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Supplement to ‘“Distributional Sliced-Wasserstein and
Applications to Generative Modeling”

In this supplementary material, we collect several proofs and remaining materials that were deferred
from the main paper. In Appendix A, we provide the proofs of the main results in the paper. In
Appendix B, additional properties of distributional sliced-Wasserstein (DSW) distance are provided.
In Appendix C, we discuss distributional generalized sliced-Wasserstein distance (DGSW) and its
dual form and properties. We describe in detail the applications of DSW and DGSW to generative
modelings in Appendix D. Furthermore, we provide additional experiments and experiment settings
in Appendices E and G.

A PROOFS
In this appendix, we collect the proofs for all the results in the main text.

A.1 PROOF OF THEOREM 1

We first show that the distributional sliced-Wasserstein distance satisfies the triangle inequality
property for any three probability measures (17, f12, and p3. In fact, from the definition of distributional
sliced-Wasserstein distance for admissible C' > 0, for any € > 0 we find that
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where the existence of o in (¢) is from the definition of supremum; inequality in (i¢) is due to
the triangle inequality with Wasserstein distance of order p; inequality in (ii7) follows from the
application of the Minkowski inequality. By letting ¢ — 0 in the above inequality, we obtain the
conclusion with the triangle inequality of distributional sliced-Wasserstein distance.

The non-negativity and symmetry of distributional sliced-Wasserstein distance follow directly from
the non-negativity and symmetry of Wasserstein distance. For the identity property, it is straight-
forward that if 3 = po then DSW,(pu1, 2) = 0. On the other hand, if DSW,(u1, 2) = 0, an
application of Fourier transform as that in (Bonnotte, 2013) leads to 1 = po.

As a consequence, for any p > 1 and admissible C' > 0, DSW,, (-, -; C) is a well-defined metric in
the space of Borel probability measures with finite p-th moment.

A.2 PROOF OF THEOREM 2

(a) From the definition of distributional sliced-Wasserstein distance, for any p > 1 and admissible
C > 0 we find that

DSW, (1,44 C) < sup (Bome W (RLL (). R0 ) = maxsW, ),
oceM

where M is the space of all probability measures. The inequality is due to the fact that Mo C
M for all admissible C' > 0. The second equality is true because W,(RI,(-,0), RI,(-,0)) <
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maxSW, (1, v) forall € S*~*, which leads to Eg.o [WF(RI,(:,0), RI,(-,0))] < maxSWh(u,v).
The inequality becomes equality when o is the Dirac measure at 6* that maximizes the value of
WP(RIH(" 0)7 RIV('7 6))

Furthermore, we have

WP(RI(0),RI,(-0) = inf / 76—y 6P dn(z,y)
m€l(p,v) Jxxy

< it [ e ylPdno) = WiGn),
m€ll(p,v) Jarxy

where the last inequality is due to the fact that the length of the side of the right triangle |(x —y) " 0] is
less than length of its hypotenuse ||z — y|| for all @ € S¢~1. Therefore, maxSW,, (11, ) < W, (1, v)
for any p > 1.

Putting the above results together, we obtain the conclusion of part (a) of the theorem.

(b) Denote 7 = Zle 169, where 6; = 6%, which maximizes the value of W,(RI,,(-,6), RI,(-,6))

and 61, ..., 04 form an orthonormal basis in R?. Simple algebra shows that
Ty Ly2 7 1
Eo.9n5 [[0"0']] = Z (&) 10; 6;] = T
1<i,j<d

Since C' > é, the above equation indicates that & € M. Therefore, we find that

2(2)%%(731#(.,91),7%(-,91)) :(%)%maxswp(u,u).

Moreover, for any p > 1, SW,, (1, v) < maxSW,(u, v). Collecting the previous results, we reach
the conclusion of part (b).

Equivalence of DSW,, (-, -; C) to other distances: Based on the result of Theorem 2.1 in (Bayrak-
tar & Guo, 2019), maxSW,, SW,, and W, are equivalent distances for any p > 1. In particular, for
any sequence (i )n>1 € Pp(R?) and p € P,(R?), the following holds

lim maxSW,(pn, 1) =0 <= lim SW,(up,p) =0 < lim Wp(pn,u) =0. (3)
n—oo n—o0 n—00
Now, if we have lim,,_,o maxSWy (i, 1) = 0 for p > 1, the result of part (a) shows that
limy, 00 DSWy, (i, 15 C)) = 0. On the other hand, when lim,,_, oo DSW,, (115, pt; C') = 0, as long as

C > é and p > 1, the result of part (b) leads to lim,,_, maxSW,, (1, ) = 0. As a consequence,
when C' > % and p > 1 we have

lim DSW,, (i, p1;C) = 0 <= lim maxSWp (g, p) = 0. 4)

n— oo

Combining the results in equations (3) and (4), we reach the conclusion that when C' > % andp > 1,
DSW,(+,-; C), maxSW,,, SW,,, and W), are equivalent distances.

B ADDITIONAL STUDIES WITH DISTRIBUTIONAL SLICED-WASSERSTEIN
DISTANCE

In this appendix, we provide further studies with distributional sliced-Wasserstein distance.
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B.1 DISCUSSION OF THE CONSTRAINT IN DSW

d—

We first compute Eg g/ ,a-1 [|0760'[] where 0~ is the uniform distribution on the unit sphere S~

4= on the unit sphere S%=1 we have
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where T'(.) is the Gamma function.
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Furthermore, by Gautschi’s inequality for the Gamma function, we find that
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For d > 3, we have 2d*/(d + 1) > 7. Hence, we obtain that

Remark. The result of Theorem 3 indicates that as long as C' > we have 09~ € M.
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where 01, . .., 04 form any orthonormal baszs in RY. Furthermore, for d = 2, we have
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Therefore, when d = 2 and C > %, the set Ml also contains ¢ = 21 1 d§9
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4=1 is the uniform measure on the unit sphere S?~!, the integral

/ 076 |do?~1(6)
Prood—1
is the same for all fixed §’. Hence for any fixed 6* € S?-1, we obtain
I :/ 10760 |do?=1(6)do?1 (") :/ 107 6%|do?=1(6).
0,0 ~ogd—1 Orood—1
Without loss of generality, we choose 8* = (1,0,...,0), I is equal to

|, w0,

where § = (61, ... #(9)). For any measurable subset S of S¢~ 1, let A(S) be the area of S on the
surface of S?~! and A(S?~!) be the area of the surface of S?~! which is equal to

Proof. Since o
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Now, we have
1
oMW da?1(0 / oM dAS*1(0)).
L 00l 0) = s [ e®laaEt o)

Let H, be the hyperplane formed by 8(2), ..., #(?) and Hy be the hyperplane tangent to the sphere
S9=1 at §. Then @ is the normal vector to Hy and 6* = (1,0, ...,0) is orthogonal to H;. Let a be
the angle between 6 and 6*. Then

dA(S¥1(0)) cos(Hy, Hy) = d6? . ..do D

L do® .. do D = ——qp@ . qoD.

dAS*1(9)) = 080,07 B (1 |
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Return to the integral, we find that

1 1
I= oW |do?1(9) = 7/ o | ——~do® ... .doP
/MJJ [do=(0) A(od1) Zgzl(giP:l' |\9<1>|
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A(?71) Jowso, 52, 00)2<1
2
— Bd_l
A(Sdfl)v( )
2F(%) I
= ERRA =y
)
R

where B¢~ is the unit ball in the d — 1 dimensional space and V' (B%~1) is its corresponding volume.
As a consequence, we obtain the conclusion of the theorem. O

B.2 APPROXIMATION OF DUAL VALUE OF DSW

Now, we give a detailed form of the objective function DS( f,) in the dual form of DSW in equation (2).
In particular, simple calculation shows that

VoDS(f5) = {Bomus [WY(RL (- FoO). RL (. Lol0)]} ®

X Egoga-1 [VeWE(RL(, £5(8)), RL(., f(0))] — AcEg,prmga-1[Volfo(8) " fo(0))]].

Since the outer expectations in equation (5) are intractable to compute, we employ the standard Monte
Carlo scheme to approximate these expectations. Therefore, we obtain the following approximation:

n l—l

VaDS(fo) & {5 D VPRI £ol6)). RL (. £o(6)] )

i=1

x{;Z[V¢W5(RI"("f‘i’(ei””””"f“@i)ﬂ}—Acl) > Vel (a0 Fa009)]

; n(n oy
i=1 1<i#j<n
where 61, . .., 0, areii.d. samples from the unit sphere S,
Denote ¢* as the fixed point of the stochastic gradient ascent algorithm. Then, we can use fy- as the

local maxima of the optimization problem (2). By using Monte Carlo method to approximate the
expectation in equation (2), we obtain the following approximation:

n

DSW, (1, ; C) ~ {% S WERL( for 0, RIS (6:))] |

=1

1/p

2O S [ (60) T (8)] + A

nn—1) | Fen
B.3 STATISTICAL GUARANTEE OF DSW

In this appendix, we provide the statistical guarantee of DSW.

Theorem 4. Given probability measure P supported on a compact subset © C Re. Assume that
Xi,...,X, are i.id. data from P. Denote P, = % >oi | Ox, the empirical measure of the data
points X1, ..., X,,. Then, for any admissible regularizing constant C > 0 and for any p > 1, we

obtain that
dlogn
E|DSW,(P,,P;C)| <c —

where ¢ > 0 is some universal constant.

16



Published as a conference paper at ICLR 2021

Remark. The result of Theorem 4 demonstrates that DSW has similar statistical guarantees as other
sliced distances and does not suffer from the curse of dimensionality. Therefore, it is an appealing
distance for applications in generative modeling.

Proof. The proof of Theorem 4 is a direct application of Theorem 2 and statistical guarantee of
max-sliced Wassertein distance. Here, we provide the proof for the completeness. In particular, based
on the result of Theorem 2, we obtain that

E [Dswp(Pn, P; C)} <E {maxSWp(Pn, P)} .

Therefore, it is sufficient to demonstrate that E |maxSW,(P,,, P)| < ¢ dlo% for some universal

constant ¢ > 0. In order to simplify the presentation, we denote a few notation. First, we define H
the set of half-spaces Hy . = {y € R?: (y,0) < x} forany § € S~! and = € R. Then, it has been
shown that H has at most d + 1 Vapnik—Chervonenkis (VC) dimension (Wainwright, 2019). The VC
inequality implies that

sup |P,(H)— P(H)| < \/32 [(d+1)log(n+ 1) +1og(8/8)] =: cn,s
HeH n

with probability at least 1 — d, for any § € (0, 1). On the other hand, we have

sup |P,(H) — P(H)| = sup  [Fyo(z) — Fy(z)],
HeH zE€R,HeSI L

where F, g and Fy are respectively the cumulative distribution functions (CDF) of RIp, (-, ) and
RIp(-,0). Given the above equation and the closed-form of Wasserstein distance in one dimension,
we find that

1
—1 —1
maxSWH(P,, P) = erenS%)flA |F, p(u) — Fy  (u)[Pdu

fesd—1

= max /|Fn79(x)ng(m)|pdz
R
< diam(©)

sup  |Fyo(z) — Fp(x)|P < diam(©)c? ;.
z€R,0es? 1 '

dlogn
n

By using the above inequality, we obtain that E |maxSW,(P,,P)| <c for some universal

constant ¢ > (. As a consequence, we reach the conclusion of Theorem 4. O

C AN EXTENSION TO DISTRIBUTIONAL GENERALIZED SLICED-WASSERSTEIN
DISTANCE

We now consider an extension of DSW to non-linear projections via generalized Radon transform.
The constant C' > 0 is generalized admissible if the set M of probability measures o on the compact
set of feasible parameters {2y satisfying Eg g/, [| cos(8, 8')|] < C is not empty.

Definition 3. Given two probability measures 1w and v on R® with finite p-th moments where p > 1
and a generalized admissible regularizing constant C' > 0. The distributional generalized sliced-
Wasserstein distance (DGSW) of order p between i and v is defined as follows:

1/p
DGSW,(11,v;C) == sup {nggwg(gfﬂ(-, 0),GI,(-, 9))} :
O’EMC
where G is generalized Radon transform defined in Section 2.2.

The DGSW distance uses the advantage of non-linear projections to capture more complex structures
of the target probability measures. We show that as long as the generalized Radon transform is
injective, DGSW is a proper metric in the probability space.
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Theorem 5. For any p > 1 and generalized admissible C' > 0, as long as the generalized Radon
transform is injective, the distributional generalized sliced-Wasserstein is a well-defined metric in the
space of Borel probability measures with finite p-th moment.

The proof of Theorem 5 simply follows the proof argument of Theorem 1 under the injectivity of
GRT; thus, it is omitted. In order to compute DGSW, we also utilize the dual form of DGSW as that
of DSW distance.

Dual form of distributional generalized sliced-Wasserstein distance: Similar to the distri-
butional sliced-Wasserstein distance, we use the dual form of distributional generalized sliced-
Wasserstein distance to approximate the value of distributional generalized sliced-Wasserstein dis-

tance. Recall that, for any 0,0’ € R?, cos(6,6') = HOH\\TT%/’H'

Definition 4. For any p > 1 and generalized admissible C' > 0, there exists a non-negative constant
Ac depending on C such that the dual form of DGSW distance takes the following form

1/p
DGSW:)(/U‘7 v; O) ‘= —Sup 1H£ {_ <E9NU |:W;5(glu(7 0)7 gIV('a 9)):| >

A>00eM
070']
+ A <E970’No’ { -C
161111611

o { (EM {Wf(glu(-, 0), 1, (- e))} ) Y AEous [m} }

ocEM
+ AcC,

where M denotes the space of all probability measures on the compact set of feasible parameter .

From the duality theory, we obtain that DGSW,(u, v; C') > DGSW (1, v; C) for any p > 1 and
admissible C' > 0. Similar to DSW distance, the dual form of DGSW provides an efficient way
to approximate the DGSW distance. We show that when the compact set of feasible parameter
Qp = S%1, similar reparametrization trick like that of the dual form of DSW distance can be applied
to the dual form of DGSW distance. In particular, when £y = S9~1, we obtain the equivalent dual
form of DGSW as follows:

1/p
DGSW,, (11, v; C) = sup { (Eg~0d1 (WE(GLL(-, £(8)),GL(-, f(@)))]) (6)

feF
—ACEyg g i [\f(e)Tf(e’)” } +AcC,

where F is a class of Borel measurable functions from S?~! to S~ and A\¢ > 0 is some positive
constant given in Definition 4. Then, in order to find an optimal f, we can parameterize f as f,, which
we can think as (deep) neural network. From here, with similar argument as that of equation (5), we
can approximate the gradient of the objective function in equation (6) with respect to ¢ and then use
stochastic gradient ascent algorithm to update ¢. Finally, we can use the fixed point of the algorithm
to approximate the dual value of DGSW in equation (6).

D APPLICATIONS TO GENERATIVE MODELING

The DSW and DGSW distances can potentially be applied in settings where there is a benefit of
employing an optimal-transport type of distance in a computationally efficient manner. In this
section, we discuss two general settings where the DSW and DGSW distances can be immediately
applied. The first setting is a standard generative modeling task using the minimum expected distance
estimator framework (Bernton et al., 2019) where a generative model is fitted to a data distribution
by minimizing an appropriate divergence. The second setting is a joint contrastive inference task
where both a generative model and inference model are learned jointly, again by minimizing some
divergence in the joint space of observed variable and latent variable. In each setting, we apply the
DSW to these tasks as well as its generalized version, the DGSW.
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D.1 MINIMUM EXPECTED DISTRIBUTIONAL SLICED-WASSERSTEIN ESTIMATOR

Minimum expected distance estimators (Bernton et al., 2019) are widely used recently due to its
efficiency in learning implicit generative models. Popular estimators include those based on OT
distances (Arjovsky et al., 2017; Genevay et al., 2018; Tolstikhin et al., 2018) due to their smooth
and differentiable objectives especially when the supports of the data and the generative distributions
are not the same. In sliced-Wasserstein cases, SW and Max-SW have been employed with rigorous
theoretical analyses in various works (Bayraktar & Guo, 2019; Deshpande et al., 2019; 2018; Nadjahi
et al., 2019). They enjoy the benefits of the Wasserstein distance in one dimension and obtain fast
speed in training the model. In this paper, we introduce a new novel estimator by replacing SW
and Max-SW by our new DSW distance, which we refer to as minimum expected distributional
sliced-Wasserstein estimator. The new estimator is defined as follows:

9n = arg min ge@E[Dswp(ﬂ'ruﬂ@,m)le:n]; (7)

where & is the parameter space, [, = %E?:l 0x, is the empirical measure, and fg,, =
% >i% | Oy, denotes the empirical distribution that is obtained by sampling i.i.d samples from
1o. In practice, g is created by pushing a simple distribution € (such as the standard Gaussian)

through a neural net, parameterized by 0, i.e., ug = Typfe.

D.2 DISTRIBUTIONAL SLICED-WASSERSTEIN JOINT CONTRASTIVE INFERENCE

Learning both a generator and an inference model, i.e., an encoder, is a central task in latent-
variable modeling. A general framework for performing this task is called joint contrastive in-
ference (Dumoulin et al., 2016). Let pg(z, ) = p(z)pe(x|z) be a generative model, g, (z|z) be
an amortized inference model and define the data-induced aggregated joint inference model as
4o (2, ) = Ddata(z)qe(z|x). The joint contrastive inference framework then minimizes some diver-
gence between the two structured joint distributions py (2, ) and ¢4 (2, ). This can be seen as a
generalized version of amortized inference. There are some well-known examples of this kind of
inference such as the Variational Autoencoder (Kingma & Welling, 2013), Adversarially Learned
Inference (Dumoulin et al., 2016), and Wasserstein Variational Inference (Ambrogioni et al., 2018).
By using the DSW distance, we obtain a new joint contrastive inference method which inherits the
benefits of optimal transport family of distances, yet remains scalable and computationally efficient.
In particular, we learn both a generator and an inference model by solving:

(9m7 ¢m) = arg min 96®,¢E<I>Ezj¢(z,z),pg(z,a:) [Dswp(qu),m (x, Z),]ﬁg;,n(z, $))L (8)

where ©, ® are the parameter spaces, {4 m (2, ) and pg (2, ) are empirical distributions that
sampled i.i.d data from ¢, (2, x) and py(z, ) respectively.

E ADDITIONAL EXPERIMENTS

In this appendix, we provide additional experimental results to yield more understandings about the
minimum expected distance framework, which uses the new proposed distances. The appendix is
divided into three parts, namely Appendices E.1, E.2 and E.3. Appendix E.1 is devoted to showing
the performances of DGSW (see Appendix C for its definition) versus the generalized versions of
other sliced distances on various factors which could affect the effectiveness of those methods. We
also compare DSW to the recent augumented sliced Wasserstein method (ASW) (Chen et al., 2020).
Then we show the generated images from slice-based distances method for MNIST, CelebA and
LSUN, when the number of projections varies. In Appendix E.2, we compare DSW to the projected
robust subspace Wasserstein (PRW) in (Paty & Cuturi, 2019; Lin et al., 2020) on MNIST dataset.
The comparison is to show Wasserstein-2 distance between the learned distribution and the data
distribution versus the execution time. Finally, Appendix E.3 includes a comparison between DSW,
DGSW, SW, Max-SW, Max-GSW, and Max-GSW-NN for the joint contrastive inference task on
MNIST dataset.

E.1 GENERATIVE MODELS

DGSW results on MNIST: Figure 4(a) shows the convergence of estimators of the learned distri-
bution to the data distribution based on “generalized" sliced distances in the sense of Wasserstein-2
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distance. Here, we use the circular function as the defining function for both GSW, Max-GSW, and
DGSW (the polynomial function is very expensive in high-dimension). With 10 projections, DGSW
produces better performance than GSW with 1000 projections, Max-GSW and Max-GSW-NN. There
is a little improvement in the Wasserstein-2 score with DGSW when we increase the number of
projections from 10 to 1000. For the computational speed shown in Figure 4(b), DGSW-10 is faster
than other reported methods, except the GSW-10 which has the worst Wasserstein-2 score.

MNIST Computation speed MNIST MNIST

—&— DSW-10 1] 4 SW-10
80 —— Max-SW 80{ | o SW-1000

q GSW-10

04 A5 — GSW-1000
7\ Max.GSW

| A — Max-GSW-NN .

\ - — DGSW-10

| DGSW-1000

< \ o

3 g
< &

-

° \‘\‘\-_...._,_.___ B

0 5000 10000 15000 20000
Number of iterations

(a)

0 200 400 600 800 1000
umber of iterations

(©)

Figure 4: (a) Comparison between DGSW, GSW, Max-GSW and Max-GSW-NN using W5 distance as metric.
Here, GSW, Max-GSW and DGSW use circular function. (b) The computional speed over size of samples. (c)
Comparison of Max-SW and DSW with an increasing number of iterations. (d) Comparison between Discrete
DSW (dDSW) and other distances including the general version of DSW.

Increasing number of iterations of Max-SW: We increase the number of epochs of Max-SW to
800 in the generative model task on the MNIST dataset. According to the result in Figure 4(c), we
observe that the model distribution is closer to the data distribution when the number of iterations
increases in Max-SW; however, Max-SW'’s result is still worse than DSW-10’s result. The experiment
result suggests that Max-SW requires several more iterations than DSW to get a comparable result in
the generative modeling task.

Discrete DSW: We test the performance of a variant of DSW, which is called Discrete DSW (dDSW).
The idea of dDSW is that instead of searching in space of all probabilities measures which satisfy the
concentration constraint, dDSW searches for the optimal distribution over directions that contains n
supports (here, n is also called the number of projections). This distribution also needs to satisfies the
concentration constraint to avoid the collapsing of its supports. We then run experiments with dADSW
and other sliced-based Wasserstein distances on the MNIST dataset for the generative modeling
task. The results are given in Figure 4(d). We observe that ADSW performs quite well comparing to
SW and max-SW, namely, dDSW is better than SW with the same number of projections and both
dDSW-10 and dDSW-1000 are better than Max-SW. However, both dDSW-10 and dDSW-1000 are
worse than DSW-10 and DSW-1000. It suggests that DSW has a better performance than dDSW
when the number of projections is similar.

Finally, we would like to remark that when the number of projections n in dDSW is sufficiently large,
there is no difference between dDSW and DSW except the optimization problem. It is because the
set of discrete measures on the unit sphere is dense over the set of continuous measures on the unit
sphere, namely, any continuous distributions on the unit sphere can be approximated sufficiently well
by discrete measures. However, as the experiments in Figure 4(d) indicate, we need to choose large
number of projections in dDSW such that it has comparable performance with DSW with smaller
number of projections; for example, dDSW with 1000 projections is still not as good as DSW with
10 projections in terms of Wasserstein-2 score.

Effects of the number of samples: We conduct experiments to show how sample size (m in
Appendix D.1) affects the results of DSW and DGSW in the MEDE framework. According to Figure
5(b), increasing the sample size leads to better performance of DSW. Similarly, increasing the sample
size in the MEDE framework that uses DGSW (with circular defining function) helps improve the
results, see in Figure 5(d).

Effects of the number of gradient-updates: In both DSW and DGSW cases, we use a pushfor-
ward measure for the distribution over the sphere, and we use neural nets to find it. To learn these
neural nets, we use gradient ascent to update their weights. In this experiment, we aim to find out how
the number of iterations to update these neural net, affects the performance including the convergence
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MNIST MNIST
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Figure 5: (a) Comparison between performances of DSW to SW, Max-SW and Max-GSW-NN using SW>
distance as metric. (b) The effect of number of samples in minibatch to the convergence of DSW. (c) Comparing
DGSW to GSW and Max-GSW-NN using SW distance as metric. Here, GSW and DGSW use circular function.
(d) The effect of number of samples in minibatch to the convergence of DGSW.

behavior and computation speed. By increasing the number of updates from 1 to 10, both in DSW
and DGSW, model distributions are closer to data distribution; from 10 to 100 updates the results are
improved but not too much, see the results in Figures 6(a) and 6(c). However, increasing update steps
also lead to a computation problem as the computational time increases considerably. When using 10
or 100 update steps, DSW and DGSW are slower than Max-SW, Max-GSW (50 gradient updates to
find the max direction), and Max-GSW-NN (50 gradient updates for the defining neural net function).

MNIST Computation speed MNIST Computation speed

—— Max-SW
—— Max-GSW-NN 2
—a— DSW 1 iteration
DSW 10 iterations
70 —=— DSW 100 iterations

Max-GSW
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©

Figure 6: (a) and (c): Increasing the number of times to update push forward measure can improve the
performance of both DSW and DGSW; (b) and (d): However, increasing the number of times to update push
forward measure leads to slower computation speed.

Table 1: FID score of generator models trained on CIFAR10 (100 epochs), CelebA (50 epochs), and
LSUN (20 epochs) datasets in 64x64 resolution. Results are averaged from 5 different runs.

Model n CIFAR-10 CelebA LSUN

SW 102 109.7 £+ 5.64 90.11 +=10.11 101.57 +=3.24
GSW 102 103.11 £6.92 87.18 +£8.97 92.58 +=4.78
ASW 102 138.26 £8.31 122.11 £9.09

DSW 102  62.83 + 6.24 75.944 5.54 46.02 + 2.15
DGSW 102 68.01 +7.74 71.08+ 4.24 4691 £+ 3.98
Max-SW 136.04 = 8.35 100.09 +8.34 123.74 & 5.51
Max-GSW-NN 86.04+ 8.68 81.57+7.72 56.83 £ 4.04
SW 104 98.61 + 3.62 82.02 +6.33 62.75 £4.77
GSW 104 93.51 +£6.12 84.22 +7.93 68.04 +2.17
ASW 10* 12138 +£6.83 101 +7.36

DSW 10 56.42 + 3.78 66.85+ 7.22 39.68 + 2.33
DGSW 10*  60.01 + 5.58 65.8+ 4.42 42.04 +4.21
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Table 2: Computational speed per minibatch on CelebA and CIFAR10 dataset

Model n Second/Minibatch
SW 102 0.178
GSW 102 0.181
ASW 102 0.298
DSW 102 0.21
DGSW 102 0.212
Max-SW 1.821
Max-GSW-NN 1.895
SW 104 0.615
GSW 104 0.632
ASW 104 1.561
DSW 10* 1.312
DGSW 104 1.384

Quantitative results: We provide full FID scores of all distances mentioned in the papers and also
the recent augmented sliced Wasserstein (ASW) (Chen et al., 2020) in Table 1. Based on the results
in that table, DSW and DGSW (circular) achieve the best performance among all sliced distances. We
also report the computational speed per minibatch in Table 2. The results show that DSW-100 is faster
than DSW-10000 while its FID is lower. Regarding ASW, in our experiment, we find that the injective
neural network, which is used to transform two target measures, is quite unstable to train and our
obtained results with that distance are not good. Moreover, ASW is slower than DSW because ASW
needs to double the dimension and still utilizes the uniform measure to slice on the new space. Note
that, we use the implementation of ASW in https://github.com/ShwanMario/ASWD.

Qualitative results: We show random generated images from trained generators on MNIST,
CelebA, CIFAR10 and LSUN datasets in Figures 7-11. Overall, we can see that the distributional
approaches, i.e., DSW and DGSW distances, help to improve the quality of synthetic images in both
linear and non-linear projection cases.

7

~ GSW n=1000

Max-GSW-NN

Figure 7: MNIST generated images from different generators, n is the number of projections.

Comparison with the special case of Max-GSW-NN: In Max-GSW-NN (Kolouri et al., 2019), one
possible choice of neural network defining function is g(x, ) = (x, f(6)) where f : S4~1 — S4-1,
That function f induces a probability measure on S?~!. Hence, optimizing f is equivalent to optimize
over the set of probability measures without any constraints, which gives us an effect that is similar
to max-SW. In contrast, the function f in our DSW is to find a push-forward probability measure that
distributes high probability to informative directions, and this probability measure is regularized to
avoid collapsing to a Dirac measure. To support our previous claim, we also do extra experiments on
MNIST in Table 3 to clarify the role of the function f of DSW which makes DSW different from the
given special case of Max-GSW-NN. The result shows that this version of Max-GSW-NN is similar
to DSW when A¢ = 0 and both of them have the same performance as Max-SW.
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Figure 8: CelebA generated images from different generators, n is the number of projections.

Max-GSW-NN GSW n=10000  DGSW n=10000

Figure 9: LSUN generated images from different generators where n is the number of projections.

Max-GSW-NN GSW n=10000 DGSW n=10000

Figure 10: CIFAR10 generated images from different generators, n is the number of projections.

ASW n=100 " ASW 1=10000 ASW 1=100 ASW 1=10000

Figure 11: ASW generated images on CelebA and CIFAR10.

E.2 COMPARISON WITH PROJECTED ROBUST SUBSPACE WASSERSTEIN AND WASSERSTEIN
DISTANCE

As shown in (Paty & Cuturi, 2019; Lin et al., 2020), the main idea of projected robust subspace
Wasserstein (PRW) is to find the optimal subspace (dimension > 2) such that the Wasserstein-2
distance between two projected measures is maximal.

We first recall the definition of PRW in (Paty & Cuturi, 2019).
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Table 3: Comparison with the special case of Max-GSW-NN, denoting Max-GSW-NN(*) in the table,
that uses the defining function g(z, ) = (x, f(0)) where f : S¥~1 — §4-1,

Model Ao Wasserstein-2
Max-SW - 48.64
Max-GSW-NN (*) - 49.21
DSW-10 0 49.81
DSW-10 1 38.41
DSW-10 10 33.40
DSW-10 100 40.08
DSW-10 1000 46.07

Definition 5. Let Vi, (RY) = {U € R™>* : UTU = I} and p,v € P(R?). Then, the projection
robust 2-Wasserstein (PRW) distance between p, v is given by:

PRWi(v) = | e Wa(U Tt UT0). ©)

Since the projected dimension is bigger than 1, PRW does not have closed-form solution on the
projected space.

Experiments on generative model: We continue to use the MEDE framework on the same settings
as previous experiments to compare DSW with PRW and Wasserstein distance (WD). The Wasserstein
distance is computed via linear programming algorithm. To solve the optimization on Stiefel manifold
in PRW, we use the "geoopt" library (Kochurov et al., 2020). We use one gradient step to solve the
optimization problem of both DSW and PRW per one generator update. The experiments are carried
out with both DSW and PRW on MNIST dataset. The number of projections of DSW takes value 10
and 1000 and the dimension of the subspace of PRW belongs to the set {2, 5,10, 50}. We report the
Wasserstein-2 results and the computational time in Table 4 and the generated images in Figure 12.

Table 4: Empirical Wasserstein-2 score and computation speed per minibatch on MNIST dataset.

Model k-dimension Wasserstein-2  Second/Minibatch
DSW-10 - 34.4 0.003

DSW-1000 - 33.11 0.018

PRW 2 65.39 0.086

PRW 5 35.99 0.092

PRW 10 26.57 0.11

PRW 50 24.38 0.12

WD - 24.40 0.11

According to Table 4, DSW with 10 projections obtains a better Wasserstein-2 score than the PRW
with 5-dimensional subspace, while its corresponding computational time is 30 times faster that of
PRW. When PRW searches for the 50-dimensional subspace, the Wasserstein-2 score only improves
32.25% meanwhile the computational time increases by 10 times.

Next, we show some generated images from both DSW and PRW. We observe that these images are
consistent with Wasserstein-2 score in the previous experiments.

Investigation on minibatch’s size: We adjust the minibatch’s size in the set {32, 64, 128, 256, 512,
1024} and then train the generative model with SW, DSW and Wasserstein distance (WD). The
Wasserstein-2 scores of trained models on MNIST dataset are given in Table 5. Consistently, all
distances performs better when the size of minibatch increases. When the minibatch’s size is 1024,
the DSW-10 takes around 0.006 second per minibatch. On the other hand, the Wasserstein distance
takes around 0.4 second per minibatch. Therefore, the DSW-10 is around 65 times faster than the
Wasserstein distance. Note that, when the minibatch size is 512, the DSW-10 is around 40 times
faster than the Wasserstein distance. It suggests that the larger the minibatch size, the faster the DSW
compared to the Wasserstein distance.
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DSW n=10

Figure 12: MNIST generated images from generators of DSW and PRW. Here, n is the number of
projections of DSW and £ is the projected dimension of PRW.

Table 5: Effect of minibatch’size on the empirical Wasserstein-2 score.

Model 32 64 128 256 512 1024

SW-10 6198 60.16 57.99 54.01 50.84 49.71
DSW-10 37.53 3734 3542 3538 3440 33.74
SW-1000 41.02 40.53 3980 38.63 37777 3745
DSW-1000 3736 36.77 3545 3428 33.11 32.93
WD 3434 3120 28.71 26.62 2440 23.51
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Figure 13: Joint inference model comparisons among DSW, SW, Max-SW, and Max-GSW-NN.

E.3 JOINT CONTRASTIVE INFERENCE

We test the performance of our distances in training encoder-generator models on MNIST us-
ing joint contrastive inference (JCI). In JCI, the joint generative latent-observed distribution
po(z, ) = p(2)pe(z|z) is matched with the empirical joint latent-observed distribution Gy (2, z) =
Pdata ()¢ (z]z) by minimizing a chosen distance (see Appendix D for a description of these models).
We evaluate how close the two joint latent-observed distributions pg(z, x) and §4(z, =) are, how close
their corresponding marginals are (in Wasserstein-2 distance) and the ability of the encoder-generator
in reconstructing images. These metrics are shown in Figures 13(a)-(d). The results show that DSW
achieves better performance than SW using the same number of projections, with DSW-1000 achieves
the best performance among all the other baselines in all metrics. We give experiments to compare
DGSW with other non-linear sliced-Wasserstein distances in the joint contrastive inference task in
Figure 14. We observed the same behavior as the linear case, the distributional version of GSW using
circular function achieves better performance than the other non-linear sliced-based distances.

MNIST MNIST MNIST MNIST
2o ¥ GSW-10 [l GSW-10 32 ] GSW-10
< GSW-1000 80 — GSW-1000 . —< GSW-1000
o Max-GSW 1 Max-GSW 31 Max-GSW
| —— Max-GSW-NN | —— Max-GSW-NN — Max-GSW-NN
= 100 —e— DGSW-10 =7 I —e— DGSW-10 30 TR 7 - —e— DGSW-10
3 | DGSW-1000 = \ DGSW-1000 3 GSW-1000 $ DGSW-1000
T g % 601 T2 Max-GSW 2 60
o 3 3 —— Max-GSW-NN g
Y S50 28 —e— DGSW-10 g
% K = DGSW-1000 < 50
\ 27
70 w0{ Y w©
S R % 26
60 S e S R 30 = ¥ 30
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Number of iterations Number of iterations Number of iterations Number of iterations

Figure 14: Joint inference model comparisons between non-linear sliced distances.
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In order to illustrate the ability to reconstruct images of joint inference models, we show reconstructed
images from the MNIST dataset. With 10 projections, SW and GSW were not able to recreate the
digits; however, DSW and DGSW can recreate the digits quite correctly. Furthermore, Max-GSW-NN
performs well in this task and is better than Max-SW and Max-GSW. When having enough number
of projections (for example 1000), it is very hard to compare SW, GSW, DSW, and DGSW by
eyes. Nevertheless, according to reconstruction error plots in Figures 13 and 14, DSW, and DGSW
distances are still better than the other sliced-based distances.

Data 72/0641984692009015G7%4260b54079401 3 )

Max-SW I 3321833900 GFOIIHTFITY
Max-GSW

Max-GSW-NN

SWn =10 |

DSWn =10 2 V7006901549754

GSWn =10 3 99 da79199q7770

DGSW n =10 : 9470090154704

SW n = 1000 22/049/496447069015397847665907401 31

DSW n = 1000 72/0414%0706901597397659074901 37
GSW n = 1000 7210491 49447069013597397665907401 51
DIEN RN 7 2 /04 /430906490 139734766859074901 31

Figure 15: MNIST dataset reconstruction images (n is the number of projections).

F CoOLOR TRANSFER

Color transfer is a famous application of optimal transport (Rabin et al., 2014; Bonneel et al., 2015;
Perrot et al., 2016). The goal of color transfer is to map the color plate of the given source RGB image
to the given target RGB image. In this appendix, we follow the approach from Muzellec & Cuturi
(2019), namely, we use K-means algorithm (with 3000 clusters) to get the quantizations of two input
images. With the obtained quantizations, we then perform the distribution transfer algorithm based on
sliced-based Wasserstein distances (Rabin et al., 2010; Bonneel et al., 2015). More specifically, we
project two quantizations into 1D distributions using the corresponding directions which are drawn
from distributions of the sliced-based distances (e.g., SW - uniform distribution, MaxSW - best Dirac
distribution, DSW - the optimal distribution over slices). Then, we find 1D alignments between 1D
distributions (Monge maps between corresponding projected distributions). After that, with each
alignment, we move pixels of the source image with the corresponding pixels of the target images.
Finally, we take the average over all directions to get the final transferred images. In our experiment
with color transfer, we set the regularized parameter A\c = 10 in DSW (cf. equation (2)), and the
learning rate equals 0.005 in Max-SW and DSW.

We present the qualitative images in Figure 16. According to the experiment results, we find that
SW and DSW create smoother images compared to Max-SW, which creates some noise parts in its
transferred images. Furthermore, DSW produces more lively and realistic images than SW, especially
when the number of projections is small (e.g., 10 projections).

Comparing with projection pursuit methods: Furthermore, as suggested in (Meng et al., 2019),
we also test two versions of SW which use the projection pursuit methods to find the most "informa-
tive" projecting direction (correspondingly, directional regression (Li et al., 2007) or sliced average
variance estimator (Li, 1991)). We then denote these two variants of SW as drSW and saveSW re-
spectively. We use the code from https://github.com/ChengzijunAixiaoli/PPMM/.

The main difference in this framework of color transfer is that it allows to do transfer color with
many iterations while in the previous setting we can only do once. Each iteration requires finding the
transportation map to move color from the current image (start from the source image) to the target
image. In SW and DSW, the transportation map is the average of n 1D transportation maps (n is the
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Figure 16: Color Transfer using SW, Max-SW, and DSW (n is the number of projections). The first rows show
the source and the target images, and the second rows show the transferred images using the corresponding dis-
tances. We use the code from https://github.com/BorisMuzellec/SubspaceOT/ for the imple-
mentation of color transfer. Images are taken from (Reinhard et al., 2001; Bonneel & Coeurjolly, 2019; Flamary
& Courty, 2017), https://github.com/chia56028/Color-Transfer—-between-Images.

number of projections), while in Max-SW, drSW (DR), saveSW (SAVE) the transportation map is
provided by the "optimal” projection that is found by the corresponding method.
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We show the transfered images in Figure 17 and Figure 18 (n = 10 for DSW and SW, A\¢ = 10 in
DSW, and the learning rate equals 0.01 in Max-SW and DSW). From Figure 17, when the number
of iterations is 1, DSW looks more similar to the original OT transfer (EMD) than Max-SW and
SW. Increasing the number of iterations to 10, DSW is slightly better than SW and Max-SW. On
the other hand, images from DSW are not as smooth as images from drSW and saveDR. However,
drSW and saveDR create some colors that are different from the target image (e.g., the pink color).
In Figure 18, DSW is still better than Max-SW and SW because its images are closer to the EMD’s
images. Projection pursuit methods (drSW and saveSW) also perform well in this case; however it is
hard to know whether which method is the best.

Source image

The number of iterations is set to 10

Figure 17: Color Transfer using drSW and saveSW using the code from https://github.com/
ChengzijunAixiaoli/PPMM/ .

G EXPERIMENT SETTINGS

We use a multi layer perceptron (MLP) network with one layer (d?> parameters where d is the
dimension of comparing distributions) and normalized output as the f function in the dual empirical
forms of DSW and DGSW. In all experiments, we use norm 2 as the ground metric for the Wasserstein
distance. For GSW and DGSW, we use r = 1000 for circular function. We use the code at
https://github.com/kimiandj/gsw for Max-SW and Max-GSW-NN (use 3 MLP layers
with Leaky ReLU activation as defining function). In this implementation, Max-SW and Max-GSW-
NN uses 50 gradient updates per minibatch to find the optimal direction.

We train models on MNIST, CelebA, CIFAR10 with batch size = 512. On LSUN we use batch size =
4096. We use Adam optimizer for all models with learning rate=0.0005 and betas=(0.5, 0.999), p =2.
The range for hidden layer size of the MLP defining function of Max-GSW-NN is (32,100,784,1000).
We tune A¢ of DSW and DGSW by grid searching in (1, 10, 100, 1000) in every experiment. The
number of epochs for MNIST is 200, CelebA is 50, CIFAR10 is 100, and LSUN is 20.

In evaluation, we use empirical distribution with 10000 samples from two target distribution to
compute discrete Wasserstein distance via linear programming..

Generator architecture was used for MNIST dataset:
A R3? - Fcl(]o — ReLU — FOQOQ — ReLU — FC400 — ReLU — FC784 — ReLU
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Source image

The number of iterations is set to 1

Source image ) Max-SW

The number of iterations is set to 10

Figure 18: Color Transfer using drSW and saveSW using the code from https://github.com/
ChengzijunAixiaoli/PPMM/

Generator architecture was used for CelebA, CIFARI0 and LSUN dataset z € R0
TransposeConvsio — BatchNorm — ReLU — TransposeConvesg — BatchNorm —
ReLU — TransposeConvisg — BatchNorm — ReLU — TransposeConvgy —
BatchNorm — ReLU — TransposeConvy — Tanh

Discriminator architecture was used for CelebA, CIFAR10 and LSUN dataset:

First part: x € RO64X64x3  Convgy — LeakyReLUys — Conviss — BatchNorm —
LearkyReLUy o — Convasg — BatchNorm —  LearkyReLUys — Convsia —
BatchNorm — Tanh

Second part: Conv; — Sigmoid

Joint Contrastive inference encoder architecture on MNIST:
r € R®*2 5 FCyo — LeakyReLUys — FCao — LeakyReLUyo> — FCioo —
LeakyReLUo,g — FCgQ

Joint Contrastive inference deocder architecture on MNIST:
A R3? - Fcloo — ReLU — FCQQ() — ReLU — FC400 — ReLU — FC7S4 — ReLU
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