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PRISM: PRogressive dependency maxImization for
Scale-invariant image Matching

Anonymous Authors

ABSTRACT
Image matching aims at identifying corresponding points between
a pair of images. Currently, detector-free methods have shown
impressive performance in challenging scenarios, thanks to their
capability of generating dense matches and global receptive field.
However, performing feature interaction and proposing matches
across the entire image is unnecessary, as not all image regions con-
tribute beneficially to the matching process. Interacting and match-
ing in unmatchable areas can introduce errors, reducing matching
accuracy and efficiency. Furthermore, the scale discrepancy issue
still troubles existing methods. To address above issues, we propose
PRogressive dependency maxImization for Scale-invariant image
Matching (PRISM), which jointly prunes irrelevant patch features
and tackles the scale discrepancy. To do this, we first present a
Multi-scale Pruning Module (MPM) to adaptively prune irrelevant
features by maximizing the dependency between the two feature
sets. Moreover, we design the Scale-Aware Dynamic Pruning Atten-
tion (SADPA) to aggregate information from different scales via a
hierarchical design. Our method’s superior matching performance
and generalization capability are confirmed by leading accuracy
across various evaluation benchmarks and downstream tasks. The
code will be publicly available.

CCS CONCEPTS
•Computingmethodologies→Vision for robotics;Matching;
Scene understanding.

KEYWORDS
Image Matching, Patch Pruning, Scale-Aware

1 INTRODUCTION
Image matching, a pivotal task in computer vision, finds extensive
applications in areas such as image stitching [30, 41], visual lo-
calization [49, 51], 3D reconstruction [54, 55], etc. Traditionally, it
involves identifying corresponding points across two images, which
is a detector-based paradigm [3, 34, 48]. This paradigm follows a
three-step pipeline: (1) keypoint detection, (2) keypoint description,
and (3) matching based on descriptor similarity. Although detector-
based methods are generally effective and efficient, they falter in
complex environments such as poor texture, repetitive patterns and
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(a) Without Pruning

(c) The evolution of pruning masks

MPM #1 MPM #2 MPM #3 MPM #4
(b) With Pruning

Figure 1: The basic idea of our proposed methods. Given two
images, not all image patches are helpful to the matching process.
Conducting feature interactions and searching matches across the
entire image can be detrimental (Without Pruning). We propose to
gradually prune the irrelevant patches by maximizing the depen-
dency between two images, resulting in more robust and accurate
matches (With Pruning). (c) shows the pruning masks estimated by
the correspondingMPM. MPM adaptively prunes irrelevant patches
from shallow to deep layers ■→ ■→ ■→ ■. Feature interactions
and match searches are only conducted in the white mask regions.

significant viewpoint changes, where keypoint detection may not
yield sufficient keypoints.

To address the limitation, researchers propose deep learning-
based methods to improve the reliability of traditional pipeline. Su-
perpoint [13], Lift [71] and some other works [14, 36, 44] enhance
the repeatability and distinguishability of the keypoints. Super-
Glue [52] and its variations [32, 56] propose transformer-based [66]
matchers, jointly matching sparse points and rejecting outliers. Al-
though these works gain improvements in more reliably matching,
they still share the limitations of the detector-based paradigm. The
keypoint detection is generally a bottleneck and the performances
in some complex environments (e.g., poor texture, repetitive pat-
terns and significant viewpoint changes) are unsatisfactory.

To address these issues, another line of works [28, 45, 46] aban-
dons the keypoint detection, so-called detector-free methods. They
first use CNN [31] to extract image features. In order to generate
dense matches, these approaches exhaustively search for matches
across entire feature maps. Potential patch-level matches are pro-
posed from the whole feature map by constructing correlation cost

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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volume between two feature maps. The coarse matches are then
filtered by threshold and Mutual Nearest Neighborhood criterion.
Finally, the valid coarse matches are further refined into pixel-level
matches. Considering the feature maps generated by CNN have a
limited receptive field, LoFTR [59] and its variants [10, 18, 72] uti-
lizes transformer backbone [24] to model long-range dependencies,
resulting in better feature matching performance.

While detector-free methods address the limitations of detector-
based methods, these techniques still encounter significant chal-
lenges. On the one hand, detector-free methods suffer from irrele-
vant feature interference. Feature interactions and match searches
may perform in unnecessary areas, leading to erroneous matches,
as shown in Figure 1. Notably, for a pair of images divided into
𝑀 and 𝑁 patches, this matching paradigm proposes 𝑀 × 𝑁 po-
tential matches. However, the maximum viable matches are only
𝑚𝑎𝑥 (𝑀, 𝑁 ) in theory. This discrepancy suggests that a significant
proportion of these matches are erroneous (such as matches in
unmatchable areas like sky and clouds or non-overlapping regions).
TopicFM [18] and AdaMatcher [22] utilize semantic and co-visible
information to filter match proposals. But the feature interactions
still span the entire image.

On the another hand, detector-free methods fall short in ad-
dressing the scale discrepancy. As detector-free methods generate
matches in pixel-level, exhaustively searching matches across dif-
ferent scales can bring unbearable computational costs. Although
ASTR [72] and AdaMatcher [22] attempt to estimate the scale vari-
ation between images via patch-level matching and adjust the
patch size in fine matching process based on the estimated scale
ratio, the patch-level matching itself can also be erroneous due to
the scale problem. PATS [40] introduces an innovative yet time-
intensive framework that iteratively rescales and segments images
into smaller, scale-consistent patches to mitigate the scale issue,
but the time consumption is significantly increased.

To deal with the above challenges, we propose a novel frame-
work, PRogressive dependency maxImization for Scale-invariant
image Matching (PRISM), which simultaneously prunes irrelevant
patches and tackles scale difference. The basic idea is illustrated
in Figure 1. The key innovation is to prune unnecessary image
patches adaptively and gradually, and model the scene of various
scales simultaneously within the same attention mechanism. To
eliminate the interference of the irrelevant features, we propose
the Multi-scale Pruning Module (MPM) to dynamically prune irrel-
evant features by gradually maximizing the dependency between
the two feature sets, where the dependency is usually measured by
Mutual Information. By pruning irrelevant features gradually, the
computational resources can be focused on those features that are
most informative and relevant for matching. In addition, to solve
the scale discrepancy, we propose the novel Scale-Aware Dynamic
Pruning Attention (SADPA) mechanism, which injects the scale
space analysis into the attention mechanism via a hierarchical de-
sign and focuses attention on the selected features. This scheme
gives SADPA favorable computational efficiency alongside the abil-
ity to model multi-scale features.

Experimental evaluations show that PRISM sets a new state-of-
the-art (SOTA), surpassing both detector-based and detector-free
baselines across various tasks, such as homography estimation,
relative pose estimation, and visual localization. Experiments also

showcase PRISM’s robust generalization capabilities. Our ablation
studies verify the effectiveness of the proposed MPM and SADPA.
The key contributions are summarized as follows:
• A novel image matching framework PRISM is proposed,
employing aMulti-scale PruningModule (MPM) to aggregate
information in different scales and prune irrelevant features
by maximizing the dependency gradually.
• A Scale-Aware Dynamic Pruning Attention (SADPA) is pro-
posed, which dynamically adjusts the attention focus and
aggregates information across multiple scales.
• PRISM is demonstrated to achieve state-of-the-art results
across a comprehensive set of benchmarks, showcasing its
robust generalization capabilities across diverse datasets.

2 RELATEDWORK
2.1 Detector-based image matching
Detector-based imagematching has been studied for several decades.
It involves identifying keypoints in images and finding their corre-
spondences across different views. The evolution of detector-based
image matching began with foundational techniques like the Harris
Corner Detector [20], advancing to sophisticated systems such as
SIFT [34] for improved scale and rotation resilience. Developments
in detection speed and reliability followed [3, 47, 48]. With the
success of Convolutional Neural Networks (CNN) in the field of
image processing [21, 57, 60], numerous researchers have begun
to employ CNNs for keypoint detection and description, achieving
impressive results. Superpoint [13] jointly trains the detector and
descriptor, largely improving the accuracy and robustness of match-
ing. Many works follow this line, further improving the reliability
and uniqueness of the keypoints [14, 27, 35, 36, 44, 65, 69].

After detecting and describing keypoints, matching typically
involves a nearest neighbor search in descriptor space, comple-
mented by heuristic filters like Lowe’s ratio test [34]. However, this
approach struggles under challenging conditions. SuperGlue [52]
addresses this by employing an Attentional Graph Neural Net-
work to jointly match features and filter outliers. However, it has
quadratic complexity with the number of keypoints due to the at-
tention mechanism. Subsequent efforts, such as SGMNet [9], Clus-
terGNN [56], and LightGlue [32], have aimed to reduce compu-
tational load through strategies like initializing with a subset of
reliable matches, dividing keypoints into subgraphs, and adapting
network depth and width based on image pair difficulty. However,
the dependency on keypoint and descriptor repeatability limits the
robustness of detector-based methods against extreme variations
in viewpoint, repetitive patterns, and texture-less surfaces.

2.2 Detector-free image matching
Detector-free image matching methods eschew the keypoint de-
tection step and directly generate dense matches from the image.
Early works are cost volume-based, such as NCNet series [28, 45, 46].
They use CNN to extract dense feature maps and construct 4-D cost
volume to exhaust all potential matches. Although they have made
some progress, the receptive field of CNN is limited, and the image
resolution is restricted due to the expensive computational cost.
Recently, LoFTR [59] extends the limited receptive field to global
consensus with the help of the global receptive field and long-range
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Figure 2: Overview of PRISM. PRISM starts from a CNN-based backbone to extract coarse-level 𝐹𝐴𝑐 , 𝐹𝐵𝑐 and fine-level features 𝐹𝐴
𝑓
, 𝐹𝐵
𝑓
.

𝐹𝐴𝑐 , 𝐹
𝐵
𝑐 are fed into the proposed iterative Multi-scale Pruning Module (MPM) for updating and pruning (Sec. 3.2). In each MPM layer, the

features are first transformed by the self- and cross- SADPA with a hierarchical design (Sec. 3.2.2) to aggregate information from selected
features of various scales. Then the Patch Pruning module (Sec. 3.2.1) eliminates irrelevant features to maximize the NMI between the two
feature sets. After 𝐿 MPM blocks, the final features 𝐹𝐴

𝐿
and 𝐹𝐵

𝐿
are used to acquire the coarse matching Matrix by Weighted Dual-softmax

(Sec. 3.3). Finally, we use the mutual nearest neighbor strategy and the threshold 𝜃𝑐 to filter the valid coarse matchesM𝑐 . ThenM𝑐 are
projected to fine level features maps 𝐹𝐴

𝑓
, 𝐹𝐵
𝑓
and refined to sub-pixel precision matchesM𝑓 .

dependencies of Transformers [66]. However, LoFTR and its succes-
sors [7, 16, 70, 76] still encounter significant challenges, particularly
regarding the scale disparity problem and the distraction issue of
linear attention. AdaMatcher [22] and ASTR [72] estimate the scale
variation via coarse matching results and resize the patch size by
scale ratio, but they ignore that the coarse level matching itself
can be erroneous due to the scale problem. PATS [40] models the
scale problem as a patch area transportation problem and designs
an iterative framework to find matches from coarse to fine, but
the time cost is unacceptable. ASpanFormer [10] uses estimated
optical flow to guide the attention span. ASTR [72] proposes a
spot-guided attention framework to restrict the feature aggrega-
tions. Quadtree attention [63] builds token pyramids and computes
attention in a coarse-to-fine manner. However, they neglect the
comprehensive understanding of scene semantics and contextual
relationships, achieving limited enhancements. TopicFM [18] con-
strains matches to regions with identical semantics, but it does not
account for completely unmatchable categories(e.g., sky, clouds) or
non-overlapping regions. Other works [23, 62] that try to directly
decode the coordinates of matching keypoints are also related.

2.3 Mutual Information based Feature Selection
Feature selection involves choosing a subset of the available features
based on specific criteria to eliminate irrelevant, redundant, or noisy
features, which is a crucial aspect of data mining. The use of Mutual
Information (MI) to assess the dependency among features for the
purpose of feature selection was first introduced in [2], referred to

as Mutual Information Maximization. MI assesses the information
contribution of variables towards the learning goal. Several meth-
ods [5, 37] leveraging MI for feature selection have been proposed
to enhance performance across diverse learning tasks. One notable
approach is the minimal-redundancy-maximal-relevance (mRMR)
criterion [43], which uses average MI as a criterion and selects
features with a trade-off between dependency and redundancy of
the selected features. Further advancing the field, the Normalized
Mutual Information Feature Selection (NMIFS) technique was in-
troduced to mitigate MI’s bias towards multi-valued features by
normalizing MI (NMI) values to a [0,1] range [15]. This method
uses average NMI to select features, improving upon the standard
MI approach by addressing its inherent bias. Subsequently, several
methods [17, 19, 68, 68] have been proposed to further enhance the
performance.

MI distinguishes itself from other dependency measures by its
ability to quantify any relationship between variables and its stabil-
ity under space transformations like rotations and translations [15,
25]. This makes MI-based feature selection particularly appealing
for patch feature pruning in the context of image matching. It un-
derpins our study’s innovative patch pruning technique, aimed at
eliminating irrelevant patch features.

3 METHOD
3.1 Overview
Given a pair of images, our task is to identify reliable matches across
images. To address the scale discrepancy and reduce the interference
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of irrelevant features, we propose to gradually eliminate redundant
image patches through adaptive pruning and simultaneously model
scenes of various scales within the same attention framework. The
overview of PRISM is shown in Figure 2. Mathematically, for image
I𝐴 and I𝐵 , PRISM generates matches as in Algorithm 1:
Algorithm 1 PRISM: PRogressive dependency maxImization for
Scale-invariant image Matching

1: Input: a pair of images I𝐴 and I𝐵

2: Output: MatchesM𝑓

3: 𝐹𝐴𝑐 , 𝐹
𝐵
𝑐 , 𝐹

𝐴
𝑓
, 𝐹𝐵
𝑓
= CNN(I𝐴, I𝐵)

4: 𝑀𝐴
0 , 𝑀

𝐵
0 ←Masks of all 1 with the same size of 𝐹𝐴𝑐 , 𝐹𝐵𝑐

5: 𝐹𝐴0 , 𝐹
𝐵
0 = 𝐹𝐴𝑐 , 𝐹

𝐵
𝑐

6: for 𝑙 = 1 to 𝐿 do
7: 𝐹𝐴

𝑙
, 𝐹𝐵
𝑙
= 𝑓transform (𝐹𝐴𝑙−1, 𝐹

𝐵
𝑙−1, 𝑀

𝐴
𝑙−1, 𝑀

𝐵
𝑙−1)

8: 𝑀𝐴
𝑙

= argmax
𝑀𝐴

𝑙

D(𝐹𝐴
𝑙
, 𝐹𝐵
𝑙
), 𝑀𝐵

𝑙
= argmax

𝑀𝐵
𝑙

D(𝐹𝐵
𝑙
, 𝐹𝐴
𝑙
)

9: end for
10: M𝑐 = 𝑓matching (𝐹𝐴𝐿 , 𝐹

𝐵
𝐿
)

11: M𝑓 = 𝑓refine (M𝑐 , 𝐹
𝐴
𝑓
, 𝐹𝐵
𝑓
)

12: returnM𝑓

In PRISM, each for loop constitutes a Multi-scale Pruning Mod-
ule (MPM), and there are total 𝐿 MPMs. Each MPM takes the last
MPM’s output, i.e., 𝐹𝐴

𝑙−1, 𝐹
𝐵
𝑙−1, 𝑀

𝐴
𝑙−1, 𝑀

𝐵
𝑙−1 as input and conducts

𝑓transform and dependency maximization.𝑀𝐴
𝑙
is the mask to select

the best subset 𝐹𝐴
𝑙
: 𝐹𝐴
𝑙

= 𝑀𝐴
𝑙
⊗ 𝐹𝐴

𝑙
, that maximizes the dependency

𝐷 (·) between the two feature sets.𝑀𝐵
𝑙
is defined in a similar way.

3.2 Multi-scale Pruning Module
Given the coarse-level features maps 𝐹𝐴𝑐 and 𝐹𝐵𝑐 at 1

8 resolution,
the Multi-scale Pruning Module extracts multi-scale features and
progressively eliminates irrelevant features. Specifically, in each
MPM, the coarse feature maps are first transformed by 𝑓transform (·),
which consists of a self SADPA and a cross SADPA. Then, the Patch
Pruning module eliminates irrelevant features by maximizing the
dependency between the two feature sets, resulting in two pruning
masks for use in the next layer. We first introduce the Patch Pruning
part in MPM.

3.2.1 Patch Pruning. As stated in Introduction (Sec. 1), existing
methods [7, 10, 22, 59, 72] may search matches and perform feature
interactions in unmatchable areas. It harms the matching accuracy
and increases the computational cost. A pruning module is needed
to exclude irrelevant patch features.

Inspired by theMutual Information based Feature Selectionmeth-
ods [15, 43], we innovatively propose to identify the most charac-
terizing features by maximizing the dependency between the two
feature sets in the context of image matching. Specifically, in 𝑙th
MPM layer, the patch pruning module takes the transformed fea-
ture maps 𝐹𝐴

𝑙
and 𝐹𝐵

𝑙
as input, where |𝐹𝐴

𝑙
| = 𝑀 and |𝐹𝐵

𝑙
| = 𝑁 . For

𝐹𝐴
𝑙
, our target is to find a feature subset 𝐹𝐴

𝑙
⊆ 𝐹𝐴

𝑙
which has the

largest dependency on 𝐹𝐵
𝑙
:

𝑀𝐴
𝑙

= argmax
𝑀𝐴

𝑙

D(𝐹𝐴
𝑙
, 𝐹𝐵
𝑙
) (1)

The dependency 𝐷 (·) is usually characterized in terms of mutual
information (MI) as follows:

𝐷 (𝐹𝐴
𝑙
, 𝐹𝐵
𝑙
) = 𝐼 ({𝐹𝐴

𝑙
(𝑖) |𝑖 = 1, ...,𝑚}; 𝐹𝐵

𝑙
), 𝐹𝐴

𝑙
(𝑖) ∈ 𝐹𝐴

𝑙
(2)

where 𝐹𝐵
𝑙

can be treated as a multivariate variable and 𝐼 (·) de-
notes the MI. Given two random variables𝑋,𝑌 , the MI is defined as:

𝐼 (𝑋 ;𝑌 ) = 𝐷𝐾𝐿 (𝑝 (𝑥,𝑦)∥𝑝 (𝑥)𝑝 (𝑦)) =
∬

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦)𝑑𝑥𝑑𝑦.

In this formula, 𝐷𝐾𝐿 is the KL-divergence between 𝑝 (𝑥,𝑦) and
𝑝 (𝑥)𝑝 (𝑦), which represents the joint distribution and product of
the marginal distributions of 𝑥 and 𝑦, respectively.

However, the Max-Dependency is hard to implement in high-
dimensional space, and searching the feature subspaces exhaus-
tively costs 𝑂 (2𝑀 ) [43]. An alternative is to select features based
on Max-Relevance, which approximates the Max-Dependency with
the mean value of all mutual information values as in [43]:

𝐷 (𝐹𝐴
𝑙
, 𝐹𝐵
𝑙
) ≈ 1
|𝐹𝐴
𝑙
|

∑︁
𝐹𝐴
𝑙
(𝑖) ∈𝐹𝐴

𝑙

𝐼

(
𝐹𝐴
𝑙
(𝑖); 𝐹𝐵

𝑙

)
. (3)

According to this equation, we can increase the Max-Dependency
by eliminating patch features with low MI. The MI between a patch
feature 𝐹𝐴

𝑙
(𝑖) and another feature set 𝐹𝐵

𝑙
can be expressed com-

pactly in terms of multi-information as in [39, 67]: 𝐼
(
𝐹𝐴
𝑙
(𝑖); 𝐹𝐵

𝑙

)
=∑𝑁

𝑘=1
∑
∀𝑆⊆𝐹𝐵

𝑙

|𝑆 |=𝑘
𝐼 ( [𝑆 ∪ 𝐹𝐴

𝑙
(𝑖)]) where 𝐼 ( [𝑆 ∪ 𝐹𝐴

𝑙
(𝑖)] = 𝐼 (𝑠1; 𝑠2; · ·

·; 𝑠𝑘 ; 𝐹𝐴𝑙 (𝑖)). Note that the sum on the right side is taken over all
subsets 𝑆 of size 𝑘 drawn from the feature set 𝐹𝐵

𝑙
. To standardize

the measure of shared information between variables, we utilize
Normalized MI (NMI) as in [15]:

NMI
(
𝐹𝐴
𝑙
(𝑖); 𝐹𝐵

𝑙

)
= 2

𝐼

(
𝐹𝐴
𝑙
(𝑖); 𝐹𝐵

𝑙

)
𝐻 (𝐹𝐴

𝑙
(𝑖)) + 𝐻 (𝐹𝐵

𝑙
)
∈ [0, 1] (4)

NMI
(
𝐹𝐴
𝑙
(𝑖); 𝐹𝐵

𝑙

)
quantifies the amount of information that 𝐹𝐴

𝑙
(𝑖)

shares with 𝐹𝐵
𝑙
. This concept is intrinsically linked to the funda-

mental principle of matching, where a pair of features is considered
to be matched when they describe the same scene, signifying that
their information is shared.

However, MI and NMI have historically been difficult to com-
pute [42]. Exact computation is only tractable for discrete variables
or a limited family of problems where the probability distributions
are known. Inspired by MINE [4], we propose to learn a neural
network to estimate the NMI:
NMI

(
𝐹𝐴
𝑙
(𝑖); 𝐹𝐵

𝑙

)
≈ Sigmoid(Φ𝑙 (𝑓transform (𝐹𝐴𝑙−1, 𝐹

𝐵
𝑙−1, 𝑀

𝐴
𝑙−1, 𝑀

𝐵
𝑙−1) (𝑖)))

(5)
whereΦ𝑙 represents anMLP at the last of the 𝑙 th layerMPMmodule.
To maximize the dependency, we prune the features whose NMI is
lower than a threshold 𝜃𝑝 = 0.05. The mask for the locations of the
removed features is set to 0, resulting in the updated pruning mask
𝑀𝐴
𝑙
.𝑀𝐵

𝑙
is obtained in a similar way.

The Patch Pruning module plays a critical role by effectively
reducing the search space for potential matches, enhancing both
accuracy and efficiency. The structure and computational flow of
these components ensure that as the matching process evolves, the
algorithm becomes increasingly focused on the most promising
match candidates. Figure. 3 shows the effect of this module. We
can see most of the invaluable regions such as the sky with less
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Figure 3: Visualization of pruning masks and the matching
results on MegaDepth dataset. The Patch pruning can identify
redundant image patches and exclude them from subsequent feature
interactions gradually (from shallow to deep layers ■→ ■→ ■→
■). It avoids most incorrect matches.

mutual information are pruned. This improves both the precision
and computational efficiency of the image matching process.

3.2.2 Scale-Aware Dynamic Pruning Attention.

self and cross SADPA. In each MPM, we use a succession of
one self SADPA and one cross SADPA to update the features, as
shown in Figure 2. The 𝑙th MPM takes feature maps 𝐹𝐴

𝑙−1, 𝐹
𝐵
𝑙−1 and

masks𝑀𝐴
𝑙−1, 𝑀

𝐵
𝑙−1 as input, where 𝐹

𝐴
𝑙−1, 𝐹

𝐵
𝑙−1 are first input to two

self-SADPAs respectively. The cross SADPA takes the output of two
self SADPAs as input to further interact features across images. For
clarity of presentation, we denote the input feature maps of SADPA
as 𝐹𝑠 and 𝐹𝑡 respectively. Thanks to this design, MPM not only
enhances the model’s ability to capture intra-image information
but also broadens the understanding of inter-image relationships.

Preliminaries. Before delving into SADPA, let’s briefly intro-
duce the commonly used vanilla attention. The vanilla attention
takes three input vectors: Query 𝑄 , Key 𝐾 and value 𝑉 . The 𝑄
queries information from the𝐾 −𝑉 pairs according to the similarity
matrix between 𝑄 and 𝐾 : Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾𝑇 )𝑉 .
However, the size of the weight matrix softmax(𝑄𝐾𝑇 ) increases
quadratically with the image size and the computational cost is
unacceptable. As a result, directly applying scale-space analysis by
conducting attention between features of different scales is infeasi-
ble. The absence of the scale-space analysis impedes the capability
of the models to capture multi-scale scenes. Although existing meth-
ods [10, 18, 59] optimize the quadratic complexity to linear using
linear attention [24], it comes at the cost of sacrificing represen-
tational capability [6] and matching accuracy [63, 72]. Therefore,
we introduce our Scale-Aware Dynamic Pruning Attention, which
injects the scale space analysis into the attention mechanism.

SADPA. The design of SADPA is shown in the right-down part
of Figure. 2, which performs attention at different scales in parallel.
SADPA takes the source and target feature maps 𝐹𝑠 and 𝐹𝑡 and their

corresponding pruning masks𝑀𝑠 and𝑀𝑡 as input. SADPA uses a
Linear module to project 𝐹𝑠 into Query and then trims unnecessary
source features by the mask𝑀𝑠 :

𝑄 = Linear(𝐹𝑠 ) ⊗ 𝑀𝑠 (6)
where ⊗ denotes element-wise mask operation and Linear(·) is a
learned linear transformation. SADPA captures multi-scale features
by downsampling the target feature map 𝐹𝑡 to construct a 3-level
feature pyramid using convolution layers with varying kernel sizes
and strides. Specifically, 𝐹𝑡 is reduced to 1

32 resolution to be the
coarsest Key and Value. No pruning mask is applied to model the
long-range dependencies and large scenes:

𝐾𝑖 = 𝑉𝑖 = Conv𝑖 (𝐹𝑡 ), 𝑖 = 1 (7)
where Conv𝑖 means a convolutional operator with kernel size and
stride of 𝑟𝑖 . The other two layers in the pyramid are downsampled
into 1

16 and 1
8 resolution separately to encode the local neighbor-

hood constraints and small scenes. In order to reduce the compu-
tational cost and avoid disruption caused by irrelevant features,
pruning masks is applied to prune irrelevant features. We down-
sample the pruning masks to the same size as the feature maps:

𝐾𝑖 = 𝑉𝑖 = Conv𝑖 (𝐹𝑡 ) ⊗ down𝑖 (𝑀𝑡 ), 𝑖 ∈ {2, 3} (8)
where down𝑖 denotes nearest-neighbor interpolation by the ratio 𝑟𝑖 .
Then, the attention is performed at different scales and the retrieved
messages𝑚𝑖 from different scales are concatenated and fused with
an FFN to update the source features:

𝑚𝑖 = Attention(𝑄,𝐾𝑖 ,𝑉𝑖 ), 𝑖 ∈ {1, 2, 3},
𝐹𝑜𝑢𝑡 = FFN(𝑚1 ⊕𝑚2 ⊕𝑚3, 𝐹𝑠 ) .

(9)

So SADPA injects the scale space analysis into the attention mecha-
nism by projecting the𝐾 and𝑉 into different scales via convolutions
before computing the attention matrix. It allows attention process-
ing at various scales: fine-level attention retains more local details,
whereas coarse-level attention captures broader image contexts. By
excluding the irrelevant features during the fine-level attentions,
the computational cost and disruption are largely reduced.

Positional Encoding. The spatial relationship of features is
crucial for matching. But the attention mechanism falls short in
recognizing spatial positional relationships. Therefore, a positional
encoding is necessary. Previous methods [10, 18, 59] use the 2D
extension of the standard sinusoidal encoding following DETR [8].
However, in the context of two-view geometry, it’s apparent that
the positioning of visual elements changes consistently in relation
to camera movements within the image plane. This phenomenon
underscores the need for an encoding that prioritizes relative posi-
tion over absolute position. we adopt the Rotary Position Embed-
ding (RoPE) [58] to remedy this problem. It allows the model to
effectively identify the relative positioning of point 𝑗 from point 𝑖 .
We only apply RoPE in self SADPA, because it makes no sense to
compute the relative positions across images.

3.3 Match Prediction by Weighted
Dual-Softmax

After the update by 𝐿 MPM blocks, we get the final transformed
features 𝐹𝐴

𝐿
and 𝐹𝐵

𝐿
and flatten them for further use. We also obtain

their corresponding estimated NMI 𝜎𝐴
𝐿
and 𝜎𝐵

𝐿
at the last MPM

layer. We calculate the matching matrix P combining both the
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similarity and the estimated NMI:
P(𝑖, 𝑗) = 𝜎𝐴𝐿 (𝑖)𝜎

𝐵
𝐿 ( 𝑗)softmax(𝑆 (𝑖, ·)) 𝑗 · softmax(𝑆 (·, 𝑗))𝑖 (10)

where 𝑆 is the similarity matrix computed by the features: 𝑆 (𝑖, 𝑗) =
𝜏 ·

〈
𝐹𝐴
𝐿
(𝑖), 𝐹𝐵

𝐿
( 𝑗)

〉
. 𝜏 is the temperature coefficient. The NMI is

used to weight the matching matrix, as the valid match points
should be both relevant and similar. We selected matches with
P(𝑖, 𝑗) > 𝜃𝑐 and filtered them using the mutual nearest neighbor
strategy, resulting the coarse matchesM𝑐 .

3.4 Supervision
The final loss is composed of three parts: coarse matching loss L𝑐 ,
sub-pixel refinement loss L𝑓 and patch pruning loss L𝑝 :

L = L𝑐 + L𝑓 + L𝑝 (11)

Coarse Matching Loss. We use cross entropy loss to supervise
the coarse matching matrix P:

L𝑐 = −
1���M𝑔𝑡
𝑐

��� ∑︁
(𝑖, 𝑗) ∈M𝑔𝑡

𝑐

logP(𝑖, 𝑗) (12)

The ground-truth coarse matchesM𝑔𝑡
𝑐 is calculated from the cam-

era poses and depth maps at coarse resolution.

Sub-pixel Refinement Loss. Following LoFTR [59], we use the
L2-distance between each refined coordinate and the ground truth
reprojection coordinate and normalize it by the coordinate variance
𝜙 :

L𝑓 =
1��M𝑓

�� ∑︁
(𝑖, 𝑗 ′)∈M𝑓

1
𝜙2 (𝑖)




 𝑗 ′ − 𝑗 ′𝑔𝑡 


2 , (13)

We compute the the 𝑗 ′𝑔𝑡 by warping 𝑖 on I𝐴 to I𝐵 with the ground-
truth pose and depth.

Patch Pruning Loss. We supervise the Patch Pruning module
as the negative log-likelihood loss over the estimated NMI for all
features. Patch features derived from I𝐴 that can find matches in I𝐵

are defined as 𝐴𝑚 , and the rest patch features can not find matches
are defined as𝐴𝑛 . 𝐵𝑚 and 𝐵𝑛 is defined similarly. For NMI estimated
at 𝑙-th MPM layer, the loss L𝐴𝑝 (𝑙) and L𝐵𝑝 (𝑙) is defined as:

L𝐴𝑝 (𝑙) = −(
1
|𝐴𝑚 |

∑︁
𝑖∈𝐴𝑚

log(𝜎𝐴
𝑙
(𝑖)) + 1

|𝐴𝑛 |
∑︁
𝑖∈𝐴𝑛

log(1 − 𝜎𝐴
𝑙
(𝑖)))

L𝐵𝑝 (𝑙) = −(
1
|𝐵𝑚 |

∑︁
𝑗 ∈𝐵𝑚

log(𝜎𝐵
𝑙
( 𝑗)) + 1

|𝐵𝑛 |
∑︁
𝑗 ∈𝐵𝑛

log(1 − 𝜎𝐵
𝑙
( 𝑗)))

(14)
We supervise it at every MPM layer. The final L𝑝 is defined as:

L𝑝 =
1
𝐿

∑︁
𝑙

L𝐴𝑝 (𝑙) + L𝐵𝑝 (𝑙)
2

(15)

3.5 Implementation Details
We adopt the same ResNet-FPN [21, 31] architecture as LoFTR [59]
to extract image features. The dimension for coarse features and
fine features are 256 and 128, respectively. We use 4 MPM layers for
feature updating and pruning. For each SADPA, the convolutional
kernel sizes are 4, 2 and 1 from coarse to fine. We use an efficient
implementation of attention [12] and each attention unit has 4
heads. We only train the model on the MegaDepth [29] dataset
without any data augmentation and test it on all datasets and tasks

Homography AUCCategory Methods @3px @5px @10px
SP [13]+SG [52] 53.9 68.3 81.7
D2Net [14]+NN 23.2 35.9 53.6
R2D2 [44]+NN 50.6 63.9 76.8
Patch2Pix [75] 46.4 59.2 73.1

Sparse

DISK [65]+NN 52.3 64.9 78.9
DRC-Net [28] 50.6 56.2 68.3
Sparse-NCNet [45] 48.9 54.2 67,1
LoFTR [59] 65.9 75.6 84.6
Quadtree [63] 66.3 76.2 84.9
ASpanFormer [10] 67.4 76.9 85.6
3DG-STFM [38] 64.7 73.1 81.0
ASTR [72] 71.7 80.3 88.0
TopicFM [18] 70.9 80.2 88.3
Efficient LoFTR [70] 66.5 76.4 85.5

Dense

PRISM(Ours) 71.9 80.4 88.3
Table 1: Homography estimation on Hpatches.

to demonstrate the generalization ability. We follow the same train-
test split as in LoFTR [59]. We use the AdamW [33] optimizer with
an initial learning rate of 8 × 10−4. The entire model is trained
end-to-end with a batch size of 24 on 8 NVIDIA A100, taking 1.5d
to converge.

4 EXPERIMENTS
4.1 Homography Estimation
Homography is crucial in two-view geometry. It enables the trans-
formation of perspectives between two images of the same scene.
We assess homography accuracy by measuring corner correctness.
We warp the four corners of a reference image to another using esti-
mated homography and ground truth homography respectively and
calculate the corner error between the warped points, as in [52, 59].

Setup . We evaluate on the widely used HPatches dataset [1].
HPatches comprises 52 sequences showing significant changes in
illumination and 56 sequences displaying pronounced changes in
viewpoint. Each sequence includes 1 reference image alongside 5
query images. We report the Area Under the cumulative Curve
(AUC) of the corner error up to thresholds of 3, 5, and 10 pixels.
OpenCV’s RANSAC algorithm is used for robust estimation. We
compare with two categories of methods: dense methods [10, 18,
28, 38, 45, 59, 63, 70, 72] and sparse methods [14, 44, 52, 52, 65, 75].

Results. Table 1 shows that PRISM outperforms other baselines
under all error thresholds, which strongly proves the effectiveness
of our method. We attribute the outstanding performance to the
ability to capture multi-scale contexts provided by the SADPA. The
iterative pruning paradigm also contributes to the accuracy by
greatly reducing the mismatches.

4.2 Relative Pose Estimation
Relative pose estimation plays a fundamental role for various ap-
plications. We measure the relative pose error by the maximum
angular error in rotation and translation. To determine the cam-
era pose, we compute the essential matrix using predicted match
points and apply both the RANSAC of OpenCV and LO-RANSAC
of Poselib [26] for robust estimation.
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Figure 4: Qualitative Results. We compare PRISM with SP [13]+LG [32] and LoFTR [59] in ScanNet [11] and MegaDepth [29] dataset. As
shown in the figure, PRISM can generate more dense matches and avoid most outliers in both indoor and outdoor scenes. The red color
indicates epipolar error beyond 5 × 104 (in the normalized image coordinates). More visualizations are provided in the Appendix.

RANSAC AUC Lo-RANSAC AUCMethods @5◦ @10◦ @20◦ @5◦ @10◦ @20◦
SP [13]+SG [52] 42.2 61.2 76.0 65.8 78.7 87.5
D2-Net [14]+NN 19.6 36.3 54.6 33.4 47.3 60.4
R2D2 [44]+NN 36.2 54.1 69.4 48.0 62.8 73.8Sp

ar
se

SP [13]+LG [32] 49.4 67.2 80.1 66.3 79.0 87.9
LoFTR [59] 52.8 69.2 81.2 64.3 76.6 85.3
Quadtree [63] 54.6 70.5 82.2 65.6 78.0 86.5
ASpanFormer [10] 55.3 71.5 83.1 68.1 80.0 88.3
3DG-STFM [38] 52.6 68.5 80.0 - - -
AdaMatcher [22] 52.4 69.7 82.1 64.1 76.8 85.6
ASTR [72] 58.4 73.1 83.8 - - -
TopicFM [18] 58.2 72.8 83.2 64.1 76.7 85.6
EfficientLoFTR [70] 56.4 72.2 83.5 67.5 79.1 87.0

D
en
se

PRISM (ours) 60.0 74.9 85.1 68.8 80.6 88.9
Table 2: Relative pose estimation on MegaDepth dataset.

Setup. We evaluate our PRISM model on MegaDepth [29] and
ScanNet [11] for relative pose estimation. MegaDepth is an ex-
tensive outdoor dataset with 1 million images across 196 scenes,
reconstructed using COLMAP [54]. For testing, we use the same
1500 pairs as in [59], resizing images to a longer dimension of
1152. ScanNet is usually used for indoor pose estimation. It fea-
tures monocular sequences with ground truth data and is chal-
lenging due to wide baselines and textureless regions. We follow
the protocol of [59], resizing images to 640x480. To verify the
PRISM’s generalizability, the model is only trained on MegaDepth
and tested on both datasets. Following [52, 59], we report the AUC
of pose error at thresholds of 5◦, 10◦, and 20◦. Note that we use
the official codes, configurations and pre-trained weights to re-
port the AUC under the Lo-RANSAC solver. We compare with
dense methods [10, 18, 22, 28, 38, 59, 63, 70, 72, 75] and sparse
methods [13, 14, 32, 44, 52, 73].

Methods RANSAC AUC
@5◦ @10◦ @20◦

Sp
ar
se

D2-Net [14]+NN 5.5 14.5 28.0
SP [13]+SG [52] 16.2 33.8 51.8
SP [13]+OANet [73] 11.8 26.9 43.9
SP [52]+LG [32] 17.7 34.6 51.2

D
en
se

DRC-Net [28] 7.7 17.9 30.5
LoFTR [59] 16.9 40.8 50.6
Quadtree [63] 19.0 37.3 53.5
ASpanFormer [10] 19.6 37.7 54.4
ASTR [72] 19.4 37.6 54.4
TopicFM [18] 17.3 34.5 50.9
Patch2Pix [75] 9.6 20.2 32.6
EfficientLoFTR [70] 19.2 37.0 53.6
PRISM (Ours) 23.9 41.8 58.9

Table 3: Relative pose estimation on ScanNet dataset.

Results. Table 2 and Table 3 provide the AUC of pose error
for MegaDepth and ScanNet, respectively. As we can see, our pro-
posed PRISM achieves new state-of-the-art performance for all
evaluation metrics. Thanks to the proposed Multi-scale Pruning
Module, PRISM can avoid a large number of incorrect matches
and perceive multi-scale information. Figure 4 qualitatively demon-
strates our method’s performance against others. For the ScanNet
dataset, our method notably improves by 4.3% in AUC@5◦ and 4.5%
in AUC@20◦ compared to the best model trained on MegaDepth,
indicating the impressive generalization capability of our method.

4.3 Visual Localization
Visual Localization is essential in computer vision. The percentage
of pose errors satisfying both angular and distance thresholds is
reported, as in the Long-Term Visual Localization Benchmark [64].

Setup. We evaluate PRISM on the InLoc [61] dataset for indoor
scenes and the Aachen Day-Night v1.1 [53, 74] dataset for outdoor
scenes. The InLoc dataset consists of 9,972 geometrically registered
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Methods DUC1 DUC2 overall
(0.25m, 10◦) / (0.5m, 10◦) / (1m, 10◦)

Sp
ar
se SP [13]+SG [52] 49.0/68.7/80.8 53.4/77.1/82.4 68.6

ClusterGNN [56] 47.5/69.7/79.8 53.4/77.1/84.7 68.7
SP [13]+LG [32] 49.0/68.2/79.3 55.0/74.8/79.4 67.6

D
en
se

LoFTR [59] 47.5/72.2/84.8 54.2/74.8/85.5 69.8
ASpanFormer [10] 51.5/73.7/86.0 55.0/74.0/81.7 70.3
Patch2Pix [75] 44.4/66.7/78.3 49.6/64.9/72.5 62.7
ASTR [72] 53.0/73.7/87.4 52.7/76.3/84.0 71.2
TopicFM [18] 52.0/74.7/87.4 53.4/74.8/83.2 70.9
CasMTR [7] 53.5/76.8/85.4 51.9/70.2/83.2 70.2
PRISM (Ours) 53.0/77.8/87.9 54.2/72.5/83.2 71.4

Table 4: Indoor visual localization on InLoc dataset.

RGBD indoor images and 329 query images with verified poses,
posing challenges in textureless or repetitive environments. We use
the two scenes named DUC1 and DUC2 for test as in [10, 59]. For
outdoor localization, the Aachen dataset provides 6,697 daytime and
191 nighttime images, highlighting the difficulty of matching under
significant illumination changes, especially at night. The metrics of
the daytime and nighttime divisions are reported. We follow the
guidelines provided by the Benchmark [64] to compute query poses.
For both the indoor and outdoor datasets, candidate image pairs are
identified using the pre-trained HLoc [50] system following [10, 32,
59]. Subsequently, camera poses are estimated utilizing our model,
which was trained on the MegaDepth dataset. Dense methods [7,
10, 18, 22, 28, 40, 59, 70, 72, 75] and sparse methods [9, 13, 32, 52, 56]
are compared.

Results. Table 4 presents the results for the InLoc dataset. PRISM
is better than all baselines on DUC1 and on par with state-of-the-
art methods on DUC2. Overall, we achieve the best performance
on average. On Aachen V1.1 dataset, as shown in table 5, PRISM
performs best on the day queries and the results on the night queries
are slightly lower than that of LightGlue [32]. We argue that the
Dense methods require quantification for the triangulation step
of the localization pipeline, which harms the accuracy. Compared
to dense methods, the performance of PRISM ranks among the
top tier on night queries. In general, our method shows promising
performances and strong generalization in visual localization tasks.
These evaluations demonstrate our network’s versatility across
different task settings.

4.4 Understanding PRISM
Ablation Study. To fully understand the different design deci-

sions in PRISM, we follow the same setting in Sec. 3.5 and conduct
ablation experiments on MegaDepth dataset, as shown in Tab. 6. 1)
Replacing the RoPE with the absolute positional encoding of LoFTR
results in a degraded AUC. 2)Without the Patching Pruningmodule,
there is a significant drop in pose estimation accuracy as expected.
This demonstrates the efficacy of the proposed Patch Pruning mod-
ule. 3) Using LoFTR’s Linear Attention instead of SADPA leads to a
noticeably declined result. We attribute this to the ability of SADPA
to aggregate multi-scale information. 4) Replaceing SADPA with
only single level attention at 1

8 resolution will lead to degraded
pose accuracy. It further validates the essentiality of the design of

Methods Day Night
(0.25m, 2◦) / (0.5m, 5◦) / (1m, 10◦)

Sp
ar
se

SP [13]+SG [52] 88.2/95.5/98.7 86.7/92.9/100
SGMNet [9] 86.8/94.2/97.7 83.7/91.8/99.0
ClusterGNN [56] 89.4/95.5/98.5 81.6/93.9/100
SP [13]+LG [32] 89.2/95.4/98.5 87.8/93.9/100

D
en
se

LoFTR [59] 88.7/95.6/99.0 78.5/90.6/99.0
ASpanFormer [10] 89.4/95.6/99.0 77.5/91.6/99.5
AdaMatcher [22] 89.2/95.9/99.2 79.1/92.1/99.5
PATS [40] 89.6/95.8/99.3 73.8/92.1/99.5
ASTR [72] 89.9/95.6/99.2 76.4/92.1/99.5
TopicFM [18] 90.2/95.9/98.9 77.5/91.1/99.5
EfficientLoFTR [70] 89.6/96.2/99.0 77.0/91.1/99.5
PRISM (Ours) 89.4/96.2/99.3 78.5/91.1/99.5

Table 5: Outdoor visual localization on Aachen Day-Night
v1.1 dataset.

Method Pose estimation AUC
@5◦ @10◦ @20◦

1)Replace RoPE to absolute positions 57.3 73.0 83.9
2)Without Patch Pruning 56.6 72.6 83.6
3)Replace SADPA with LoFTR’s Attention 55.3 70.9 82.9
4)Replace SADPA with single level design 57.7 73.2 84.3
5)Without weighted Softmax 58.5 73.4 84.1
Full 60.0 74.9 85.1

Table 6: Ablation study on MegaDepth dataset.

Methods resolution
640 × 640 832 × 832 960 × 960 1152 × 1152

LoFTR [59] 89.6/11.1 107.7/17.3 145.1/22.3 212.5/13.9
AspanFormer [10]119.3/16.7 173.0/20.4 208.3/22.5 289.2/13.9
PRISM(Ours) 99.4/5.4 119.7/7.7 153.3/9.9 209.1/13.5
Table 7: Impact of test image resolution on the MegaDepth
dataset [29].We report both the runtime(ms)/VRAM(GiB).

SADPA. 5) The absence of the weights (estimated NMI) of Softmax
will lead to a certain degree of performance degradation.

Impact of test image resolutions. We test the runtime and
VRAM of PRISM under different image resolutions and compare
with LoFTR [59] and AspanFormer [10], as shown in Table. 7. All
results are based on one single A100 GPU. For the runtime, PRISM is
slightly slower than LoFTR and largely outperforms AspanFormer.
In terms of VRAM, PRISM can save about half of the VRAM usage
compared to baselines in most cases.

5 CONCLUSION
In this paper, we propose PRogressive dependencymaxImization for
Scale-invariant image Matching (PRISM). PRISM gradually prunes
irrelevant patch features during the feature interactions. Mean-
while, in order to better handle the scale discrepancy, we propose
the Scale-Aware Dynamic Pruning Attention to aggregate infor-
mation from different scales via a hierarchical design. Extensive
experimental results on a wide range of benchmarks demonstrate
the effectiveness and generalization of PRISM. With careful en-
gineering optimizations, PRISM’s time efficiency can be further
enhanced.
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