construction in the previous para-652

graph generalizes to i>2: We need to find two permutations Ṁ0=π0 and Ṁ1=π1 such that for each653

fixed j≤i all possible 2j concatenations (products) of these permutation (matrices) differ in the sense654

that no s is mapped to the same sj (they have disjoint support). Since all ṀaṀa′
...Ṁaj ∈{0,1}, we655

can write this condition compactly as656 ∑
aa′...aj

ṀaṀa′
...Ṁaj

∈ {0,1}d×d

By factoring the sum, this is equivalent to (Ṁ+)j ∈ {0,1}d×d. Note that [(Ṁ+)j]ssi counts the657

number of action sequences aa′...aj of length j that lead from s to si. For j= i+1, we want this658

condition to be violated. So in order to disprove the implication we need to find two permutations659

M0 and M1 such that660

(Ṁ+)j ∈{0,1}d×d ∀j≤ i but (Ṁ+)i+1 ̸∈{0,1}d×d (25)

The rest of the argument is the same as for the i=2 case above: creating two versions Ma and W a of661

Ṁa by spitting one or all states into two, and replacing the 1s by 2×2 different stochastic matrices.662

As for the choice of Ṁa, for i=3 we can choose 3-cycle and 5-cycle663

Ṁ0 = [6,7,8,9,10,11,12,13,14,15,1,2,3,4,5]

= (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) (26)

Ṁ1 = [2,3,4,5,1,8,9,10,6,7,14,15,11,12,13]

= (1,2,3,4,5)(6,8,10,7,9)(11,14,12,15,13)

where we also provide the more conventional cycle notation in round brackets. Crucially the 5-cycles664

have been chosen to not commute with the 3-cycles (M0M1 ̸=M1M0). Conditions (25) can easily665

be verified numerically. For higher i we need p cycles and q cycles, where p and q are relative666

prime and sufficiently large. We need at least d=p·q≥2i, otherwise Ṁ+ ̸∈ {0,1}d×d by a simple667

pigeon-hole argument. To prove EqIM(1a)∧...∧EqIM(ia) ̸⇒EqIM(i+1) in general for arbitrarily668

large i, we need to invoke some group theory. All-together we have shown that669

Proposition 4 ((i)-(vi) can fail) EqIM(1a)∧...∧EqIM(ia) do not necessarily imply EqIM(i+1) for670

any i. This in turn implies that (i)-(vi) each can fail for some M ·.671

H Deterministic Cases672

Deterministic planning / reachability problem. If we are only interested in finding some action673

sequence aa′...ai that leads to si, the problem becomes easy: The only thing that matters is the674

support of the various matrices, not the numerical values themselves. Since Ba
ss′ >0 iff Ma

ss′ >0675

(either assuming M+
ss′>0 or regarding⊥>0 as False), and similarly for higher orders, we can replace676

Ma by Ba in (iii), and get Baa′...ai

ssi+1 >0 iff [BaBa′
...Bai

]ssi+1 >0. We could also replace Ma by677

Ga
ss′ :=[[Ba

ss′ >0]], then [GaGa′
...Gai

]ssi+1 >0 counts the number of paths of length i from s to si+1678

via action sequence aa′...ai, and hence determines whether si+1 can be reached. Similarly (G+)i>0679

iff there is some action sequence that can reach si+1 from s. An action a such that Ga(G+)i>0 can680

be chosen as the first action of such a sequence if it exists, and a′,a′′... can be found the same way by681

recursion. So this deterministic planning/reachability problem has a “unique” solution, which can be682

found in time O(i·d·(d+k)) (for fixed s and si+1).683

B is deterministic. Assume Ma
ss′/M

+
ss′ =:Ba

ss′ ∈ {0,1,⊥}. This is true if and only if Ma has684

disjoint support for different a, i.e. iff Ma⊙M b=0 ∀a ̸=b. This in turn means that Ba
ss′ =[[W a

ss′ >0]]685

for any and only those W with same support as M , and hence also W a⊙W b=0 ∀a ̸=b, which is686

another failure case of (i). Here we have included the case where no action leads from s to s′, in which687

case W+
ss′ =0 and Ba is undefined (⊥). This readily extends to higher orders: If Baa′...∈{0,1,⊥},688

then Baa′...=[[W aW a′...⊘(W+)i>0]] iff W aW a′
... has the same support as MaMa′

... and689

W aW a′
...W ai

⊙W bW b′ ...W bi =0 ∀aa′...ai ̸=bb′...bi (27)

Note that W a⊙W b =0 does not necessarily imply (27), e.g. for W 0 = 1
2

(
1 0
0 1

)
and W 1 = 1

2

(
0 1
1 0

)
,690

(W 0)2=(W 1)2. In Appendices G&E&F) we construct W such that (27) holds for larger i.691

18

I Applications692

Consider an agent who has control over ṡ but not over s̈. For instance a robot equipped with a693

camera can control its position and orientation, but not the shape and color of objects in its path.694

The forward model p(s′|as) essentially involves modelling the whole observable world. The inverse695

model p(a|ss′) on the other hand can ignore inputs that the agent has no control over. Of course696

in practice, s does not come neatly separated into ṡ and s̈, so a (say) deep neural network still has697

to learn the controllable features, but neither needs to learn nor predict the uncontrollable features698

(under the factorization assumptions described in Section 3, now in feature space).699

If the goal is to navigate from s to si in i time steps, and open-loop control suffices as e.g. in700

(near)-deterministic problems [EMK+22], then action sequences for which p(aa′...ai−1|ssi) is large701

are the most likely that caused the transition to si, hence these sequences are promising candidates702

for macro actions (temporally extended actions, options) in Reinforcement Learning [SP02, Pre00].703

Since the action space is typically much smaller than the state space (the former often finite, the704

latter often even infinite-dimensional), even learning p(aa′...ai−1|s...si) directly for all small i can705

be feasible and may be more efficient than learning the one-step forward model. A closed-loop706

alternative would be to learn only p(a|s...si), find the likely first action a that caused the ultimate707

transition to si, then take action a, iterate, and store the resulting sequence as an option.708

The required sample complexity to learn inverse MDP models for larger i directly from data may709

grow exponentially in i, which is why inferring i-step inverse models from 1-step and 2-step inverse710

models would be useful. The fact that this problem borders NP-hardness probably prevents even711

powerful transformer models to finding the structure in p(aa′...ai−1|s...si) by themselves.712

J Systems of Quadratic Matrix Equations713

A System of Polynomial Equations (SPE) is a set of multivariate polynomial equations714

Polyj(x,y,z,...) = 0 over R in n variables x,y,z,u,v,w,... ∈R for j ∈ {1 :m}. This class is NP-715

hard (via a simple reduction from 1in3SAT, see Section K). We can recursively replace each product716

xy (sum bu+cv) in the polynomials by a new variable z (w) and add “polynomial” equation z=xy717

(w=bu+cv). This results in SPEs consisting of only linear equations with a single + (bu+cv=w)718

and quadratic equations without any + (xy=z), which are still (even with all a=b=1 and x=y=z)719

NP-hard. We call them Simple Systems of Quadratic Equations (Simple SQE). For the reduction pro-720

cess to actually work we need one further dummy variable and equation q=1 (to reduce bu+c=w).721

Alternatively, with some extra work, we can reduce any SPE into a Simple SQE asking for a non-zero722

solution. We will pursue the latter, since this is closer to our interest (SQE (16) with solution ∆ ̸≡0).723

We can even merge the linear and quadratic equations into a single form xy=bu+cv by choosing724

b=1 and c=0 (replacing xy by w and adding xy=0·u+1·w).725

We define a System of Polynomial/Quadratic Matrix Equations (SPME/SQME) as a set of m726

multivariate (quadratic) polynomials Polyj(∆,Γ,...|A,B,C,...)=0 in the (unknown) matrix variables727

∆,Γ,... and the (given) matrix constants (“coefficients”) A,B,C,.... Alternatively, Polyj might be728

viewed as generalized polynomials over a non-commutative matrix ring in the unknowns only. In any729

case, note that730

A·∆·A′ ·∆·A′′+B ·∆·B′+C ̸= (A·A′ ·A′′)·∆2+(B ·B′)·∆+C

By writing out all matrix operations in terms of their scalar operations, SPME is of course a sub-class731

of SPE. SPE is also a sub-class of SPME (choose all matrices to be 1×1 matrices), which implies732

SPME is NP-hard. But we are interested in NP-hard small subclasses of SPME, so will construct733

a more economical embedding: Assume we have a Simple SQE with n variables x,y,z,u,v,.... We734

place them into d×d matrix ∆ (d≥
√
n) introducing dummy variables for the remaining entries. We735

can extract variable w=∆ss′ via w=es⊤·∆·es′ , where es is basis vector (d×1-matrix) (es)s′1=δss′ .736

If we replace all variables in the Simple SQE expressions xy=au+bv by such expressions, we get a737

Simple SQME with Polyj equations of the form (dropping · as usual)738

aj∆A′j∆a′′j = bj∆b′j+cj∆c′j ∀j (28)

While these are scalar equations, since the outer matrices are 1×d on the left and d×1 on the right,739

technically they are matrix equations. We could pad all involved matrices, including the outer ones,740

19

with zeros to square Rd×d matrices of the same size (for sufficiently large d, and only polynomial741

overhead).742

We can reduce (28) to just one equation at the cost of making the equations more complicated as743

follows: Write each equation Polyj=0 in the form es ·Polyj ·es
′⊤=0, with a different (s,s′)-pair for744

each j. These are now “proper” matrix equations, but with all entries identically 0 except entry (s,s′)745

being Polyj . This allows us to sum all equations without conflating them into one (complex) matrix746

equations747 ∑
jA

j∆A′j∆A′′j =
∑

jB
j∆B′j+Cj∆C ′j (29)

Another way to combine (28) into one equation is by putting all M j for all j into one block-diagonal748

matrix M̃ :=Diag(M1,...,Mm) for M ∈{a,A′,a′′,b,b′,c,c′,∆}. For ∆̃ we need to ensure that indeed749

all blocks ∆j=∆ are equal. This can be done via Π̃⊤∆̃Π̃=∆̃ for some cyclic block permutation Π̃.750

We further need to ensure that the off-diagonal blocks of ∆̃ are zero. We can zero each block with751

one equation, but it seems impossible to zero all with a bounded number of Simple QMEs. We can752

modify the decision problem to decide whether specific sparse solutions ∆̃ exist. Formally, we can753

introduce element-wise multiplication ⊙ and allow one equation of the form B̃⊙∆̃=0 with B̃ being754

0/1 on the on/off-diagonal blocks. This leads to a Simple SQME with ⊙ in 3 equations (dropping the755

∼)756

A∆A′∆A′′ = B∆B′+C∆C ′, Π⊤∆Π=∆, B⊙∆=0 (30)

Proposition 5 (NP-hardness of Simple SQME) Systems of Polynomial Equations (SPE) can be757

polynomially reduced to Simple Systems of Quadratic Matrix Equations (Simple SQME) (28). The758

number of equations can be reduced to 1 at the expense of making the equations complex (29), or to759

2 by asking for sparse solutions or by enforcing sparsity via B⊙∆=0 (30). Since SPE are NP-hard,760

deciding the existence of non-zero solutions for all three SQME versions is also NP-hard.761

An NP-hardness proof for a Simple SQME with ⊙ with 3 equations via reduction from 1in3SAT762

that looks much closer to the desired form (32) or (34) is given in Section K. By a similar reduction,763

encoding all n variables and their complement in the diagonal of ∆=Diag(x,x̄,y,ȳ,...,), one can also764

show that solvability of765

∆2=∆, A∆1=1, Id⊙∆=∆, with A∈{0,1}m×2n

is NP-complete (1 is the all-1 vector, sparse A with 2 or 3 ones in each row suffice), but not all SPE766

can be reduced to this form.767

Open Problem 6 (Are Bounded SPME NP-hard?) Are Systems of Polynomial Matrix Equations768

(without ⊙) of bounded structural complexity NP-hard? Bounded means, only the definitions of the769

constant matrices scale with d×d, but the polynomial degrees, number of equations, and number of770

matrix operations are bounded.771

K Computational Complexity772

Maybe even just characterizing all M for which EqIM(1) and EqIM(2) uniquely determine W is773

hopeless, not to speak of finding some or all W in case not. More formally, we can ask the question774

of whether there exists an efficient algorithm that can decide whether EqIM(i) has a unique solution.775

We provide some weak preliminary evidence, why this problem may be NP-hard. Appendix M776

contains fully self-contained a few versions of this open problem in their simplest instantiation and777

most elegant form.778

Decidability and computability. EqIM(2) converted to (23) and (7), or (31) or (32) below form a779

System of Quadratic Equations (SQE). The constraint W ̸=M can also be expressed as a quadratic780

equation (see below). As such, the existence and uniqueness of solutions is formally decidable781

by computing a Gröbner basis [Stu02], and (some) solutions can be found by cylindrical algebraic782

decomposition in (double) exponential time. ε-approximate solutions can of course be found by783

exponential brute-force search through all W on a finite ε′-grid, and verified in polynomial time.784

20

Complexity considerations. 3SAT is NP complete. A CNF formula in n boolean variables can785

easily be converted to a System of Quadratic Equations (SQE). Therefore SQE is also NP hard.786

EqIM(2+) explicitly written in quadratic form787

MaM+⊙(W+)2−W aW+⊙(M+)2 = 0 (31)

constitutes an SQE in W given M , also if we include linear EqIM(1) and probability constraints788

(7). Non-negativity of W can be enforced with (slack) variables (Y a
ss′)

2 =W a
ss′ . (Similarly (16)789

plus constraints (15) constitute an SQE in ∆.) To reduce the uniqueness question to a solvability790

problem we need to avoid the trivial solution W ≡M , e.g. by introducing further (slack) variables791

t∈R and Γa
ss′ :=(W a

ss′−Ma
ss′)

2 and constraint t·Γ+
++=1. Due to the minus sign in (31), this cannot792

be converted to a convex (optimization) problem. The choice of M gives significant freedom in793

creating SQE problems, even if only considering permutation matrices Ma∈{0,1}d×d. If one could794

show that every SQE can be represented as (31) [plus W ̸=M constraint] for a suitable choice of M ,795

this would imply that proving the existence of W ̸=M satisfying (31) is NP hard. This in turn would796

imply that computing (any) p(a|ss′′′) from p(a|ss′) and p(a|ss′′) is NP hard. On the other hand,797

matrix multiplication W aW b is a very specific quadratic form, which may not be flexible enough to798

incorporate every SQE within (31).799

We could not find any work on NP-hardness of Systems of Polynomial Matrix Equations (SPME).800

There is work on the NP-hardness of tensor problems [HL13], but this refers to the design tensors, e.g.801 ∑
jkA

jk
i xjxk+

∑
jB

j
i xj+Ci=0 ∀i, but the unknowns are always treated as scalars or vectors. Of802

course [X ·Y]ik=
∑

abcdA
abcd
ik XabYcd, but Aabcd

ik =δaiδdkδbc is a very special fixed tensor (actually803

of low tensor rank d) with no flexibility of encoding NP-hard problems therein.804

That inference in Bayesian networks is NP-complete [KF09] does not help us either for two reasons:805

First, in our problem the probability distribution over states and actions is only partially given. More806

importantly, our network for i=2 has only 5 nodes (s,a,s′,a′,s′′), while the NP-hardness proofs we807

are aware of require large networks. Even for fixed i>2, it is not obvious how to encode NP-hard808

problems into EqIM(i), due to the severe structural constraints in EqIM(i) compared to a general809

network with 2i+3 nodes. It is not clear how to exploit the fact that our (few) state nodes are large.810

SQE are polynomially equivalent to Systems of Quadratic Matrix Equations (SQME), which may be811

the reason complexity theorists have ignored the latter. We suspect but do not know whether SQME812

of bounded structural complexity (only the definitions of the constant matrices scale with d×d) is813

NP-hard (Open Problem 6). If we allow sparse encoding of SQE variables in W , i.e. we allow one814

equation involving ⊙ of the form B⊙W =0 with boolean matrix B, then bounded SQME becomes815

NP-hard. See Appendix J for details.816

Below we directly reduce 1in3SAT to a Bounded-SQME with ⊙ that resembles our problem as close817

as we were able to make it.818

An NP-hard matrix problem. From EqIM(1) we know that W a=Ba⊙W+. Plugging this into819

EqIM(2a) gives820

Baa′
⊙(W+ ·W+) = (Ba⊙W+)(Ba′

⊙W+) with constraints [Ba⊙W+]s+=π(a|s) (32)

This set of equations is purely in terms of what is given (Ba and Baa′
) and only involves unknowns821

W+ without reference to W a. See Appendix L for some further simplification and discussion. We822

will show:823

Proposition 7 (An NP-hard matrix problem) Given A,B,C,Π, deciding whether the following824

quadratic matrix problem has a solution in W is NP-hard:825

A⊙(W ·W)=(C⊙W)(C⊙W), [B⊙W]s+=1, Π·W =W (33)

This has some resemblance to (32). Since the boundary between P and NP is very fractal/subtle,826

this in-itself may not imply much, but is more meant as a demonstration of how one may approach827

proving NP-hardness of (32).828

Proof. We reduce 1in3SAT, which is an NP-complete variant of 3SAT, where each clause must have829

exactly one satisfying assignment, to (33). A 3CNF(n,m,g) formula is a boolean conjunction of m830

clauses in n variables, where each clause ci=ℓi1∨̇ℓi2∨̇ℓi3 for i∈{1:m} is a 1-in-3 disjunction of 3831

21

literals, and each literal is ℓia=xj or it’s complement ℓia=¬xj≡ x̄j , where j=g(i,a) is the variable832

index of clause i in position a.833

We arithmetize the 3CNF expression in the standard way by replacing True;1, False;0, and ∨̇;+,834

i.e. we ask whether the system of linear equations ℓi1+ℓi2+ℓi3=1 ∀i has a solution in xj ∈{0,1}.835

We need to encode the x’s into W somehow: We aim at the following embedding:836

W =

 x1 x̄1 ... xn x̄n y0 ... yk
...

...
. . .

...
...

...
. . .

...
x1 x̄1 ... xn x̄n y0 ... yk


The y are k+1:=max{1,m−n+2} extra dummy variables to make the matrix a square d×d matrix837

with d :=max{m+n+2,2n+1}.838

Choosing a cyclic permutation matrix Π=[234...d1] ensures that all rows of W are indeed the same839

via Π·W =W . The standard way of achieving xj ,yj ∈{0,1} is via x2
j =xj and y2j =yj . This can be840

achieved via (Id⊙W)2= Id⊙W , were Idss′ =δss′ is the identity matrix.841

We use [B⊙W]s+=1 to ensure x̄j =1−xj , y0=1, and y1= ...=yk=0 and ℓi1+ℓi2+ℓi3=1 by842

setting Bs,2s−1=Bs,2s=1 for s∈{1:n}, and Bi+n,2j−1=1 if ℓia=xj and Bi+n,2j=1 if ℓia=¬xj843

for i∈{1:m} and a∈{1,2,3}, and Bd−1,2n+1= ...=Bd−1,2n+m=1, and Bd,2n+1=1, and Bss′ =0844

for all other ss′. This also ensures that all rows of W sum to n+1, hence W ·W =(n+1)W , so845

xj ∈{0,1} can be achieved via C= Id and A= 1
n+1 Id in A⊙(W ·W)=(C⊙W)(C⊙W).846

The construction implies that the 3CNF(n,m,g) formula is satisfiable iff (33) has a solution in W847

with the A,B,C,Π as constructed above. This shows NP-hardness of deciding whether (33) has a848

solution. A solution can trivially be verified (in the rationals or to ε-precision over the reals) in time849

O(d3), hence the problem is in NP, hence NP-complete.850

L Compact Representation of EqIM(2+)851

If only Ba+ (EqIM(2+)) is given, we can sum (32) over a′. If we further assume a=2 and define852

B=B0 and A=B0+ and W =W+ and exploit B+=B++=1, this reduces to the elegant quadratic853

matrix equation854

A⊙(W ·W) = (B⊙W)·W (34)
with constraints as in (32), or even simpler Ws+=1 if π is unknown. This is the most pure formulation855

of the problem we are trying but are unable to solve we could come up with. For A and B defined via856

M , we know that (34) has a solution (namely W =M+).857

We neither know whether there exists an efficient algorithm to find some solution (34), nor to find the858

solution in case it is unique, nor to decide whether there exist solutions in case A and B are chosen859

arbitrarily.860

The condition Ws+=1 can be relaxed to Ws+>0. If Wss′ is a solution of (34), then also v−1
s Wss′vs′861

for any v·> 0 (most easily checked via (11)). Every non-negative matrix has a real non-negative862

Eigenvector v, and Ws+>0 implies vs>0 and Eigenvalue λ>0, hence for W norm
ss′ :=(λvs)

−1Wss′vs′ ,863

we have W norm
s+ =1.864

Ba ≥ 0 and B+ = 1 iff B ∈ [0;1] (and B1 = 1−B). Ba+ ≥ 0 and B++ = 1 iff A ∈ [0;1] (and865

B1+=1−A). But we can scale back any A and B by the same 0<λ<1 to satisfy these without866

changing (34), i.e. these extra conditions (A and B bounded by 1) do not make the problem any867

simpler.868

M Open Problem869

We present the most important open problem(s) in their simplest instantiation and most elegant form,870

fully self-contained here: Consider matrices A,B,W ∈ [0;1]d×d with d∈N, tied by the quadratic871

matrix equation872

A⊙(W ·W) = (B⊙W)·W and Ws+=1 ∀s (35)
where⊙ is element-wise (Hadamard) multiplication and · is standard matrix multiplication. The open873

problems are as follows: Given A and B, are there efficient algorithms which874

22

(a) decide whether there exists a W satisfying (35)?875

(b) decide whether the solution is unique, assuming (35) has a solution?876

(c) compute a solution, assuming (35) has a solution?877

(d) compute the solution, assuming (35) has a unique solution?878

Computing a real number means, given any ε>0, computing an ε-approximation. Efficient means879

running time is polynomial in d, ideally with a degree independent of 1/ε. General systems of880

quadratic equations are known to be NP-hard, but we do not know the complexity of this particular881

matrix sub-class.882

The upper bounds A,B,W≤1 can always be satisfied by scaling, hence are irrelevant. Ws+=1 can be883

relaxed to Ws+>0 except in the uniqueness questions. If helpful: One may assume A,B,W strictly884

positive. Also, any finite (d-independent) number of equations of the form A′⊙(W ·W) = (B′⊙W)·885

W with other general matrices A′,B′∈ [0;1]d×d may be added, which further constrain the solution886

space.887

N Further Experiments888

Here we provide further experiments supporting and illustrating the theory. In Appendix O we show889

how we numerically dealt with B=0/0=⊥. Appendix P derives the formulas for the plotted solution890

dimensions.891

Experiments illustrating robustness to noise. The propositions and results in the main text assume892

that we know the one and two step inverse models (B1 :=Ba, B2 :=Ba+) exactly, but in practice893

these distributions must be estimated from data. Here we investigate the extent to which our algorithm894

is robust to noise arising from learning.895

Rather than committing to a specific learning algorithm, we instead directly inject noise into the true896

inverse distributions. This is done by adding ε×10c to the true distribution and renormalizing B,897

where ε is drawn from the unit uniform distribution: ε∼U [0,1])898

Figure 4a shows that noise doesn’t substantially degrade performance across several orders of899

magnitude (c varied −7 to 0). Additionally, the effect of this noise is substantially diminished as the900

horizon of the inverse model is increased (from B1:=Ba to B3:=Ba++). While the is perhaps not901

surprising, as the entropy of such inverse distributions increases monotonically with the horizon, it902

still shows that noise is not compounding in a way that renders long-horizon predictions meaningless.903

Figure 2 buttresses this interpretation by showing that the recovered Ba++ is qualitatively similar to904

the ground truth even with substantial noise.905

Experiments on the Tensor-product special case. As detailed in Section 3, if M factors into two906

processes Ṁa⊗M̈ , where M̈ is action-independent, then only the complexity of the action-dependent907

process Ṁa matters for all of our questions.908

This particular special case is important because of its frequency in applied work. Many environments909

have most of their complexity in sub-spaces that the agent has no control over. This is illustrated by910

Figure 3, reproduced from [LFLDP21], wherein naturalistic videos are superimposed on relatively911

simple continuous control environments. Clearly, the background dynamics can be arbitrarily complex912

without impacting the underlying control problem.913

We can construct small environments of this form via a simple procedure. We construct Ṁ with ḋ914

states and k actions by sampling each element of the appropriately sized matrices from U [0,1] and915

then normalizing. M̈ has two states that transition uniformly regardless of the action.916

The linear algorithm of Section 4 can (implicitly) output all W and B2 consistent with B1, and the917

formulas derived in Appendix P allow to (explicitly) calculate the dimensions of the solution spaces.918

In the experiments shown in Figure 4b, k=5 as in the main text, and d=2ḋ is varied from 16 to 32.919

The results show that the space of forward dynamics W is always significantly larger than the space920

of the 2-step inverse models (B2). This confirms that inverse models can be significantly simpler921

than forward models.922

23

Figure 2: Reconstructing inverse and forward models from inverse models with noise injected.
Noise increases exponentially across columns [0,10−6,10−5,10−4,10−3]. The subplot titles show the
average KL divergence of the recovered distribution from the ground truth.

Figure 3: Reproduced from [LFLDP21], this ’half-cheetah’ environment has been augmented with
videos of complex scenes. This highlights how non-controllable aspects of the environment can
be made more complex without changing the underlying control problem. The fact that such
environments are of interest motivates our focus on the Tensor-product special case.

24

(a) Effect of Noise (b) Tensor-product Solution Space

Figure 4: (a) Noise-induced reconstruction error: In practice W must be inferred from learned
estimates of B1 and B2. We investigate the effect of the resulting error on the inverse models
(B1,B2,B3) recovered from the inferred W in terms of their proximity to the ground truth distribu-
tions. At each noise level the algorithm was run on 10 randomly generated grids, with the shaded
region representing ±2σ. (b) Solution dimensions of W and B2 given B1: When the solution to
an inverse model (B2) given only B1 is not unique, we can characterize the solution space in terms
of its manifold dimension. By comparing this to the dimension of that of the inferred forward model
(W), we can see that our algorithm has narrowed down the space of inverse models significantly
more. If also B2 is given, the solution dimension of W reduces from dW (blue curve) to dW−dB
(blue-orange curve).

O How to Deal with 0/0923

If for some pair of states (s,s′), no action a of positive π-probability leads from state s to s′, i.e. if924

M+
ss′ =0, then B+

ss′ and Ba
ss′∀a are 0/0=⊥=undefined. To also handle B·

ss′ =⊥, we need to adapt925

the linear algorithm in Section 4. We provide 2 different ways of doing so, with a couple of variations,926

all leading to the same correct result.927

We have to restrict the sum in
∑

s′B
a
ss′Jss′ =π(a|s) to those s′ for which Ba

ss′ is defined. We then928

solve for Jss′ , again for s′ for which Ba
ss′ is defined, and set Jss′ =0 for those s′ for which Ba

ss′ =⊥.929

Technically this can be achieved by removing the s′ columns from matrix B·
s· and J·· for which930

B·
ss′ =⊥, solve the reduced linear equation system, and finally reinsert Jss′ =0 for the removed s′.931

Simpler is to replace Ba
ss′ =⊥ by Ba

ss′ =0, solve the equation for J , and then set Jss′ =0 for the s′932

for which the original Ba
ss′ was ⊥. Some solvers automatically result in Jss′ =0, since this is the933

minimum norm solution, but it is better not to reply on this. Instead of setting Jss′ =0 after solving934

the linear system, one could also augment B·
s· with extra rows that enforce Jss′ =0.935

Alternatively, we could replace B·
ss′ =⊥ by a random vector which sums to 1, e.g. Ba

ss′ = ra/r+,936

where ra=−logua with ua∼Uniform[0;1]. Provided that the solution is unique, this also leads to the937

correct solution (almost surely), and in this way Jss′ =0 automatically. If the solution is not unique,938

W · will still satisfy Ba=W a⊘W+ when for Ba
ss′ ̸=⊥, but W ·

ss′ may not be 0.939

The adaptation of the Linear Relaxation Algorithm in Section 5 follows the same pattern: A··
ssisj =⊥940

in (12), whenever one of the three involved B’s is undefined. For such ssisj , we need to ensure that941

Ûssisj =0, which can be done with any of the variations described above. Once we have Ûssisj , we942

set Cai

ssisj =0 if Bai

sisj =⊥. No further intervention is needed, since Ûssisj =0 already.943

P Solution Dimensions of W and Baa′ .944

In Section 4 we presented an algorithm for inferring W and Baa′
from Ba. Even if M cannot945

uniquely be reconstructed ¬(i), Baa′
may still be unique (iii). More generally, the solutions J and946

W a form linear spaces of dimension dJ =dW ≤d(d−1) (dJ ≥dW since W · is linear function of947

J . dJ ≤dW , since W+=J). Baa′
is a (non-linear, polynomial) variety of dimension dB≤dW at948

regular points (since it is a smooth function of W).949

25

Parameterizing the solutions for J and W and B. We can determine the solution dimensions950

dJ , dW , and dB as follows: Let Yss′ be a solution of [Ba⊙Y]s+ = 0. If Ĵss′ is a solution of951

[Ba⊙J]s+=π(a|s), then so is J := Ĵ+Y , hence W a :=Ŵ a+Xa is a solution of Ba=W a⊘W+952

and W a
s+=π(a|s), where Ŵ a :=Ba⊙Ĵ and Xa :=Ba⊙Y .953

If we plug in W a≡Ŵ a+Xa into Baa′
, we get the variety of Baa′

parameterized in terms Xa. If954

we expand this non-linear expression up to linear order in Xa, we get after some algebra955

Baa′
= [Ŵ aŴ a′

+ Ŵ aXa′
+XaŴ a′

− (Ŵ aŴ a′
)⊘(Ŵ+)2⊙(Ŵ+X++X+Ŵ+)]⊘(Ŵ+)2 + O(X2)

(36)

The linear part forms a tangent direction on the variety at B̂aa′
.956

Determining the solution dimensions for J and W and B. Now, for each s, let Y r
ss′ for957

r∈{1 :dJs} span all solutions of [Ba⊙Y]s+=0, which can easily be determined by SVD: dJs is958

the number zero singular values of matrix B·
s·:, and Y r

s· the corresponding singular vectors. Then,959

Jss′ = Ĵss′+
∑

rY
r
ss′zsr for any z∈RdJ with dJ =

∑
sdJs is a solution of [Ba⊙J]s+=π(a|s).960

Similarly, W a
ss′ :=Ŵ a

ss′+
∑

rX
ar
ss′zsr with Xar :=Ba⊙Y r span all solutions consistent with Ba and961

π. The solution dimension is dW =
∑

sdWs, where for each s, dWs is the rank of X ··
s· if interpreted962

as a kd×dJs matrix in as′×r. dWs may be smaller than dJs, since unlike Y r
s·, X

··
s· may not be full963

rank.964

If we plug Xa
ss′ =

∑
rX

ar
ss′zsr into (36), after some index manipulation we get965

Baa′
= B̂aa′

+

d∑
t=1

dJt∑
r=1

Caa′rtztr⊘(Ŵ+)2⊘(Ŵ+)2 + O(z2) with (37)

Caa′rt
ss′′ := (Ŵ a

stX
a′r
ts′′+[XarŴ a′

]ss′′δts)[(Ŵ
+)2]ss′′ − [Ŵ aŴ a′

]ss′′(Ŵ
+
stX

+r
ts′′+[X+rŴ+]ss′′δts)

(38)

Baa′
(z) is a local parametrization of B, and if we drop the O(z2), it parameterize its tangential966

hyperplane at B̂aa′
. Its dimension dB is the rank of C interpreted as a k2d2×dJ matrix in aa′ss′′×rt.967

Again, dB may be smaller than dW , since C may not be full rank. for r ∈ {1 : dJ} spans the968

tangential space of rescaled variety Baa′
at B̂aa′

. Again, they may not be linearly independent, If969

[(W+)2]ss′′ =0, then Baa′

ss′′ =⊥ ∀aa′, hence all such ss′′ should be ignored in Caa′r
ss′′ , but since the970

corresponding rows in C are 0, they don’t contribute to the rank anyway.971

Sampling estimate of dB . A simpler, but less elegant, and more fragile method to estimate dB is972

as follows: Fix one solution Ĵ . Add random noise in direction of the null-space spanned by Y r so973

that it stays a solution, i.e. compute J= Ĵ+
∑

rY
rz·r for random z, and from this, W and Baa′

for974

many such random J . The resulting point cloud spans covers the solution variety Baa′
. Various tools975

could be used to analyze this point cloud, e.g. determine its dimension. If z is chosen small, the point976

cloud concentrates around B̂aa′
and forms a near-linear space, whose dimension dB can easily be977

determined by PCA.978

Higher-order B and higher i. In the same way we can derive the solution dimensions dB... for979

higher-order B.... Also, even though we don’t have (yet) an efficient algorithm for solving EqIM(i)980

for i> 1 if the solution is not unique, we still can determine the dimension of the solutions (at a981

particular point Ŵ). Algorithmically already covered is the case of W satisfying EqIM(1)∧EqIM(2),982

whose solution dimension turns out to be dW−dB . The general procedure is to plug W =Ŵ+X983

into and linearly expand EqIM(i) for i we to hold. Together they form a system of linear equations984

whose solution dimension can be determined by SVD as above.985

Q Counter-Examples in Related Work986

In Section 3 we presented a counter-example to questions (i,iii,v). Question (i) (i.e. Can M be987

inferred from Ba :=Ma⊘M+?) has been implicitly addressed in previous work. In [EMK+22,988

App.A.3] the authors present a counter-example to the claim that a state representation constructed989

26

via an inverse model (i.e. two states have the same representation iff they yield the same inverse990

distribution for all of their possible successor states) is sufficient for representing a set of policies that991

differentially visit all states1. This fails whenever two states are aliased by the inverse model.992

Note that this failure of state representation learning implies a negative answer to our question (i),993

as W would differ from M on these aliased states. Unlike our counter-example, theirs involves994

deterministic forward dynamics, and therefor buttresses our claims by showing that M cannot always995

be inferred even in this simpler case. Similar to our counter-example in Section 3, [MHKL20]996

proposes a stochastic counter-example to inverse modeling for state representation learning.997

In general, the transferability of these counter-examples suggests a strong relationship between998

literature on using single-step inverse models for state representation learning and using them999

for inferring the forward model. It is an interesting open question whether or not algorithms1000

for representation learning on the basis on multi-step inverse models (like those put forward in1001

[EMK+22]) might be used to shed light on the questions put forward here and vice versa.1002

R Relevance for Planning1003

In Section 1, various streams of applied work were highlighted; here we focus on spelling out the1004

overarching impact that compositional inverse models (an affirmative answer to question (iv)) would1005

have for planning problem.1006

Many forms of planning involve the evaluation of candidate i-step action sequences (e.g. model1007

predictive path integral control [WDG+16]). Ideally, all possible action sequences would be evaluated,1008

but as the space of i-step action sequences grows exponentially in i, this is often intractable.1009

Access to the i-step inverse distribution p(a...ai|s...si+1) allows determining the subset of action1010

sequences that likely reach state si+1 post-execution (e.g. those whose probability is above some1011

threshold). It is often the case that only action sequences that are distinguishable in this way are of1012

interest (e.g. goal-reach tasks), thus access to an inverse model of the appropriate horizon allows for1013

filtering candidates. This filtering method is a particularly appealing approach when the cost/reward1014

function is initially unknown and frequently changes.1015

While this idea has already seen scalable implementations [MJR15], these rely on short, fixed horizons1016

since they directly learn all inverse models of step-size up to the horizon, which is data-inefficient for1017

large horizons. If inverse models could be composed, then longer, variable horizons could be used1018

while only learning a short horizon inverse model by inferring the longer horizon models as needed.1019

Our work shows that this is possible, but with exceptions and a more practical composition algorithm1020

being outstanding.1021

1Technically, as per their Definition 2, this ‘policy cover’ need only account for all ‘endogenous’ states. But
omit the ‘exogenous’ states from their counter-example and it can be seen to address our question (i).

27

	Introduction
	Problem Formalization and Preliminaries
	Degenerative Cases
	(Non)Uniqueness of Inverse MDP Models
	Linear Relaxation
	Experiments
	Conclusion
	List of Notation
	Characterizing M and W for which EqIM(1) holds
	Characterizing M and W for which EqIM(1) and EqIM(2+) hold
	EqIM(1)∧EqIM(2+)EqIM(3) for full low rank M?
	EqIM(1) does not imply EqIM(2) (⊙-version)
	EqIM(1a)∧...∧EqIM(ia) do not imply EqIM(i+1) (⊙-version)
	Non-Uniqueness of Inverse MDP Models for i≥2
	Deterministic Cases
	Applications
	Systems of Quadratic Matrix Equations
	Computational Complexity
	Compact Representation of EqIM(2+)
	Open Problem
	Further Experiments
	How to Deal with 0/0
	Solution Dimensions of W and Baa'.
	Counter-Examples in Related Work
	Relevance for Planning

