A Theoretical Guarantees for FINE Algorithm

This section provides the detailed proof for Theorem |l| and the lower bounds of the precision and
recall. We derive such theorems with the concentration inequalities in probabilistic theory.

A.1 Preliminaries

Spectral Norm. In this section, we frequently use the spectral norm. For any matrix A € R™*",
the spectral norm are defined as follows:

|Allz = sup [lAz]],

z€R™:||z||=1

where a;; is the (¢, j) element of A.

Singular Value Decomposition (SVD). Let A € R™*™. There exist orthogonal matrices that
satisfy the following:

U=lu,ug -,y €ER™™ and V = [vy,vs, - ,v,] € R™" 5
such that UTAV = diag[al, 09, -+ 7amin{m7n}]
where 01 > 03 > -+ > Oynin{m,n} Which are called singular values and diag[-] is a diagonal matrix

whose diagonal consists of the vector in the bracket [-]. (Note that UUT = UTU = I when U is
an orthogonal matrix).

A.2 Proof of Theorem 1

We deal with some require lemmas which are used for the proof of

Lemma 1. Let V and W be orthogonal matrices and V. = [V1,Va| and W = [W1, Wy with
Vi, W; € RVXN_ Then, we have

Vv = WiV, = [[ViWell, = [V2 W,

I I

Proof. From the orthogonal invariance property,

[ViV] =Wy W[ [, = [V (ViV] - W, W)W,

_ 0 VIW,
“-vIiwe o |,

= max{HV'IVVzH2 ) HV;—W1H2}’

where the last line can be obtained from ||A||§ = MaXycRN:||x||,=1 HAX||§

Thus, to conclude this proof, it suffices to show that HVITWQ H2 = HVQT W, H2
Since Wi W/ + WoW, =1,
[VIW,[o= max x VIW,W,Vix

x€ERK:||x||,=1

max V'V (I-W,W/)Vx
x€eRK:||x||,=1

= max 1-x'V/W,W/Vix

X ERK :|[x]|,=1

=1- max x'V, W,W]Vx

x€RK:||x|[,=1
=1-M(V{ W, W/ V))
=1—0,(V{W))2,
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where o1, (V] W) is the k-th singular value of V| W . Analogously, we can show that

WV,

[, =1—ox(V]iWy)%

Thus, we have

IViVT = WaW] ||, = [VIWa, = [[VI W], = /1 - ou (VT W)z,

I

O
Lemma 2. (Weyl’s Theorem) For any real matrices A, B € R™*",
0i(A+B) < 0i(A) +01(B).
Proof. From the definition of the SVD, for any given matrix X € R™*".
Ui X_ = Su v A + B
( ) V: d1m(V) s VEV: HVH =1 H HQ
< sup vTAllL £ IvTB
V:idim(V)=i VEV: HVH H HQ H H2
< sup viAll +IB
Vidim(V)=i VEV: |\v\| H H2 Bl
< 0i(A) + o1(B).
O

Lemma 3. (David-Kahan sin Theorem) For given symmetric matrices A,B € R"*™ let A =

UAUT and A + B = UAU be eigenvalue decomposition of A and A + B. Then,

T B[,
27 M(A) = X1 (A) — B,

HUlrk(Ulzk)T - ﬂl:k(ﬂlzk)

where Uy, and Uy.j, denote the first k columns of U and U, respectively.

Proof. Assume that A and A + B have non-negative eigenvalues. If not, there exists a large enough
constant ¢ to make A + cI so that A and A + B become positive semi-definite matrices. Note that
A (resp. A + B) and A (resp. A + B) share the same eigenvectors and eigenvalue gaps \;(A) —
Ait1(A).

From the Lemma[2] we have

Ai(A) = IBll; < XMi(A+B) < Ni(A) + B, 4)

Thus,
Aes1(A) + Bl (Uks1in) " Uprainllz = [[(Opgrm) ' (A +B)Url2 S)
> [|(Uks1:n) " AUL]]2 — 1B, (6)

> Me(A)[(Ukgrn) Uil 2 = IBll, (D

From (7)), we have

B, .
Ae(A) = Aey1(A) = [|B,

ULk(Urp) " = Up(Upp) ]2 <
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Proof of (9) : Since the columns of [_Jkﬂm are singular vectors of A + B,

(ﬂk+1:n)T(A + B)Ulzk - Ak+1:n(ﬁk+l:n)TUl:k~

Therefore,

[(Uks1:n) (A +B)Urill, < [[Akstinly || (Oksrin) " Urik|ly = Mes1 (A+B) || (Upgain) " U,

From (@), we have A4 1(A + B) < A\py1(A) + B,
Proof of (6) : From the triangle inequality,

|(Uks1m) TAU L], = [|(Oks1in) T (A + B)Urg + (=Ups1:n) ' BUr
S “ﬁkJrl:n)T(A + B)Ul:kHQ + H(_I_Jk+1:n)TBU1:kH2 .
We have

(= Oks10) "BU e, < [[(=Oss1) ||, IBlly U1ty = Bl -

Proof of @) : Since the columns of Uy are singular vectors of A,

(ﬁkJrl:n)TAUl:k = (I_JkJrl:n)TUl:kAlzk

Therefore,

H(ﬁk-‘rl:n)TAUlzkHQ = H(ﬁk—‘rlzn)TUl:kAl:kHQ Z H(ﬁk—&-l:n)TUlzkHQ Ak(A)
Lemma 4. Let M € S¥? and let N, be an e-net of S*'. Then
1 T
M|, < 1 o ax 'y My|

Proof. Let M € S%* and let N, be an e-net of S?~!. Furthermore, we define y € N, satisfy
|z — yll, < e Then,

lzMx —y ' My| = |z "M(z —y) + y M(z — y)|

(®)
< Ja"M(z —y)| + |y M(z - y)|
Looking at |2 T M(x — y)| we have
" M(z — y)| < [M(z —y)ll, ||zl
< M|, |z = yll, |2l 9

< M|y e
Applying the same argument to y ' M(z — y)| gives us [zMz — y " My| < 2¢ | M]||,. To complete

the proof, we see that | M||, = maxzcge—1 ' Mz < 2¢|| M|, + maxyen, y ' My. Rearranging
the equation gives |[M||, < 15~ maxyen, y ' My as desired. O
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Lemma 5. Let x1,...,x, be an i.id sequence of o sub-gaussian random vectors such that
Viz,]| = X and let 32,, == % S @iz be the empirical gram matrix. Then, there exists a univer-
sal constant C' > 0 such that, for 06 € (0, 1), with probability at least 1 — §

|2 -2, <« Gy [TERCTD) d-+1oa(2/5)
o? - n ’ n

Proof. Applying Lemmaon 3, -~ S withe=1 /4 we have

Hﬁln — ZH <2 max |v'3%, — T
2 VENy /4

Additionally, we know that Ny /4 < 9¢. From here, we can apply standard concentration tools as
follows:

P(Hﬁ:n - EH > ) < P( max v (2, — 2)v| > t/2)
2 VEN1/4 (10)

< |N1/4|P(|’UiT(ﬁ3n — X)) > t/2)

We rewrite v, (3,, — 2)v; as follows:

ol (S0 = Eoi = = > (0] w;)* ~E[(v] ;)]
i=1
1 n
o sz — E[z]
i=1
where z;’s are independent and by assumption v;'z; € SG(0?) so that z; — E[z;] €

SE((1602)%,1602). Applying the sub-exponential tail bound gives us

T.e n . n n
P(v, (2, —X)v;| >t/2) < 2exp [—2 min {W, 3202}}
so that
. n n n
PHE”—ZH >1)<2.9%exp |— 2 mind —b
( , 2D S AP TH T (320227 3202
Inverting the bound gives the desired result. O

A.2.1 Proof of Theorem[I]

Proof. Let v, be the unit vector, which is orthogonal to v. Then, w can be expressed by v, and
v (i.e. w = cosf - v +sinf - v, with —7/2 < 0 < 7/2). Since vv ' + vavI = I, we have

w=vv'w+v v w.

Then, we have

T T T T

ww' = (vo'w+viv]w)(ve w+v w]

(11)
=ovv ww' vv' + vaIwa'ovT + ’U’UT’UJ'U)T’UL’UI + vlewaULvI

w)

Let A and B be the projection matrices for clean instances and whole instances for using the David-
Kahan sin Theorem as followings:
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Ny

A=E Z('v+ei)('o+6i)T +viv]ww' v,v] +0%1 (12)
=1
Ny N_
A+B=) (w+e)v+e) +> (we)(w+e)' (13)
i=1 j=1

The difference between first eigenvalue and second eigenvalue of gram matrix A is equal to

M(A) = X(A) =N, — N_sin?6 > N, — N_sin@ (14)

By triangular inequality, we have

Ny N_
Bl < Z(U+€i)(v+6i)T_va —o’1|| + Z(w+€i)(w+€i)T_wa_UQI
=1 1=1
2 2
N_
+ Z ww' — UIwavLUI
=1

2
5)

For the first and the second terms of RHS in Eq. (T3)), using Lemma [5] with probability at least
1 — 6/2, we can derive each term as followings:

Ny
Z(v +e)v+e) —vv' —o?I|| <N, Co?max dt log(4/5)) d + log(4/9) ,
i=1 N N

2

N_
d+log(4/0) d+log(4/9)
T T_ 2 2
jz_:l(w—i—ej)(w—i—ej) —ww —o°I)| <N_Co max{ N , N
= 2

As N, N_ — oo, with probability at least 1 — §

Ny N_
NL Z(U+ei)(v+ei)T —vv! —o?I|| + Z(w—l—ej)(w—i—ej)T —ww' —o’I
T | |li=t 5 |li=1 2
d+log(4/0) N_ |d+log(4/9) o [d+1og(4/6) o [d+1log(4/9)
< 2 e\ = [ RN T - e\EE) e\ ET
<Co N, + N, N Ofo N, +o°T N

(16)

For the third term of RHS in Eq. (I3), we have

N_
E ww' — vIwavJ_vI =N_- va—rww—rvv—r + /UJ_'UIwa/U/UT + vawaULvIHQ
Jj=1

2
< N_ -3cosf
(17)
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Hence, by using Eq. (T4), Eq. (1), and Eq. for Lemma 3] when 7 is sufficiently small, we have

TH 3TCOSQ+O(02\/@)
= : (18)
2 1—7(sin0+3cos€)—o(02\/@)

||uuT — Vv

A.3 Additional Theorem

After projecting the features on the principal component of FINE detector, we aim to guarantee the
lower bounds for the precision and recall of such values with high probability. Since the feature
distribution comprises two Gaussian distributions, the projected distribution is also a mixture of
two Gaussian distributions. Here, by LDA assumptions, its decision boundary with { = 0.5 is the
same as the average of mean of two clusters. In this situation, we provide the lower bounds for the
precision and recall of our FINE detector in Theorem 2}

Theorem 2. Let ® be the cumulative distribution function (CDF) of N(0,1). Additionally, we
define the z; as linear projection of x; on arbitrary vector. For the decision boundary b =

1 Z]'V:11{y-:1}zi ZN:l Loy, ——132 . .7 ..
5 (= Ny + == ), with probability 1-0, the lower bounds for the precision and

recall can be derived as Eq. (_@ and Eq. (22).

Proof N4 and N_ are equal to >0 Try,—1; and SN T(y,— 1y, respectively. With
definition the mean of the projection values of clean instances is (u'w)? and that of
i ly= %

noisy instances is (u'w)?2. By the central limit theorem (CLT), we have N
N .
N((u—rv)z,]‘\’,—i) and 2:111;\[%1}2 ~ N((uTw)Q,%). Furthermore, we can get
SN Iy, —1y 2 SN My, ——13Z:
1 A{{: uZioy 1 1{\;/_ 1} NN((uTU)z—I—(uTw)Q,(NiJr—}—ﬁ)oQ)

By the concentration inequality on standard Gaussian distribution, we have

2

N N
N Ly Z N Ay 1 Z
P<|Zz—1 {vi=1} Z+Zz:1 =D (wT)? + (uw)?)

N+ N, m _|_
(19)
Therefore, with probability 1 — 6,
(uv)? + (u"w)? 1 1
- - <

5 C N, + N, log(2/6) <b

T2 T,.\2 (20)
(u'v)* + (v w) 1 1
< i
b< 5 +C N, + N, log(2/0)
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where C > 0 is a constant. Then, by using the Eq. (20), we can derive the lower bound for the recall
as follows:

RECALL = P(Z > b|Y = +1) = P(Z > b|Y = +1)

>p(z> Tl c\/(l + 1) log(2/8)|Y = +1)

2 Ny Ny
eI e C\/(N1 " :1) )
=P(N(0,1) > o 2C\/<N1+2: ) 10g(2/6))
P +2C\/<N1+2; +) i)
e (),
I Sl (Ni; ) os2f®)
@

Furthermore, we have lower bound for precision as follows:

PRECISION = P(Y = +1|Z > b)
_ P(Z>b)Y =+1)P(Y = +1)
Yic(1.41y P(Z > bY =i)P(Y =)

P(Z > et +c\/(N1

+
St P2 > 3= =0\ (3 + 3 ) log2/p)Y = )P =

) g(2/6)]Y = +1)P(Y = +1)

P(Z > #=Fh= 4 C\/(Nl+ + N%) log(2/8)[Y = +1)P(Y = +1)

Miciorn P(Z > Betis c\/ N% + NL log(2/8)|Y = i)P(Y = i)

Y

P(z>%+c\/(ﬁ+ﬁ) log(2/8)|Y =—1)P(Y =—1)

1+
P(Z>#—C\/(ﬁ+ﬁ) log(2/8)|Y =+1)P(Y =+1)

1

—a—2c,/( L)l 2/68
() 1o(2/)

1 + p—-®( 20 )
A—gc\/(NL.FNL) log(2/6)
+ Ny
p+-<1>( S0 )

(22)

where A := u"v — u"w, and p, and p_ are the noise distribution for clean instances and noisy

instances, respectively. Additionally, we can find that the difference of mean between two Gaussian
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distribution, A > 0 is an important factor of computing both lower bounds. As A become larger, we
have larger lower bounds for both recall and precision. O

B Implementation Details for

Infsection 4] there are two reporting styles regarding the test accuracy: (1) reporting the accuracy with
statistics and (2) reporting the best and last test accuracy. For the first one, we leverage an additional
validation set to select the best model [[14}29]], and thus the reported accuracy is computed with this
selected model. In the next case, we report both the best and last test accuracy without the usage of
validation set [25]. We reproduce all experimental results referring to other official repositoriesgﬂ

Dataset. In our expereiments, we compare the methods regarding image classification on three
benchmark datasets: CIFAR-10, CIFAR-100, and Clothing-1M [44]]°| Because CIFAR-10, CIFAR-
100 do not have predefined validation sets, we retain 10% of the training sets to perform valida-
tion [29]).

Data Preprocessing We use the same settings in [29]]. We apply normalization and simple data
augmentation techniques (random crop and horizontal flip) on the training sets of all datasets. The
size of the random crop is set to 32 for the CIFAR datasets and 224 for ClothingIM referred to
previous works [29} 151 [19].

B.1 Sample-Selection Approaches

As an extension on the experiments in original papers [14, 47,142, |32], we conduct experiments on
various noise settings. We use the same hyperparameter settings written in each paper (algorithm 2)).
Therefore, we unify the hyperparameter settings. In this experiment, we use ResNet-34 models
and reported their accuracy. For using FINE detector, we substitute the Topofilter [42] with FINE.
Specifically, we use 40 epochs for warmup stage, and the data selection using FINE detector is
performed every 10 epochs for computational efficiency referred to the alternative method [42]]. The
other settings are the same with them.

B.2 Semi-Superivsed Approaches

DivideMix [25]] solves a noisy classification challenge as semi-supervised approach. It trains two
separated networks to avoid confirmation errors. The training pipeleine consists of co-divide phase
and semi-supervised learning (SSL) phase. Firstly, in co-divide phase, two networks divide the whole
training set into clean and noisy subset and provide them to each other. In SSL phase, each network
utilizes clean and noisy subset as labeled and unlabeled training set, respectively, and do the Mix-
Match [4] after processing label adjustment, co-refinement and co-guessing. It adjusts the labels of
given samples with each model’s prediction, and this adjustment can be thought as a label smoothing
for robust training.

In co-divide phase, each network calculates cross-entropy (CE) loss value of each training sample
and fits them into Gaussian Mixture Model (GMM) with two components which indicate the distri-
bution of clean and noisy subsets. From this process, each sample has clean probability which means
how close the sample is to the ‘clean’ components of GMM.

We demonstrate that FINE detector may be a substitute for the noisy detector in co-divide
phase (algorithm 3). In every training epoch in DivideMix, the noisy instances are filtered through
our FINE detector. [algorithm 3|represents the details about the modified algorithm, written based on
Dividemix original paper. All hyper-parameters settings are the same with [25]], even for the clean
probability threshold (.

*https://github.com/bhanML/Co-teaching

*https://github.com/LiJunnan1992/DivideMix

https://github.com/shengliu66/ELR

SThis dataset is not public, and thus we contact the main owner of this dataset to access this dataset. Related
procedures are in https://github.com/Cysu/noisy_labell
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Algorithm 2: Sample-Selection with FINE

INPUT : weight parameters of a network 6, D = (X, )): training set, number of classes K
OUTPUT : ¢
1: 8 =WarmUp(X, ), )
2: while ¢ < MaxEpoch do

for (x;,y;) € D do

zi < g(xi)

Update the gram matrix £, < 3, + 2;2;
end for
/* Generate the principal component with eigen decomposition */
fork=1,...,Kdo

Uy, A, < EIGEN DECOMPOSITION OF X

uy <+ THE FIRST COLUMN OF Uy,
end for
/* Compute the alignment score and get clean subset C */
11: for (x;, Yi) € Ce_1 do
12: Compute the FINE score f; = (u,,, z;)” and F,, < F,, U{f:}
13:  end for

/* Finding the samples whose clean probability is larger than ¢ */

14: C. + C.UGMM (F,C) forallk=1,...,. K
15:  Train network 6 using loss function £ on C,
16: end while

AN A

@9 e

1

Algorithm 3: DivideMix [25]] with FINE

INPUT : 0 and 9(2): weight parameters of two networks, D = (X, )): training set , 7: clean
probability threshold, M: number of augmentations, 7": sharpening temperature, \,,:
unsupervised loss weight, a: Beta distribution parameter for MixMatch, FINE

ouTtpUT : A and H)

1: 0, 92 = WarmUp(X, Y, 01 (2)
2: while e < MazEpoch do

3: C£2), W® = FINE(X,),60) > W) is a set of the probabilities from #(2) model
4: Cél), WO = FINE(X,),6?) > W) is a set of the probabilities from /(1) model
5: fork=1,2do

. (k) _ N lap g (k) A (k)
6: XV = (-Twyzawz”wz >, (xuyz) €Ce 7v(xzayszz) S (X,y,W )

7. UM =p-a¥

8: for b =1to B do
9: for m = 1to M do
10: Zp,m = Augment(xy)
11: Up,m = Augment (up)
12: end for
13: Py = ﬁzmpmodel(jbmﬁ o(k))
14: Up = wpyp + (1 —wp)pp
15: Jp = Sharpen(yp, T')
16: Q= T]lwzm (pmodel(ﬂb,m; 0(1)) + Pmodel ({Lb,m; '9(2)))
17: qp = Sharpen(qy,T')
18: end for
19: X ={(Zpm,0p);0€1,...,B),me(1,...,M)}
20: u:{(ﬂb,magb);be(1,“';B>7m€(17"'7M)}
21: Lx, Ly = MizMatch(X,U)
22: L=Lx+ MLty +NLreg
23: 6k = SGD(L,0"))
24:  end for

25: end while
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B.3 Collaboration with Noise-Robust Loss Functions

We conduct experiments with CE, GCE, SCE, ELR mentioned in [subsubsection 4.2.3] We follow
all experiments settings presented in the [[29] except for the GCE on CIFAR-100 dataset. We use
ResNet-34 models and trained them using a standard Pytorch SGD optimizer with a momentum of
0.9. We set a batch size of 128 for all experiments. We utilize weight decay of 0.001 and set the initial
learning rate as 0.02, and reduce it by a factor of 100 after 40 and 80 epochs for CIFAR-10 (total
120 epochs) and after 80 and 120 epochs for CIFAR-100 (total 150 epochs). For noise-robust loss
functions, we train the network naively for 50 epochs, and conduct the FINE for every 10 epochs.

C More Results

C.1 Degree of Alignment

We additionally explain the vital role of the first eigenvector compared to other eigenvectors and the
mean vector.

Comparison to other eigenvectors. We provide robustness by means of the way the first eigen-
vector is robust to noisy vectors so that FINE can fix the noisy classifier by using segregated clean
data. Unlike the first eigenvector, the other eigenvectors can be significantly affected by noisy data

(Table 4).

Noise  Isteigenvector 2nd eigenvector

sym20  0.015+£0.009  0.043 £ 0.021
sym50  0.029 £0.019  0.078 £ 0.044
sym 80  0.057 £0.038  0.135 £ 0.052

Table 4: Comparison of the perturbations of Eq. (1) (|[uu" — vv T ||) on CIFAR-10 with symmetric
noise. The values in the table are written as mean (std) of the perturbations between u and v obtained
for each class.

Comparison to the mean vector. The mean vector can be a nice ad-hoc solution as a decision
boundary. This is because the first eigenvector of the gram matrix and the mean vector of the cluster
become similar under a low noise ratio. However, because the gram matrix of the cluster becomes
larger in a high noise ratio scenario, naive averaging can cause a lot of perturbation. On the other
side, because the first eigenvector arises from the principal component of the representation vectors,
FINE is more robust to noisy representations so that it has less perturbation and provides better
performance.

To support this explanation, we performed additional experiments by changing the anchor point with
the first eigenvector and the mean vector. As shows, the performance degradation occurs as
the noise ratio increases by replacing the first eigenvector with the mean vector

Noise sym 20 sym 50 sym 80

mean eigen mean  eigen mean  eigen

Acc (%) 9032 9142 86.03 8720 67.78  T1.55
F-score 0.8814 09217 0.4879 0.8626 0.6593 0.7339

Table 5: Comparison of test accuracies on the CIFAR-10 dataset.

C.2 Detailed values for [Figure 7|
We provide the detailed values for[Figure 7] in [Table 6}
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Table 6: Test accuracies (%) on CIFAR-10 and CIFAR-100 under different noisy types and fractions
for noise-robust loss approaches. The average accuracies and standard deviations over three trials
are reported.

Dataset CIFAR-10 | CIFAR-100

Sym Asym
20 50 80 40

Noisy Type Sym Asym

20 50 80 40

Noise Ratio

Standard 87.0 £0.1 782+08 538+10 80114 | 587+03 425403 18.1£0.8 42740.6

GCE 89.8+02 86.5+02 64114 76706 | 66.8+04 5734+£03 2924+07 472+12
SCE* 89.8+03 847+03 681408 825+05 | 704+0.1 488+13 259+04 484+09
ELR* 91.2 + 0.1 882+£01 729+£06 90.1+05 | 742+£02 59.1+£08 298406 73340.6
FINE 91.0 £ 0.1 873+£02 694+£1.1 89.5£0.1 703+02 642405 256+12 61.7+1.0
GCE+FINE | 914 +0.1 89+01 753+12 889+03 | 705£01 615+£05 37.0+21 624405
SCE + FINE 904+02 81402 705+08 869+03 | 709+03 641£07 299+08 643403
ELR +FINE | 91.5£0.1 88.5£0.1 747+£05 91.1+£02 | 749+02 667404 325+05 73.8+£04

C.3 Hyperparameter sensitivity towards ¢

We perform additional experiments; we report the test accuracy and fl1-score on CIFAR-10 with a
symmetric noise ratio of 80% across the value of the hyperparameter (Table 7). We can observe that
the performance change is small in the acceptable range from 0.4 to 0.6.

¢ 04 0.45 0.5 0.55 0.6

Acc (%) 69.75  73.02 71.55 68.80  67.78
F-score 0.7270 0.7466 0.7339 0.7165 0.7016

Table 7: Sensitivity analysis for hyperparameter zeta on CIFAR-10 with symmetric noise 80%.

C.4 Feature-dependent Label Noise

We additionally conducted experiments with our FINE methods on the feature-dependent
noise labels dataset (noise rates of 20% and 40% by following the experimental settings of
CORES [32]) (Table 8). To compare our FINE to CORES?.

C.5 Filtering Time Analysis

We compare the training times per one epoch of FINE with other filtering based methods, using a
single Nvidia GeForce RTX 2080. We also report the computational time when the different number
of data is used for eigen decomposition. We discover that there remain little difference as the num-
ber of instances is differently used for eigen decomposition. As shows, the computational
efficiency for FINE can be obtained without any degradation issues.

Dataset Noise 0.2 0.4

CIFAR-10 CORES? 89.50 82.84
CIFAR-10 FINE  89.84 86.68
CIFAR-100 CORES? 6125 48.96
CIFAR-100 FINE 6221 4781

Table 8: Comparison of test accuracies on clean datasets under feature-based label noise.
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Table 9: Filtering Time Analysis on CIFAR-10 dataset

DivideMix [25] FINE FINE using 1% dataset F-Dividemix F-Dividemix using 1% dataset

2.2s 20.1s I.1s 40.2s 2.1s

C.6 Other Real-world Noisy Datasets

We conduct additional experiments with our FINE method on the mini Webvision dataset for com-
parison with state-of-the-art methods (Table 10). In the comparison with CRUST [32]], which is
the state-of-the-art sample selection method, our method achieved 75.24% while CRUST achieved
72.40% on the test dataset of (mini) Webvision. Looking at the results, the difference between Di-
videmix [23] and F-Dividemix is marginal (Table 10). However, the reason for this is that we have
to reduce the batch size due to the limitation of our current GPU, and we cannot do hyperparam-
eter tuning (e.g. weight decay, learning rate). The final version will be able to run experiments by
supplementing this issue, and it is expected that the performance will be improved.

Method Webvision ImageNet

topl top5 topl top5
CRUST [32] 72.40 89.56 67.36 87.84
FINE 75.24 90.28 70.08 89.71
DivideMix [25] 77.32 91.64 75.20 90.84
F-DivideMix  77.28 9144 7520 91.28

Table 10: Comparison with state-of-the-art methods trained on (mini) WebVision dataset. Numbers
denote top-1 (top-5) accuracy (%) on the WebVision validation set and the ImageNet ILSVRC12
validation set.

25



