Under review as a conference paper at ICLR 2025

LW2G: LEARNING WHETHER TO GROW FOR PROMPT-
BASED CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) aims to learn in non-stationary scenarios, progressively
acquiring and maintaining knowledge from sequential tasks. Recent Prompt-
based Continual Learning (PCL) has achieved remarkable performance with Pre-
Trained Models (PTMs). These approaches grow a prompt sets pool by adding
a new set of prompts when learning each new task (prompt learning) and adopt
a matching mechanism to select the correct set for each testing sample (prompt
retrieval). Previous studies focus on the latter stage by improving the match-
ing mechanism to enhance Prompt Retrieval Accuracy (PRA). To promote cross-
task knowledge facilitation and form an effective and efficient prompt sets pool,
we propose a plug-in module in the former stage to Learn Whether to Grow
(LW2G) based on the disparities between tasks. Specifically, a shared set of
prompts is utilized when several tasks share certain commonalities, and a new set
is added when there are significant differences between the new task and previous
tasks. Inspired by Gradient Projection Continual Learning, our LW2G develops a
metric called Hinder Forward Capability (HFC) to measure the hindrance imposed
on learning new tasks by surgically modifying the original gradient onto the or-
thogonal complement of the old feature space. With HFC, an automated scheme
Dynamic Growing Approach adaptively learns whether to grow with a dynamic
threshold. Furthermore, we design a gradient-based constraint to ensure the con-
sistency between the updating prompts and pre-trained knowledge, and a prompts
weights reusing strategy to enhance forward transfer. Extensive experiments show
the effectiveness of our method.

1 INTRODUCTION

Compared to learning in stationary scenarios, Continual Learning (CL) equips systems with the
ability to learn in non-stationary environments, which is a core step toward achieving human-level
intelligence and human-like adaptation. In this learning paradigm, Deep Neural Networks (DNN5s)
need to learn from a sequential tasks while retaining past knowledge and acquiring novel knowledge.
However, simply utilizing standard optimization methods Diederik| (2014); Ruder] (2016) for train-
ing DNNs inevitably erases the parametric representations of old tasks with new input representa-
tions during updating. Therefore, a well-known problem Catastrophic Forgetting (CF) arises|French
(1999); Ramasesh et al.| (2021)); McCloskey & Cohen| (1989); Rebuffi et al.| (2017); Lewandowsky
& Li|(1995), where DNNs suffer severe performance degradation on old tasks due to the absence of
old data and domain shift in data distributions, making CL an extremely challenging problem.

Recently, Prompt-based Continual Learning (PCL) offers fresh insights into addressing CFWang
et al.[(2024)); |Douillard et al.[(2022));|Smith et al.|(2023b); Zhou et al.| (2023a); Wang et al.| (2022a3b));
Zhou et al.|(2022). These methods leverage frozen Pre-Trained Models (PTMs) rather than training
from scratch and employ Parameter-Efficient Fine-Tuning techniques (PEFTs) (Zhu et al.l 2023;
Dettmers et al.l 2024; Wang et al., [2020; Houlsby et al., [2019; [Jia et al.| 2022; Hu et al., |2021)),
e.g., prompt. Specifically, PCL involves two stages: (a) prompt learning: learning a task-wised set
of prompts to conditionally guide the PTM for the current task, which are stored in an expanding
prompt sets pool, and (b) prompt retrieval: predicting which task each testing sample belongs to
and choosing the corresponding prompt set. Recent studies Wang et al.|(2024); [Huang et al.| (2024);
Tran et al. (2023 have found that Prompt Retrieval Accuracy (PRA) can significantly influence
the performance, since an incorrect set for the testing samples results in a performance decline.

Under review as a conference paper at ICLR 2025

Additionally, learning each task individually not
only limits the potential for cross-task knowledge
facilitation but also leads to parameter redundancy
Yu et al.|(2024); Rypes¢ et al.| (2024).

One simple solution to this problem is to mimic hu-
mans’ integration of information Roediger & Mc-
Dermott (1995)); Hunt| (2006); |Arndt| (2006). For
instance, when several tasks share certain com- Figure 1: Illustration of HFC. S; represents
monalities, they can use a shared set of prompts. the feature space spanned by the old task i,
However, when tasks differ Signiﬁcantly, a new set while SlJ- denotes the orthogonal Comp]ement
should be added. Thus, by adaptively learning (o S;. Then, HFC(g, g;-) is denoted as HFC;.
whether to grow a new set for PCL, the amount

of selectable options is reduced, and the divergence between sets is increased, thereby improving
PRA. Furthermore, aggregating multiple tasks’ knowledge into a single set can also facilitate mu-
tual knowledge utilization and promotion among tasks. Nevertheless, establishing suitable metrics
to measure this commonality and obtaining task information a priori — all of which are challenging
in practice. Moreover, gradually integrating knowledge from multiple tasks into a single set also
presents an unresolved query, as the knowledge from different tasks can interfere with each other
during sequential learning.

Thanks to Gradient Projection-based Continual Learning (GPCL) [Zhao et al| (2023); [Saha et al.
(2021)); Lopez-Paz & Ranzato| (2017)), which proposes that learning would not forget if the updated
gradient is orthogonal to the feature space spanned by old tasks (denoted as orthogonal condition),
we propose to use the orthogonal condition in GPCL to integrate the knowledge from multiple tasks
into a single set of prompts. Specifically, in Figure[I] the gradient g of the new task is modified to its
projection gi- onto Si-, and gi- serves as the real gradient for updating parameters, thereby reducing
the forgetting of old knowledge in task 1. Furthermore, to address the dilemma of whether to grow
(i.e., initializing a new set of prompts) or not to grow (i.e., selecting an old set of prompts from the
pool), we introduce a novel metric called Hinder Forward Capability (HFC). HFC is calculated
as the angle 0 between the gradient of the new task g and its’ projection g. As illustrated in Figure
as HFC{HFC, then gi (g5, it implies that the hindrance to learning on the set of prompts to task
2 is larger than that on the set of prompts to task 1 when updating under the orthogonal condition.
Thus, when the hindrance on learning a new task is severe, PCL should choose to grow a new set;
conversely, it tends not to grow. Meanwhile, g presents a large projection onto Ss indicating higher
similarity between the new task and task 2 than with task 1.

Based on the analysis, we propose a plug-in module within PCL to Learn Whether to Grow
(LW2G), consisting of three components: Dynamic Growing Approach (DGA), Consistency with
Pre-trained Knowledge (CPK), and Facilitation for Forward Transfer (FFT). DGA is an automated
scheme to learn whether fo grow (adopt a new set of prompts and store it in the pool) or not to grow
(utilize an existing set of prompts from the pool) for new tasks based on the introduced HFC metric.
Specifically, to incorporate knowledge from multiple tasks into a single set of prompts, we first em-
ploy the orthogonal condition to learn new tasks without forgetting and calculate the hindrance on
learning with each set in the pool through HFC. Meanwhile, we consider an ideal scenario to gener-
ate a dynamic threshold, which learn the new task on the pre-trained knowledge feature space SP™
without any obstacles from old tasks. DGA chooses fo grow if all HFC values are above this thresh-
old, indicating that learning with each set in the pool encounters excessive hindrance. Conversely,
DGA chooses not to grow by selecting the old set of prompts with the minimum HFC and learning
the new task under the orthogonal condition. CPK aims to balance the disruption to pre-trained
knowledge caused by continual learning on new tasks and the reduced plasticity brought by strict
orthogonality to the entire pre-trained feature space SP*°. Therefore, we propose applying a soft con-
straint to the gradient when learning new tasks, aiming to align the gradient direction as closely as
possible with the feature space of the pre-trained knowledge, ensuring consistency between prompt
updates and pre-trained knowledge. Finally, FFT reuses the frozen weights from the existing set of
prompts with the maximum HFC to enhance forward transfer.

The contributions of this paper can be summarized as follows:

Under review as a conference paper at ICLR 2025

* We propose an automated learning scheme within PCL, by learning whether to grow or not to
grow set of prompts. We aim to form an effective and efficient prompt sets pool where each single
set contains knowledge from multiple tasks, thus facilitating cross-task promotion.

* We introduce HFC metric, which not only measures the difference between new and old tasks but
also evaluates the hindrance on learning new tasks under the strict orthogonal condition.

* LW2G is a plug-in module within existing PCL. Extensive experiments demonstrate its superiority
across multiple benchmarks and various CL settings.

2 RELATED WORK

Continual Learning and Gradient Projection Numerous efforts have been made to alleviate the
core issue of CF |[French| (1999); Ramasesh et al.| (2021)); McCloskey & Cohen| (1989), which can
be roughly categorized into three main categories: (1) Architecture-based, (2) Rehearsal-based, and
(3) Regularization-based. Architecture-based methods [Rusu et al.| (2016); [Yoon et al.| (2017); [Li
et al.| (2019); [Loo et al| (2020); Mallya & Lazebnik (2018)); [Serra et al.| (2018)); |[Ke et al.| (2020)
segregate components within the DNNs for each task by expanding the model or constraining the
learning rate of part of parameters. However, most of them designed for Task-CL, which is not
suitable for challenging Class-CL. Rehearsal-based methods|Buzzega et al.|(2020);|(Cha et al.|(2021));
Rebuffi et al. (2017); 'Wu et al.| (2019); [Ebrahimi1 et al.| (2020); |Pham et al. (2021); Zhao et al.
(2021);|De Lange et al.| (2021)); [Wang et al.| (2018)) mitigate forgetting by replaying real or generated
samples of old tasks, which raises concerns about efficiency and privacy. Regularization-based
methods |Kirkpatrick et al.| (2017); Zenke et al.| (2017) achieve a balance between new and old tasks
by designing sophisticated regularization terms. Among them, GPCL methods Zhao et al.| (2023);
Saha et al.| (2021); [Lopez-Paz & Ranzato| (2017); Qiao et al.| (2023); |Lin et al.| (2022bja)); |[Zhu et al.
(2023)); |Yu et al.| (2020); Wang et al.| (2021)); Duncker et al.| (2020); [Wang et al.| (2023); Smith et al.
(2023a); (Chen et al.| (2020} 2022)) focus on the gradient of the parameter. These methods project
the gradient orthogonally to the feature space spanned by the old tasks, thereby not affecting the old
knowledge.

Prompt-based Methods and Transfer Learning PCL garnered significant attention due to their
utilization of PEFT techniques (Zhu et al., 2023} |Dettmers et al., [2024} |Wang et al., [2020; Houlsby
etal.,2019;|J1a et al.,2022; |Hu et al.,2021;|Yang et al.,[2024])) to leverage PTMs, achieving rehearsal-
free and promising performance Wang et al.| (2024)); |Douillard et al.| (2022); Smith et al.| (2023b);
Zhou et al.|(2023a));[Wang et al.| (2022a:b)); [Zhou et al.| (2022);|Q1ao0 et al.|(2023); Wang et al.|(2022c));
Huang et al.| (2024); |Zhou et al.| (2024bza; 2023b). Among them, DualPrompt [Wang et al.| (2022b))
proposed partitioning the knowledge of tasks into general and specific categories, and learns them
with g-prompt and e-prompt, respectively. Similarly, S-liPrompt and S-iPrompt|Wang et al.|(2022al)
addressed Domain-CL by leveraging Vision-Language Models (VLMs) to further enhance the learn-
ing ability. CODAPrompt Smith et al.| (2023b)), S-Prompt++ Wang et al| (2024) and HidePrompt
Wang et al.| (2024) improved prompt retrieval stage through attention mechanisms and auxiliary
adapter classifiers. Additionally, recent studies show that fine-tuning downstream tasks or continual
learning with PTMs often leads to overfitting due to relatively limited downstream training data,
resulting in degradation of pre-trained knowledge [Lee et al.| (2023); |L1 et al.| (2024); Zheng et al.
(2023)); Zhu et al.| (2023)).

3 PRELIMINARIES AND NOTATIONS

Continual Learning Assume there is a sequence of tasks and their corresponding training datasets
{D’,i =1,2,.. } without overlapping classes, where D' = {(x; ¢, yi,¢)},~, belongs to the task ¢.

We denote the DNN as W = {Ql}lel, where 6! is the weight of layer [. Given a training sample
;4 we denote x! , as the input of layer [and the output is @}}' = f' (6", a!,), where f' is the

operation of layer [. We simplify the loss function for learning task ¢ as £;(D?) and W; = {Hi}lL:l
as the DNN after training on task ¢.

Gradient Projection Continual Learning First, for any matrix A with suitable dimensions, its
projection onto a given space S is denoted as follows:

Projs (A) = AB(B)", (1

Under review as a conference paper at ICLR 2025

where B is the bases for S and (-)” is the matrix transpose.

Then, following |Saha et al.| (2021), we briefly introduce how GPCL reduces the interference of old
knowledge when learning new tasks. After leaning task 1, GPCL first constructs a representation
matrix for layer [as R} € RV*? from task 1 only. Next, Singular Value Decomposition (SVD)
is performed on R followed by its k-rank approximation (R}), with threshold, e. Therefore, the

feature space for layer [spanned by task 1 is built by S} = span { B} }, where B is the bases for Si.

And S is stored in memory M = {S}}. When learning task 2, the gradient of layer [is denoted as
g = Vg L. As illustrated in Figure[I] GPCL modify the gradient as follows:

g = Projs. (9),)

where Si- is the orthogonal complement of S! and gi- serves as the real gradient for updating layer
I. Let A@% denote the change in layer [after learning task 2. For x; ; € S! from task 1, it follows
that Af{x; ; = 0 due to the orthogonality of gi- with respect to S} Zhang et al.| (2021);|Saha et al.
(2021)). Therefore, we can obtain:

953)571 = (6} + Aell)mé,l = gllwé,r (3)

It demonstrates that there is no forgetting of knowledge of task 1, if the gradient for updating pa-
rameters is orthogonal to the old feature space. We denote the above condition as the orthogonal
condition. After learning task 2, a new representation matrix for layer [denoted as R}, is built from
task 2 only. And S! in M needs to be updated by updating B! with unique bases from R}. Details

are in Appendix

Prompt-based Continual Learning Recent studies Wang et al.| (2024); |Smith et al.| (2023b);
Wang et al.| (2022cibja)) utilized prompts to leverage the PTMs. Therefore, the DNN is a Vision
Transformer (VIT), and the operation of layer I, f!, is the attention mechanism within each trans-
former block. Hence, the input of VIT after patch embedding is x. € REexd where L, is the token
length. Specifically, VPT [Jia et al.| (2022); |[Li & Liang| (2021)) prepend a set of learnable tokens
p € REv*d 1o 2, and treat [p, x.] € R(FeLr)Xd a5 the input, minimizing £ to encode task-specific
knowledge into these prompts while keeping pre-trained weights frozen. PCL involves two stages:
prompt learning and prompt retrieval. In prompt learning, PCL grows the prompt sets pool P by
initializing a new set of prompt (p;, k;) before learning each new task 7, where p; is combined with
the training samples by the attention mechanism. Meanwhile, k; is optimized by being pulled closer
to the vanilla features of the training samples obtained by a VIT without combining with prompts.
In prompt retrieval, k; serves as the query vector for predicting which set of p; to choose for each
testing sample by a matching mechanism. More details are in Appendix [C]

4 THEORY AND METHOD

In this section, we first present a theoretical analysis of GPCL concerning the hindrance on learning
new tasks under the orthogonal condition (Theorem|I]and Definition[T). Subsequently, as illustrated
in Figure[2] we introduce the plug-in module Learning Whether to Grow (LW2G), which consists
of three components: DGA, CPK, and FFT.

4.1 THEORETICAL ANALYSIS ON HINDRANCE IN GPCL

For simplicity, the notation of layer [is omitted in the following analysis. While learning on task
1, GPCL update the parameters under the orthogonal condition to avoid interfering with old knowl-
edge. However, since the gradient represents the direction of local optimal descent for the loss func-
tion, modifying it inevitably results in a reduction of local information. To quantify the hindrance
under the orthogonal condition in GPCL, we first define the following metric.

Definition 1 (Hinder Forward Capability, HFC). In GPCL, while continually encoding new knowl-
edge into a single model under the orthogonal condition, Hinder Forward Capability (HFC) is
defined to evaluate the hindrance on learning new tasks. HFC is the angle between the original
gradient obtained through backpropagation g and its projection g~ = Proj 5%, (g) onto de,

1
g8
HFC(g,g") = arccos () .
gl

4

Under review as a conference paper at ICLR 2025

&

N

@

) Vg

N |
P1 | P2 || % ' Update Bulid S5
. To Grow [E% i {_’ ps,ks | |with Task 3
J | & il
2]
£ X : Update po, ks
Not To Grow [Zl 22 HE " J—} Orthogonal :if:?:slfg
1 2 3 !] Condition
| : P
v : . Select with Max-N HFC
6 g n| = > a0 oY .
! pre pr I '
:) | T8 B
1 /Rl LR .

Figure 2: Illustration of three components in LW2G. Before learning task 3, assume there are two
sets in P = {(p1, k1), (p2, k2)}. In P, blue represents frozen and unlearnable sets of prompts,
whereas red represents learnable sets.

As illustrated in F1gure [} a large HFC indicates a significant gap between original gradient g and
the real gradient g=. Therefore, a large reduction of local information leads to greater hindrance on
learning new tasks. Based on this, we formally present the following theorem (see Appendix [B.1]for
a detailed proof):

Theorem 1. Given a space S; = span{ By}, where By = [by,...,b)] € R"*!is a set of | bases

for 81, and a space Sy = span{Bs}, where By = [by,...,b;,bj41,...,bii] € R*(+K) s g set
of l + k bases for Sa. Then, Vo there always exists:

HFC(a, Projs, (av)) > HFC(a, Projs, (av)).

The above Theorem |I| shows that fewer bases result in a larger HFC. As S,;4 in M continues to
expand with new bases from each new task, its corresponding orthogonal complement S}, progres-
sively shrinks. Consequently, the bases in S 1q Steadily decrease, leading to a large HFC and more
severe hindrance on learning new tasks.

4.2 DYNAMIC GROWING APPROACH

Instead of naively growing a new set of prompts for each new task regardless of task dissimilarities,
we propose a Dynamic Growing Approach (DGA). DGA involves dynamically learning whether
to grow (initialize a new set of prompts and store it in the pool) or not to grow (utilize an existing
set from the pool).

For simplicity, we adopt an example with three tasks to illustrate our method in Figure[2] A more
general description is presented in pseudocode, which can be found in Appendix [A]

Before learning task 3, we first qualify the hindrance on each old set in the pool under the orthogonal
condition. Specifically, we iteratively select an old set (p1, k1) from P and S; from M, where S;
is the old feature space corresponding to task 1. We construct a subset of training dataset from task
3, denoted as D3, . For clarity, the gradient to update (p;, k1) with D3, is denoted as:

sub* sub

V(Pl’k1)£3(sub) “4)
To prevent the influence of old knowledge contained in (p1, k1) while learning task 3, the gradient
g1 is required to be modified to Proj St (g1), where Si- is the orthogonal complement of S;. Then,
Proj st (g1) serves as the real gradient for updating parameters. Based on Theorem , we evaluate
the hindrance under the orthogonal condition while learning task 3 on (p1, k1) as follows:

HFC; = HFC(g1, Projs. (g1))- &)

Under review as a conference paper at ICLR 2025

Besides, we define a dynamic threshold based on the task 3 and the PTM being used. Firstly, we
initialize a new set with (p1, k1) as follows:

(p3, k3) < (p1, k). 6)

Here, the newly initialized (ps, k3) does not contain any knowledge from previous tasks (task 1 or
task 2), which represents an ideal scenario for learning task 3. Likewise, the gradient to updated
(ps3, k3) is denoted as:

93 = Vi(py k) L3(Dosp)-)

Then, we can obtain a representation matrix R by feeding D3, into the VIT without prompts. We
can newly build S5 after performing SVD and k-rank approximation with pre-trained threshold,

€pre- Then, we can also calculate:

HFC}" = HFC(g3, Projgr.+ (g3)), ®)

where S5 is the orthogonal complement of SJ™. Here, HFCY™ represents the relationship be-
tween the gradient of learning task 3 and the pre-trained knowledge from task 3. As (ps, k3) is
newly initialized specifically for training task 3, it contains no prior knowledge, and thus, there are
no obstacles from old tasks. Therefore, HFC%re signifies the ideal scenario when learning new tasks
in PCL, which is the dynamic threshold to evaluate the relative magnitude of hindrance. Based on
this, the gap between learning on old set (p1, k1) under the orthogonal condition and leaning on
new set (ps, k3) in an ideal scenario is denoted as follows:

Z; = HFC; — HFCY™. 9)

Thus, if Z; > 0, it indicates that learning on the old set (p1, k1) from P encounters excessive
hindrance.

Likewise, the gap between learning on old set (p2, ko) under the orthogonal condition and leaning
on new set (ps, k3) in an ideal scenario can also be calculated as Zo, where (ps, k3) is a newly
initialized set with (po, k2).

Opting To Grow or Not To Grow Based on the analysis, we propose a dynamic growing approach

as follows:
To Grow if min Z, >0
me(1,2) (10)
Not To Grow else min Z,, <0.
me(1,2)

* While chosing To Grow, we initialize a new set (ps, k3). Then, update (ps, k3) with task 3 and
build a new feature space S3 with threshold, €, from task 3 only and store S into M.

* While chosing Not To Grow, we select an old set (py, k;) from P, where ¢ = arg min,,, ¢ (1 9)Zm-

Then, update (p;, k;) with task 3 under orthogonal condition and update the old feature space S;
with threshold, €., with new bases from task 3.

4.3 CONSISTENCY WITH PRE-TRAINED KNOWLEDGE

Recent studies in transfer learning and domain adaptation revealed that when employing PEFT for
fine-tuning PTM, the performance after fine-tuning often falls short of the pre-trained knowledge of
PTM itself. However, this aspect has not been extensively studied in PCL.

Therefore, we exploit two distinct level of forgetting issues faced in PCL: (1) continuous fine-tuning
on downstream tasks leading to the forgetting of pre-trained knowledge, and (2) continual learning
on new tasks resulting in the forgetting of old tasks.

To tackle the former issue, we adjust the gradient of the new tasks to be orthogonal to the pre-
trained feature space. However, due to the domain gap between the incremental task training data
and the pre-trained data, a fully orthogonal manner is too stringent and can significantly impact the
plasticity. To achieve a balance between maintaining plasticity and fully utilization of the pre-trained
knowledge, we propose to apply a soft constraint to the gradient as follows:

g=9—(1-¢)Projgr(g), (11)

Under review as a conference paper at ICLR 2025

Table 1: Results of adding LW2G on three baselines: DualPrompt, S-Prompt++, and HidePrompt.
Since the official code of Hidepromptl has a code inplementation issue about prompt retrieval, we
asked the authors for the fixed version of code and reproduced the following experimental results.
More details about the issue and the fixed version of official code are provided in Appendix E}

Settings Methods FFA (1) PRA (1) FFM ({) SSP ({)
DualPrompt 85.94 59.44 6.38 10
DualPrompt [+ LW2G] 86.86 78.33 6.03 2
S-Prompt-++ 89.25 99.52 4.10 10
CIFAR-INCIO-TASKIO g b0 mptet [+ LW2G] 8932 100.0 3.46 7
HidePrompt 85.77 80.78 6.19 10
HidePrompt [+ LW2G] 87.60 95.39 4.28 2
DualPrompt 63.63 41.05 6.41 10
DualPrompt [+ LW2G] 65.60 80.40 5.72 2
S-Prompt-++ 63.26 4431 6.22 10
IMRINC20-TASK10 S-Prompt++ [+ LW2G] 65.44 79.35 6.01 5
HidePrompt 62.42 62.07 8.89 10
HidePrompt [+ LW2G] 63.23 65.13 7.19 6
DualPrompt 82.09 66.71 6.40 10
DualPrompt [+ LW2G] 8243 70.09 5.25 7
S-Prompt++ 82.57 66.30 4.85 10
CUB.INC20-TASKIO g pompt++ [+ LW2G] 82.61 87.49 4.54 3
HidePrompt 85.59 88.58 322 10
HidePrompt [+ LW2G] 86.17 92.53 3.08 4

where ¢ is the coefficient of the soft constraint to control the orthogonality and S5 is the pre-trained
feature space for task 3. When learning on task 3, the gradient can be obtained from Equation
while DGA chooses to grow, or from Equation [/| while DGA chooses not to grow. And ¢ can
flexibly control the real gradient g, aligning it as closely as possible with the feature space of the
pre-trained knowledge, while ensuring the learning ability on new tasks.

4.4 FACILITATION FOR FORWARD TRANSFER

To facilitate forward knowledge transfer during learning task 3, we propose a simple yet effective
method: reusing the frozen weights of prompts from P. Specifically, before learning task 3, we
can characterize the correlation between the new task 3 and the existing feature space in M with
HFC metric. A larger HFC indicates more projection onto the old feature space Sy than S;, as
illustrated in Figure Therefore, it indicates that task 3 has higher similarity with task 2 than
task 1. Consequently, naturally reusing the set of prompts corresponding to task 2 can effectively
facilitate the learning of task 3.

p; = [p,ste(px)], (12)

where stg(-) means stop gradient to frozen the px. Besides, p is a newly initialized set of prompts
when DGA chooses fo grow or an old set of prompts from P when DGA chooses not to grow. And
Ppx is obtained as follows:

K= argmax HFC(gu,,Projs, (gu;)), (13)

{ui i, e{1,2}

where K represents a subset of sets with top-/V from P.

5 EXPERIMENT
In this section, we first describe the experimental setups, and then present the experimental results.

5.1 EXPERIMENTAL SETUPS

Benchmarks We evaluate our method on multiple datasets against state-of-the-art baselines.
Specifically, we use the following datasets: CIFAR100 Krizhevsky et al.| (2009) (CIFAR), which
contains 100 classes with 100 images per class; CUB200|Wah et al.|(2011) (CUB), which consists
of 11,788 images across 200 birds classes; ImageNet-R Hendrycks et al|(2021) (IMR), which in-
cludes 30,000 images from 200 classes that pose challenges for PTMs pre-trained on ImageNet;

Under review as a conference paper at ICLR 2025

Table 2: Results on OMNI benchmark with two extreme settings: 30 tasks and 60 tasks. Addition-
ally, we provide SSP, FLOPS and Training Time (TT) to measure the computational overhead and
methods’ complexity.

Settings Methods FFA (1) PRA () FEM (}) | SSP(}) FLOPS ©) (1) TT M (1)
DualPrompt 336 6847 1292 |30 3.0 a5
DualPrompt [+ LW2G] 65.12 8095 1075 |9 S0 5.0

OMNLINCIO-TASK30 g prompte+ 6444 5587 9.02 30 3517 45
S-Prompt++ [+ LW2G] 6590 6386 8.0 10 37.24 52
DualPrompt 6185 6994 1350 | 60 3.9 50
DualPrompt [+ LW2G] 6317 7531 1201 | 17 37:21 6.1

OMNLINCSTASK60 g brompte+ 6231 5459 1004 | 60 35.17 51
S-Prompt++ [+ LW2G] 6370 6260 9.90 18 37.24 62

Table 3: Ablation study on three components in LW2G. Here we present FFA and PRA for all
baselines and variants in LW2G, e.g., “DGA” refers to the use of Dynamic Growing Approach
within the baseline methods, DualPrompt and S-Prompt++.

Variants FFA (1) PRA (1) Variants FFA (1) PRA (1)
DualPrompt (baseline) 63.63 41.05 S-Prompt++ (baseline) 63.26 44.31
DualPrompt [+ DGA] 65.02 77.68 S-Prompt++ [+ DGA] 65.18 76.35
DualPrompt [+ CPK] 64.34 50.39 S-Prompt++ [+ CPK] 63.90 52.67
DualPrompt [+ FFT] 64.08 47.17 S-Prompt++ [+ FFT] 63.89 50.02
DualPrompt [+ LW2G] 65.60 80.40 S-Prompt++ [+ LW2G] 65.44 79.35

and Omnibenchmark Zhang et al| (2022) (OMNI), which comprises over 90,000 images from
300 classes. Besides, we denote different experimental settings as ‘Dataset_IncN_TaskM’, e.g.,
‘CIFAR_INC10_Task10’, which means learning on CIFAR with 10 tasks and each task contains 10
classes.

Baselines We use DualPrompt [Wang et al.| (2022b), S-Prompt++ Wang et al.| (2024) and Hide-
Prompt Wang et al.| (2024) as our baselines for Class-CL. Following [Wang et al.| (2024)), we record
the average accuracy of all encountered classes after learning on each task, presenting the last one
as the Final Average Accuracy (FAA). We also present the Final Forgetting Measure (FFM) of all
tasks and Prompt Retrieval Accuracy (PRA) to measure the accuracy during prompt retrieval. Addi-
tionally, Selectable Sets of Prompts (SSP) is also provided to demonstrate the amount of sets in P.
Please refer to Appendix [D.2]for more details.

Implementations Our LW2G needs to set the value of four hyperparameters: €k, €pre, ¢, and
N. Details on different benchmarks are provided in Appendix We use VIT pretrained on
ImageNet-21K for all experiments. All results are the average under three different random seeds.
Furthermore, as the pre-trained feature space is built from PTM, we further validate the effectiveness
of LW2G under other PTMs. Results are provided in Appendix

5.2 MAIN RESULTS

Typical Settings Table [1| presents the results of applying different state-of-the-art PCL methods
and incorporating LW2G. We report four metrics FFA, PRA, FFM and SSP, where FFA and FFM
are the typical metrics in CL to evaluate the performance. Additionally, PRA and SSP are unique
for PCL. LW2G outperforms existing PCL by a large margin in each setting. For IMR, LW2G is
better than DualPrompt, S-Prompt++ and Hideprompt by 1.97%, 2.17% and 0.81%, respectively
on FFA. For CIFAR, it appears that LW2G brings a significant decent in anti-forgetting, especially
comparing with S-Prompt++ and Hideprompt on FFM. As for the PCL unique metrics PRA and SSP,
LW2G leads to notable improvements in PRA for all three baselines, with the largest improvement
reaching up to 39.35%. Additionally, it also results in a substantial reduction in SSP. For example,
DualPrompt combined with LW2G on CIFAR only requires 2 sets of prompts compared to the
original DualPrompt, which utilizes 10 sets. The same reduction in parameters can be observed
across multiple settings.

Long Task Settings Learning in the context of long sequential tasks has long been regarded as a
more challenging setting in CL. We showcase the performance of DualPrompt and S-Prompt++ on
two extreme settings: OMNI_LINC10_TASK30 and OMNI_INC5_TASK60 in Table[2] Existing base-
lines employ a pool with the size equivalent to the length of tasks, resulting in poor performance on

Under review as a conference paper at ICLR 2025

DualPrompt on CIFAR INC10 TASK10 DualPrompt on IMR_INC20 TASK10 S-Prompt++ on CIFAR INC10 TASK10 S-Prompt++ on IMR_INC20 TASK10
2 [[}
75 75
%0 -0 :*\\ 21\ /; ! \‘\\b
o ‘® | 9of S AR \
-8 Ay A -2 >70 L3 i e > \ Yyt {7 e | 570 b
3 (VNN S 9 i 7 g \ s] . "
g5 AN Avu] Ser e N X il g8\ Y g £*~3 M]
\
és" 3 \3, \rd A 565 7N [N il éss L 1 L 4 ges & -, o".:‘. W
< L\ I |& LIS m g \ g / W S h
82| —o- paseline Wi 60] ~@ baseline e 54| —® baseline w3 60| —@- baseline LN
80 baseline +taskid g/’ baseline-+taskid Nd baseline-+taskid \ / baseline+taskid @ d
. . \ . 3 . N,
Jg| ~® baseline+auto 55| ~® baseline+auto . 82| @ baseline+auto 55| —® baseline+auto .
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a)59.44% --> 78.33% (b)41.05% --> 80.04% (c)99.52% --> 100.0% (d)44.31% --> 79.35%

Figure 3: The x-axis denotes the enhancement in PRA with LW2G compared to the baseline. Apart
from baseline and LW2G, we also present the results of Task-CL. Task-CL ensures the real upper
bound of PCL by providing a correct prompt set for each testing sample through a given task ID.

PRA. However, incorporating the LW2G significantly enhances PRA, leading to noticeable improve-
ments in both FFA and FFM. Moreover, we observe that LW2G requires to maitain a memory M for
gradient modification, unavoidably introducing additional computational overhead and lengthening
training time. Nevertheless, the results indicate that the extra cost compared to baselines is relatively
modest. Additionally, we find that the adoption of LW?2G results in a substantial decrease in the total
amount of selectable sets, approximately by 70%.

5.3 ABLATION STUDY

We conduct an extensive ablation study presented in Table[3]to validate the effectiveness of the three
components in LW2G. Initially, we construct DualPrompt and S-Prompt++ as baselines and pro-
gressively incorporate the DGA, CPK, and FFT. Overall, optimizing each component yields clear
benefits, with all contributing to the robust gains of LW2G. Interestingly, while CPK and FFT ex-
hibits less pronounced improvements compared to the baseline, the enhancement from DGA is more
significant. Besides, the combination of all three components provides the optimal performance,
suggesting highly synergistic and complementary effects rather than operating in isolation. More-
over, it is noteworthy that CPK and FFT do not reduce SSP, hence the performance improvement
solely stemmed from the enhanced representational capacity of prompts. DGA not only integrates
knowledge from multiple tasks into a single set of prompts, thereby enhancing the representational
capacity, but importantly, the notable improvement in PRA is attributed to the reduction in the total
amount of available sets during prompt retrieval, thereby aiding PCL performance.

5.4 DETAIL ANALYSIS

Effectiveness of DGA While chosing Table 4: Different implementations on DGA. Here we
not to grow, DGA utilized in LW2G se- present FFA for all variants.
lects the set (p«, k) with the Min-Z from

P when learning task ¢, and learns new CIFAR MR
knowledge based on this set, adjusting DGA Variants

gra dient to prevent forgetting of the old DualPrompt S-Prompt++ | DualPrompt S-Prompt++
knowledge contained in (p*,k*). After No-DGA (Baseline) 85.94 89.25 63.63 63.26
learning, (p, k) encompasses both the new = DGA-Rand 85.99 88.32 64.82 64.76
knowledge from task 7 and the existing old DGA-AG 84.78 85.17 63.73 63.43
knowledge. Here, we explore the impact pGA-Max HFC 86.08 86.73 6431 63.91
of different implementations of DGA on pGa_min HEC 86.86 89.32 65.60 65.44

FFA. In Table] No-DGA represents base-
line methods, e.g., S-Prompt++ and DualPrompt. DGA-Rand represents randomly selecting an old
set of prompts from P. DGA-AG represents that P consists of only a single set, implying continu-
ous learning of new knowledge on this set of parameters. DGA-Max HFC indicates selecting the set
from P with the maximum HFC value. The results clearly demonstrate the superiority of DGA-Min
HFC employed in LW2G over other variants, aligning with the conclusion in Theorem T}

Gains on Each Task Figure |3| presents detailed accuracy on each task. Here, we provide a com-
parison between DualPrompt and S-Prompt++ on two benchmarks. The x-axis of each plot repre-
sents the change from baseline to baseline+LW2G in terms of PRA. Apart from (c), the addition of
LW2G all leads to consistent improvements in accuracy on each task, as the PRA of the baseline

Under review as a conference paper at ICLR 2025

Table 5: Variation process of DualPrompt [+ LW2G] on IMR.

Task | Calculation Process Minimal Z Option Prompt sets pool

1 / / To Grow a new (p1, k1) (p1,k1) — Task 1

2 HFC,=13.90, HFC}“=40.23 71=-26.33<0 | Not To Grow with (p1, k1) | (p1,k1) — Task 1,2

3 HFC;=20.22, HFC‘;“:40.80 Z1=-20.58<0 | Not To Grow with (p1, k1) | (p1,k1) — Task 1,2,3

4 HFC;=25.09, HFC?®=41.50 Z1=-16.41<0 | Not To Grow with (p1, k1) | (p1, k1) — Task 1,2,3.4

5 HFC;=29.15, HFCY=42.92 Z,=-13.77<0 | Not To Grow with (p1, k1) | (p1, k1) — Task 1,2,3.4,5

6 HFC,=32.85, HFC}“=42.78 71=-9.33<0 Not To Grow with (p1, k1) | (p1, k1) — Task 1,2,3,4,5,6

7 HFC,=36.35, HFCT°=41 .85 Z1=-5.5<0 Not To Grow with (p1, k1) | (p1, k1) — Task 1,2,3,4,5,6,7

8 HFC,=39.39, HFC}ire=42.42 Z1=-3.03<0 Not To Grow with (p1, k1) | (p1, k1) — Task 1,2,3,4,5,6,7,8

9 HFC;=42.54, HFCY"=4137 Z1=1.17>0 | To Grow a new (pa, k2) (p1, k1) — Task 1,2,3,4,5,6,7,8

(p2, k2) — Task 9

10 HFC,=42.54, HFC}“=40.92 Z5=-28.00<0 | Not To Grow with (p2, k2) | (p1, k1) — Task 1,2,3,4,5,6,7,8

HFC,=13.81, HFC5“=41.81 (p2, k2) — Task 9,10

method in (c) has already reached 99.52%. In the other three settings, PRA experiences significant
increasment, thereby enhancing classification accuracy. Additionally, we also provide results for
baseline+taskID, i.e., PCL on Task-CL. In this setting, during inference, taskid is provided to select
the correct set for each testing sample, which is considered as the upper bound of PCL. It further
demonstrates that our proposed LW2G can effectively reduce the optionality during prompt retrieval
while ensuring the integration of old and new knowledge, thereby improving performance.

Visualization of the Dynamic Growing Process In the proposed LW2G method, the DGA mod-
ule determines whether to grow a new set of prompts or reuse an existing set from the prompt sets
pool based on the HFC metric, which can measure the hindrance on learning new tasks while main-
taining old knowledge under orthogonal condition. We provide a detailed dynamic process in the
following Table[5] Before learning each task (except task 1), LW2G first calculates the HFC value
and subsequently decides whether to perform dynamic expansion based on the minimum Z value
using Equation [9]and[T0] Further results can be found in Appendix

6 CONCLUSION

In this paper, we propose a plug-in module within existing Prompt-based Continual Learning (PCL),
called Learning Whether To Grow (LW2G). Specifically, LW2G enables PCL to dynamically learn
to whether to add a new set of prompts for each task (fo grow) or to utilize an existing set of
prompts (not to grow) based on the relationships between tasks. Inspired by Gradient Projection-
based Continual Learning (GPCL), we utilize the orthogonal condition to form an effective and
efficient prompt sets pool. Besides, we also provide a theoretical analysis on hindrance under the
orthogonal condition in GPCL. Extensive experiments show the effectiveness of our method.

Limitations LW2G needs to construct the feature space of old tasks and store it in memory M for
gradient projection, which results in additional computational overhead. Therefore, while exploring
alternative methods for constructing the old feature space goes beyond the scope of this study, it is
crucial for enhancing the practicality of both LW2G and GPCL.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jason Arndt. Distinctive information and false recognition: The contribution of encoding and re-
trieval factors. Journal of Memory and Language, 54(1):113-130, 2006.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920-15930, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650-9660, 2021.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516-9525, 2021.

Cheng Chen, Ji Zhang, Jingkuan Song, and Lianli Gao. Class gradient projection for continual
learning. In Proceedings of the 30th ACM International Conference on Multimedia, pp. 5575—
5583, 2022.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039-2050, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ale§ Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366-3385, 2021.

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning.
Cambridge University Press, 2020.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
for continual learning with dynamic token expansion. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 9285-9295, 2022.

Lea Duncker, Laura Driscoll, Krishna V Shenoy, Maneesh Sahani, and David Sussillo. Organizing
recurrent network dynamics by task-computation to enable continual learning. Advances in neural
information processing systems, 33:14387-14397, 2020.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
sarial continual learning. In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XI 16, pp. 386—402. Springer, 2020.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128-135, 1999.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340-8349, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

Under review as a conference paper at ICLR 2025

Wei-Cheng Huang, Chun-Fu Chen, and Hsiang Hsu. Ovor: Oneprompt with virtual outlier regular-
ization for rehearsal-free class-incremental learning. arXiv preprint arXiv:2402.04129, 2024.

R Reed Hunt. The concept of distinctiveness in memory research. Distinctiveness and memory, pp.
3-25, 2006.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709-727.
Springer, 2022.

Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar and
dissimilar tasks. Advances in Neural Information Processing Systems, 33:18493-18504, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Dongjun Lee, Seokwon Song, Jihee Suh, Joonmyeong Choi, Sanghyeok Lee, and Hyunwoo J Kim.
Read-only prompt optimization for vision-language few-shot learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1401-1411, 2023.

Stephan Lewandowsky and Shu-Chen Li. Catastrophic interference in neural networks: Causes,
solutions, and data. In Interference and inhibition in cognition, pp. 329-361. Elsevier, 1995.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International Conference
on Machine Learning, pp. 3925-3934. PMLR, 2019.

Yukun Li, Guansong Pang, Wei Suo, Chenchen Jing, Yuling Xi, Linggiao Liu, Hao Chen, Guogiang
Liang, and Peng Wang. Coleclip: Open-domain continual learning via joint task prompt and
vocabulary learning. arXiv preprint arXiv:2403.10245, 2024.

Guoliang Lin, Hanlu Chu, and Hanjiang Lai. Towards better plasticity-stability trade-off in incre-
mental learning: A simple linear connector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 89-98, 2022a.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931, 2022b.

Noel Loo, Siddharth Swaroop, and Richard E Turner. Generalized variational continual learning.
arXiv preprint arXiv:2011.12328, 2020.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765-7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. Advances
in Neural Information Processing Systems, 34:16131-16144, 2021.

12

Under review as a conference paper at ICLR 2025

Jingyang Qiao, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, Yuan Xie, et al. Prompt gra-
dient projection for continual learning. In The Twelfth International Conference on Learning
Representations, 2023.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001-2010, 2017.

Henry L Roediger and Kathleen B McDermott. Creating false memories: Remembering words not
presented in lists. Journal of experimental psychology: Learning, Memory, and Cognition, 21(4):
803, 1995.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Grzegorz Rypesé, Sebastian Cygert, Valeriya Khan, Tomasz Trzcifiski, Bartosz Zielifiski, and
Barttomiej Twardowski. Divide and not forget: Ensemble of selectively trained experts in contin-
ual learning. arXiv preprint arXiv:2401.10191, 2024.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International conference on machine learning, pp.
4548-4557. PMLR, 2018.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv
preprint arXiv:2304.06027, 2023a.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909-11919, 2023b.

Quyen Tran, Lam Tran, Khoat Than, Toan Tran, Dinh Phung, and Trung Le. Koppa: Improving
prompt-based continual learning with key-query orthogonal projection and prototype-based one-
versus-all. arXiv preprint arXiv:2311.15414, 2023.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Hui Wang, Hanbin Zhao, Xi Li, and Xu Tan. Progressive blockwise knowledge distillation for neural
network acceleration. In IJCAI, pp. 2769-2775, 2018.

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical de-
composition of prompt-based continual learning: Rethinking obscured sub-optimality. Advances
in Neural Information Processing Systems, 36, 2024.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Guihong Cao, Daxin Jiang,
Ming Zhou, et al. K-adapter: Infusing knowledge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808, 2020.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 184-193, 2021.

13

Under review as a conference paper at ICLR 2025

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv
preprint arXiv:2310.14152, 2023.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 35:5682-5695, 2022a.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631-648.
Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
139-149, June 2022c.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 374-382, 2019.

Longrong Yang, Hanbin Zhao, Yunlong Yu, Xiaodong Zeng, and Xi Li. Rcs-prompt: Learning
prompt to rearrange class space for prompt-based continual learning. In European Conference on
Computer Vision (ECCV), 2024.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23219-23230, 2024.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824-5836, 2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987-3995. PMLR, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107-
115, 2021.

Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu. Benchmarking omni-vision representation
through the lens of visual realms. In European Conference on Computer Vision, pp. 594-611.
Springer, 2022.

Hanbin Zhao, Xin Qin, Shihao Su, Yongjian Fu, Zibo Lin, and Xi Li. When video classification
meets incremental classes. In Proceedings of the 29th ACM International Conference on Multi-
media, pp. 880-889, 2021.

Zhen Zhao, Zhizhong Zhang, Xin Tan, Jun Liu, Yanyun Qu, Yuan Xie, and Lizhuang Ma. Rethinking
gradient projection continual learning: Stability/plasticity feature space decoupling. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3718-3727,
2023.

Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
zero-shot transfer degradation in continual learning of vision-language models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 19125-19136, 2023.

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learn-
ing with pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint
arXiv:2303.07338, 2023a.

14

Under review as a conference paper at ICLR 2025

Da-Wei Zhou, Yuanhan Zhang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Learning
without forgetting for vision-language models. arXiv preprint arXiv:2305.19270, 2023b.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
with pre-trained models: A survey. arXiv preprint arXiv:2401.16386, 2024a.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. arXiv preprint arXiv:2403.12030, 2024b.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337-2348, 2022.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for
prompt tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 15659-15669, 2023.

15

Under review as a conference paper at ICLR 2025

A ALGORITHM

Algorithm 1 LW2G: Learning Whether to Grow.

Input: Task length T', Datasets for each task: {D*, D?,--- ,}, Pool P = {}, Memory M = {}, Training
Epochs E.
Output: Updated Pool P and M.

1: fori=1,2,---,7T do

2 if i = 1 then > DGA learns to grow or not to grow
3 DGA chose to grow;
4 Initialization (p;, k;) and Store in P;
5: else
6‘
7
8

Get a subset from DZ, .

Get all selectable sets in P, denoted as L;

for j in L do

9 Get the old set from P, (p;, k;);

10 Get the old feature space from M, Sj;

11 Get g on (p;, k;) with Dgp;

12 Get HEC; via Equation [5§|and HFCyye via Equation[8|and Z; via Equation [0}

13 DGA chose to grow or not to grow via Equation

14: if DGA chose to grow then

15: Initialization (p;, k:) and Store in P;

16: else

17 Selection (p, k:), where t = arg max; 1 Z;;

18 Change (p¢, kt) to (pi, ki);

19 Change S; to S;;

20 fore=1,2,--- ,FEdo > Start Training

21: Get sets of most similar tasks via Equation[I3} > FFT to forward facilitate

22: Get g on (p;, ki) with D

23: Apply soft constraints on g via Equation [T} > CPK to apply soft constraints

24: Update (p;, ki);

25: Build or update space S; in M via Appendix[B.2} > DGA dynamically build or update space
return P, M;

B THEORETICAL FOUNDATION

B.1 PROOF OF THEOREM[I]

Given a space S; = span{B;}, where By = [by,...,b] € R"*! is a set of [bases for S;, and a
space So = span{ By}, where By = [by,...,b;,bj1,...,bi] € R™*(+K) s a set of [4+ k bases
for Sp. Yoo € R™*!, denoted o on space S; is Proj S5 (). Following Deﬁnition the ange between
o and Projs, () is denoted as HFC(a, Projg (c)). Then there always exists:

HFC(a, Projg, (o)) > HFC(«x, Projg, (cv)). (14)
Proof. Yoo € R™™, o = [,)" . Without loss of generality, {b;,i = 1,..., k} is a set of
standard orthonormal basis. As we defined, Projs (o) = [g1,..., 9] € R”*! and Projg_ (a) =

(915201, Qi1 - -+ Qi) € RUFFIXL where g; = (e, b;).

Then, we have

. o PI‘OjS (0{)
P = TallTProis (@)l
cos(a, Projg, (a)) [l ex|[|[Projg, ()]

>, (90)° (15)
VI @)P T (9

16

Under review as a conference paper at ICLR 2025

Likewise, we have
a - Projg, (o)

Proj = S NS
cos(ex, Projs, (@) = 15 Projs, (@]

S (9 (16)
VI (0?2 (9)°

In addition,

cos(ev, Projg, (@) _ 2174 (90)” Vi (90)°)
cos(a,Projg, (a)) YL (g;)? Sk ()7
1+C
Va0 1
=/(1+C)>1 (19)

I+k 2
Where C % > 0. Thus, cos(a,Projg,(cx)) > cos(a,Projg, (a)). Thus,

HFC(a, Projg, (o)) > HFC(ev, Projg, ().
This finishes the proof.

B.2 BUILDING AND UPDATING OF FEATURE SPACE

In GPCL, a feature space spanned by the old tasks is required during gradient modification, involving
two stages: (1) Building of the new feature space, and (2) Updating of old faeture space. We first
introduce the technique used in matrix factorization, Singular Value Decomposition (SVD). Then,
details on building or updating of the feature space are also provided.

Singular Value Decomposition (SVD) SVD is a general geometrical tool used in matrix factoriza-
tion to factorize a given matrix A € R™*™ into the product of three matrices as follows Deisenroth
et al.[|(2020):

A=Ux(V)T, (20)

where U € R™*™ and V' € R™*" are orthogonal. ¥ € R™*"™ contains the sorted singular values
along its main diagonal. Specifically, the diagonal value o; = 3;; are the singular values of A and
the number of non-zero o; is equal to r = rank(A). Besides, the columns of U and the rows of
(V)T are two sets of orthogonal bases {u;, us, ..., u,,} and {vi,vs,...,v,}, respectively. As
the singular values are sorted in X along its diagonal, the SVD of A can be also denoted as follows:

A= Zaiuivg. (21)
i=1
Therefore, the k-rank approximation (A); of A can be denoted as follows:
1(A)k|[7 > el Al (22)
where € is a given error tolerance and || - ||% is the Frobenius norm.

Building of the New Feature Space After training on task 1, for each layer we construct a rep-
resentation matrix R} = [z} ;,..., @} ,] € R"*? by concatenating representations of n samples
along the columns obtained from sending n samples only from task 1 into the current DNN, W;.
Next, we perform SVD on R} = U} X} (V)T followed by its k-rank approximation (R})}, accord-
ing to the following criteria for the given threshold, €yg:

(R k% > ewsk| | RY||%- (23)

Therefore, the feature space for layer [is built by Sf = span { B} }, where B} = {u},...,u}} and
! is the first k vectors in UL. And S is stored in memory M = {S}}.

17

Under review as a conference paper at ICLR 2025

Updating of the Old Feature Space After learning task ¢, where ¢ > 2, Sf_l in M needs to be
updated to S! with new task-specific bases from task i. To obtain such bases, for each layer I, we
utilize the current DNN, W;, to construct a representation matrix R, = [} ,,..., 2}] € R"*4
from task ¢ only. Before performing SVD and subsequent k-rank approximation, we first eliminate
the common bases that already present in S!_; so that newly added bases are unique and orthogonal

to the existing bases in S!_,. To accomplish this, we proceed as follows:

RI-R -B_ (B_)" (R)=R -R

4,proj

(24)

Afterwards, SVD is performed on R} = U!S(V})T, thus obtaining h new orthogonal bases for
minimun value of h statisfying the following criteria for the given threshold, ep:

l >34 l
1S o [+ 1R > evasi| | RS- (25)

B!_, is then updated to B! = [B!_,,ul,...,u}] with h new bases. And S!_, is updated to
S! = span { B!}.

C REVIEW OF EXISTING PCL

In this section, we review existing PCL with its pipeline. As illustrated in Figure [} existing PCL
such as HidePrompt |Wang et al.|(2024), S-Prompt++ |Wang et al.| (2024), DualPrompt Wang et al.
(2022b)), L2P|Wang et al.[(2022c), S-liPrompt, and S-iPrompt Wang et al.|(2022a) generally involves
two stages: (1) prompt learning, and (2) prompt retrieval.

Prompt Learning Given a pre-trained model, such as a Vision Transformer (denoted as VIT), an
image after patch embedding is denoted as &, € R*<*9, where L, is the length of the patch tokens
and d denotes the length of the channels. Before learning task i, PCL follows|Houlsby et al.| (2019);
Jia et al.[(2022) by utilizing a task-wised set of prompts p; € R »*£6%4 where £,, is the length of
layer-wised prompts and £; represents the depth of the blocks into which the prompts is inserted.
The new knowledge in task i can be encoded into these newly initialized p; as follows:

[cls,tokenl, x!, pl] = blockl([cls,tokenlfl, 1, p,lfl}) [=1,2,...,N (26)

y= Headl(cls,tokenN). 27
Here, p\~' € R%»*? represents the prompts for block I. x.~! is the original input of block I.
Additionally, Head® represents the classifier head corresponding to task i. Since PCL typically
considers Class-CL scenarios, a unified classifier head is adopted. This means that while learning
task ¢, the weights of the unified classifier head from tasks 1 to ¢ —1 are frozen. Then, p; is optimized
using the cross entropy loss. Meanwhile, PCL sent 2, € R*<*? into the VIT without any prompts
as follows:

cls_token’, :cle} = block’({cls,tokenl_l, 7)) 1=1,2,...,N. (28)

Here, we use ¢ = cls_token’ from the output of the last block as the valinia feature of the input
sample. Then, k; is optimized by minimizing the distance between g and k;. There are various
methods to measure this distance, such as using cosine similarity as in S-Prompt++ |Wang et al.
(2024), DualPrompt Wang et al.| (2022b)), and L2P [Wang et al.| (2022c); using KNN in S-liPrompt
and S-iPrompt [Wang et al.| (2022a)); or, in the case of HidePrompt [Wang et al.| (2024)), forgoing k;
and instead utilizing an auxiliary classifier head. Overall, the goal is to design a metric that brings
k; closer to g, so that during prompt retrieval, the correct p; can be selected for each testing sample.

After learning task ¢, PCL stores (p;, k;) as a pair into the pool P = {(p;, k;),i =1,2,...}.
Prompt Retrieval In Class-CL, we do not have access to the task ID. Therefore, given a testing
sample, PCL needs to predict which task it belongs to and select the corresponding set from the pool

‘P. Briefly, they first obtain the vanilla feature by sending the testing sample into the VIT without
prompts. Then, they use the vanilla feature as a query vector to match {k;,7 = 1,2, ... } in the pool

18

Under review as a conference paper at ICLR 2025

Cos Similarity/ KNN/Auxiliary Classifier/...

!

=
[me] > VIT > 3 g —>» Metric(g, k1)
e
_ 5 £% > 2 §
LT s <3 . (=
iﬁg@ z 2 [Te,ps] —> VIT SE> CEGGD
et —1 E
R pi
Initialization k
% _Y__.
{Pl][l)z}[m}l E P
(ko) [F2] [Rs)i
Prompt Learning ? 4
Prompt Retrievel Matching <€— Cos Similarity/KNN/Auxiliary Classifier/...
I
=
[:cTe] —> VIT »>52

™ 3T g

e, | g - @ g
ggﬁ—) E é > [we,pz] > VIT >0 é —> Inference
e et € m

Figure 4: Pipline of existing PCL. Here, we separate it into two stages: prompt learning and prompt
retrieval. In ‘P, blue represents frozen and unlearnable set of prompts, whereas red represents learn-
able prompt sets.

‘P through the metric used in prompt learning. After selecting the k, the p, is combined with x.
for further inference.

Therefore, predicting the ground truth set of prompts for each testing sample is a crucial step for
PCL, enabling it to achieve appealing performance.

D IMPLEMENTATION DETAILS

In this section, we provide the implementation details of all experiments.

D.1 TRAINING REGIME AND HYPERPARAMETERS

Following the implementations of previous work Wang et al. (2024), we train DualPrompt on CI-
FAR, IMR and CUB with 40, 50, and 50 epochs, respectively; Hideprompt on CIFAR, IMR and
CUB with 50, 150, and 50 epochs, respectively; S-Prompt++ on CIFAR, IMR and CUB with 40,
120, and 40 epochs, respectively. The length of prompts L. is 20 for all settings. Depth of prompts
are as follows: In DualPrompt: g-prompts are inserted in the block 0 — 1 and e-prompts are inserted
in the block 2 — 4. In HidePrompt and S-Prompt++ prompts are inserted in the block 0 — 4. All
the experimental results in this paper are averaged over five trials with five different random
seeds. We use 1 4090 GPU for experiments in typical setting and 1 A800 GPU for experiments in
long task settings.

For LW2G, the detailed settings for €k, €pre, ¢, and IV are illustrated in Table@

D.2 EVALUATION METRICS

We utilize four evaluation metrics for PCL, including the Final Average Accuracy (FAA), Final
Forgetting Measure (FFM), Prompt Retrieval Accuracy (PRA) and Selectable Sets of Prompts (SSP).

19

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters of €ysk, €pre, @, and IV in typical settings.

2

Settings Methods €task €pre o)
DualPrompt 0.95 0.95 0.5
CIFAR_INC10_TASK10 S-Prompt++ 0.95 0.95 1.0
HidePrompt 0.99 0.99 0.5
DualPrompt 0.99 0.99 0.6
IMR_INC20_TASK10 S-Prompt++ 0.99 0.99 04
HidePrompt 0.90 0.90 0.2
DualPrompt 0.90 0.90 0.3
CUB_INC20_TASK10 S-Prompt++ 0.99 0.99 0.9
HidePrompt 0.95 0.95 0.7

FAA and FFM are common evaluation metrics in Continual Learning and are formally defined as
follows:

T
1
FAA = 2 A, (29)

1 T-1

T Aip — Air), 30
T—1 4= emox (A —Air) o

where T is the length of the sequential tasks, A; r is the classification accuracy on the task 7 after
learning the last task 7.

As analyzed in Appendix |C] predicting the ground truth set of prompts for each testing sample is
a crucial step in PCL. Therefore, we adopt a unique evaluation metric, Prompt Retrieval Accuracy
(PRA), for PCL, which is formally defined as follows:

T
1

PRA = —Y Rir, 31
T 2 T 3D

where R; 7 is the accuracy of predicting the set of prompts for each testing sample on task ¢ after
learning the last task 7T'. Besides, we also use Selectable Sets of Prompt (SSP) to represent the total
amount of selectable sets of prompts in the pool P. SSP is not only positively correlated with the
number of learnable parameters, but it also effectively reflects how the LW2G proposed in this paper
can significantly reduce the selectable amount in baseline methods, thereby benefiting PRA.

E REPRODUCTION OF BASELINES

In this section, we first analyze the specific locations and sources of the implementation issues in the
official code (Appendix [E.T). Subsequently, we further analyze the impact of these implementation
issues on model performance and the resulting task ID information leakage problem (Appendix [E.2).
Finally, after fixing this implementation issue, we observed a significant decline in the performance
of the baseline method, which led us to perform a grid search on the hyperparameters in HidePrompt

(Appendix [E.3).
E.1 AN IMPLEMENTATION ISSUE ABOUT PROMPT RETRIEVAL

For the compared methods, DualPrompt, S-Prompt++ and HidePrompt, we use the offi-
cial code[]_-] from HidePrompt Wang et al.| (2024). However, after inspecting the code line
by line, we identified an implementation issue that leads to significant discrepancies be-
tween the specific implementation and the method itself. Specifically, the issue occurs
during prompt retrieval at https://github.com/thu-ml/HiDe-Prompt/blob/
fcb6c7a29ce97e07426fa20£3817¢c975da3c3b3e/peft/prompt/hide_prompt.
py#L109-L111} which is provided as following Listing|T]

"https://github.com/thu-m1/HiDe-Prompt

20

https://github.com/thu-ml/HiDe-Prompt/blob/fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.py#L109-L111
https://github.com/thu-ml/HiDe-Prompt/blob/fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.py#L109-L111
https://github.com/thu-ml/HiDe-Prompt/blob/fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.py#L109-L111

Under review as a conference paper at ICLR 2025

Listing 1: prompt retrieval before fixing the typo.

num_layers, dual, batch_size, top_k, length, num_heads,
heads_embed_dim = batched_prompt_raw.shape
batched_prompt = batched_prompt_raw.reshape (
num_layers, batch_size, dual, top_k = length, num_heads,
heads_embed_dim

As analyzed in Appendix|[C| in the prompt retrieval stage, PCL methods (DualPrompt, S-Prompt++,
and HidePrompt) need to predict the ground truth set of prompts for each testing sample. The
tensor ‘batched_prompt_raw’ in Listing|[T]is the prompt sets predicted for each sample during prompt
retrieval. Since DualPrompt, S-Prompt++, and HidePrompt all utilize pre-fix tuning methods, they
can be divided into three steps:

1. obtaining representations from input samples via patch embedding,

2. multiplying the representations with the Q, K, and V matrices in the attention mechanism to get
the Q, K, and V values, respectively,

3. dividing the selected prompt into two parts, prompt_k and prompt_v, and prepending them to
the K and V values, respectively. Here, prompt_k corresponds to key 1 in Figure 5} and prompt_v
corresponds to value 1.

Therefore, the purpose of Listing |1|is to swap the dimensions ‘dim=1" and ‘dim=2’ of the tensor
‘batched_prompt_raw’. However, when swapping two dimensions of a tensor, we should use the
‘permute operation’ instead of the ‘reshape operation’, as the ‘reshape operation’ can disrupt the
order of the element in the tensor. To further illustrate the impact of this erroneous operation, we
provide a floatmap in Figure 5] As shown in Figure [} if a ‘reshape operation’ is used, key 2 will
be prepended to the V value of sample 1 instead of value 1. This would render the prompt retrieval
module ineffective, because while it can accurately predict the required prompt sets for each sample,
the incorrect use of a ‘reshape operation’ causes confusion between prompt_k and prompt_v across
samples. In contrast, using a ‘permute operation’ will avoid this issue.

Furthermore, we checked the official code implementation of DualPromptE] and found
the same issue at https://github.com/JH-LEE-KR/dualprompt—pytorch/blob/
7eb457d988409%a6abf97af2bl21ffa62dd4b498a/prompt . py#L119-1122, Since
HidePrompt is built upon the DualPrompt, this issue has persisted. Additionally, we discovered that
other researchers have raised the same concern in the issue of DualPrompt repository: https://
github.com/JH-LEE-KR/dualprompt-pytorch/issues/8. We also found that other
researchers have identified similar problems in their ongoing work based on this series of stud-
ies like |https://github.com/JingyangQiao/prompt—gradient—projection/
issues/4 and https://github.com/gulzainali98/LGCL/issues/3. Therefore,
this implementation issue is a commonly recognized problem within the Prompt-based Contin-
ual Learning community. We have corrected this implementation issue, using the fix mentioned in
https://github.com/JH-LEE-KR/dualprompt—-pytorch/issues/8, as illustrated
in the following Listing After the correction, we reproduced the experimental results of the
three comparing methods, DualPrompt, S-Prompt++ and HidePrompt. Finally, we also commu-
nicated with the authors of HidePrompt via email to request their assistance. The authors
acknowledged this typo and expressed their approval of our correction plan and the repro-
duced experimental results in Table [T}

Listing 2: prompt retrieval after fixing the typo.

num_layers, dual, batch_size, top_k, length, num_heads,
heads_embed_dim = batched_prompt_raw.shape
batched_prompt_raw = batched_prompt_raw.permute(0, 2, 1, 3, 4, 5, 6)
batched_prompt = batched_prompt_raw.reshape (
num_layers, batch_size, dual, top_k x length, num_heads,
heads_embed_dim

*https://github.com/JH-LEE-KR/dualprompt-pytorch

21

SR

)

https://github.com/JH-LEE-KR/dualprompt-pytorch/blob/7eb457d988409a6abf97af2b121ffa62dd4b498a/prompt.py#L119-L122
https://github.com/JH-LEE-KR/dualprompt-pytorch/blob/7eb457d988409a6abf97af2b121ffa62dd4b498a/prompt.py#L119-L122
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8
https://github.com/JingyangQiao/prompt-gradient-projection/issues/4
https://github.com/JingyangQiao/prompt-gradient-projection/issues/4
https://github.com/gulzainali98/LGCL/issues/3
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8

Under review as a conference paper at ICLR 2025

batched prompt_raw batched prompt
E > key2 —> Sample1
(;IU key2 key4 R h ' gl o
es a M e © alue’l value.
S value2 value4 Original g lue]
Batch_size valued ——> Sample4
\ Dual=2
Sample1 Sample4
1 T o > —> Sample1
— ‘» (o
(;IB key2 key4 ’ %I
S value2 value4 Mod|f|ed @ kevd) e
Batch_size keyd) ey —> Sample4

Dual=2

Figure 5: A floatmap shows the difference between the original code and the corrected code.

E.2 HOW THE IMPLEMENTATION ISSUE AFFECT THE PERFORMANCE

First, the implementation issue may lead to the leakage of task ID information during testing, thereby
improving performance. To better illustrate the effect of the implementation issue, we provide a spe-
cific example. Consider a batch of testing samples with a batch size of 4, all from task 3. Suppose
the prompt retrieval module predicts the prompt sets for the 4 testing samples as: 3, 3, 2, 3, respec-
tively. The implementation issue in the official code utilized a reshape operation (refer to Figure [3).
If using a reshape operation, then sample 1 will add key3 and key3; sample 2 will add key2 and
key3; sample 3 will add value3 and value3; and sample 4 will add value2 and value3. In this combi-
nation, each testing sample contains at least part of its ground truth prompt set, which increases the
probability of correct predictions and thus enhances the model’s performance.

Specifically, testing samples (e.g., Sample 3 from task 3) has an incorrect prompt retrieval results
(where Sample 3 is misidentified as belonging to task 2), but it still utilizes the task 3 related prompt
set. However, in fact, according to the basic design of PCL methods, each testing sample should
utilize the prompt set predicted by the prompt retrieval module (e.g., Sample 3 should use the prompt
set related to task 2).

Such operations can be considered as task ID information leakage (not utilizing the task ID predic-
tion from the prompt retrieval module). These observations indicate that the implementation issue
leads to incorrect testing processes, with task ID leakage contributing to the performance improve-
ment.

Table 7: The results reproduced by the original official code (which has an implementation issue)
and our corrected version. Here, we present the FFA results for all experiments.

Methods CIFAR IMR

HidePrompt(-Before) 91.07 72.05
HidePrompt(-Before without leak information about task id) 85.56 62.33
HidePrompt(-After) 85.77 62.42
HidePrompt(-After with leak information about task id) 92.91 72.69

To further illustrate the validity of the above analysis, we conducted ablation experiments using the
original official code (which has an implementation issue) and our corrected version. The results

22

Under review as a conference paper at ICLR 2025

are shown in Table Specifically, {HidePrompt(-Before)} is the result reproduced from the official
code from HidePrompt Wang et al.| (2024). {HidePrompt(-After)} is the results reproduced from
the corrected version. Besides, we additionally provide two experimental results: {HidePrompt (-
Before without leak information about task ID)} and {HidePrompt (-After with leak information
about task ID)}. Based on the above analysis, the official code of HidePrompt contains an imple-
mentation issue that leaks task ID information, allowing the model to achieve high performance. In
{HidePrompt (-Before without leak information about task ID)}, we removed the task ID informa-
tion leakage and observed a significant drop in model performance, which was similar to the results
of {HidePrompt (-After)}. In {HidePrompt (-After with leak information about task ID)}, we mim-
icked the implementation in the official code and incorporated task ID information in our corrected
version, resulting in a significant improvement in performance.

Table 8: Reproduced results of 3 baselines before and after fixing the implementation issue. Here,
we present the FFA for all experiments.

Methods CIFAR IMR CUB
DualPrompt(-Before) 86.16 65.09 81.50
DualPrompt(-After) 85.94 63.63 82.09
S-Prompt++(-Before) 88.73 65.10 81.89
S-Prompt++(-After) 89.26 63.26 82.57
HidePrompt(-Before) 92.47 72.05 86.56
HidePrompt(-After) 85.77 62.42 85.59

E.3 HYPERPARAMETER SEARCH RESULTS

After addressing the issue mentioned in Appendix we reproduced the results of the three base-
lines adpoted in this paper: DualPrompt, S-Prompt++, and HidePrompt. It is important to note that
we still used the official code of HidePrompt, with the only difference being that we modified the
‘reshape operation’ to a ‘permute operation’ after consulting the author, as shown in Listing |1| and
Listing[2] We compared the reproduced results before and after fixing the implementation issue, as
illustrated in Table

We found that the performance (FFA) of DualPrompt and S-Prompt++ did not decrease after the
implementation was corrected; in fact, it improved in some settings. This indicates that the imple-
mentation issue fundamentally affected the effectiveness of the prompt retrieval module, thus hin-
dering the performance of PCL. Additionally, we observed a significant decrease in the performance
(FFA) of HidePrompt on CIFAR and IMR, while the changes on CUB were minimal. We suspect
this may be due to the fact that the previously used hyperparameters are likely no longer applicable
after the corrections. Therefore, based on the author’s suggestions, we conducted a grid search for
the following hyperparameters of HidePrompt. The adjustable hyperparameters in HidePrompt are
listed as follows:

1. sched, This hyperparameters determines how the learning rate (LR) changes during model up-
dates as the number of epochs increases.

We search for sched from {constant, cosine, step}.

2. prompt momentum, This hyperparameters determines the proportion of prompt sets from old
tasks that are retained in the prompt set for new tasks.

We search for prompt momentum from {0.01, 0.1}.

3. reg, This hyperparameters sets the weight of the contrastive loss in HidePrompt.
We search for it from {0.001, 0.01, 0.1, 0.5}.

Since HidePrompt experienced a significant performance drop only on CIFAR and IMR while main-

taining good performance on CUB, we conducted the grid search for hyperparameters solely on these
two benchmarks. The results are shown in Table[9and Table[I0] respectively.

23

Under review as a conference paper at ICLR 2025

Table 9: Hyperparameters of sched, prompt momentum, and reg for HidePrompt on CI-
FAR_INC10_TASK10. Here, we present FFA and FFM for the performance.

sched prompt momentum reg FFAT FFM]
0.001 85.85 6.34
0.01 0.01 85.60 6.57
’ 0.1 85.77 6.18
step 0.5 85.86 6.35
0.001 85.94 6.15
0.1 0.01 85.78 6.31
’ 0.1 8591 6.37
0.5 85.92 6.21
0.001 85.55 6.37
0.01 0.01 85.47 6.38
’ 0.1 85.41 6.43
cosine 0.5 85.48 6.44
0.001 85.85 6.16
0.1 0.01 85.78 6.10
’ 0.1 85.68 6.17
0.5 85.69 6.28
0.001 86.22 6.14
0.01 0.01 8595 6.32
’ 0.1 86.03 6.33
constant 0.5 86.01 6.26
0.001 86.18 6.13
0.1 0.01 86.03 6.18
’ 0.1 86.10 6.22
0.5 86.10 6.26

Table 10: Hyperparameters of sched, prompt momentum, and reg for HidePrompt on
IMR_INC20_TASK10. Here, we present FFA and FFM for the performance.

sched prompt momentum reg FFAT FFM |
0.001 61.00 8.60
0.01 0.01 61.06 8.43
’ 0.1 61.30 8.54
step 0.5 60.81 8.41
0.001 60.84 8.40
0.1 0.01 61.05 8.64
' 0.1 61.22 8.28
0.5 60.80 8.73
0.001 6293 827
0.01 0.01 62.57 8.27
’ 0.1 62.47 8.43
cosine 0.5 6240 8.14
0.001 62.53 8.74
0.1 0.01 62.45 8.77
‘ 0.1 62.40 8.76
0.5 62.33 9.00
0.00T 6221 8.61
0.01 0.01 63.01 8.12
‘ 0.1 62.86 7.98
constant 0.5 62.56 8.78
0.001 62.77 8.13
0.1 0.01 6231 7.80
‘ 0.1 62.17 8.05
0.5 63.05 8.02

24

Under review as a conference paper at ICLR 2025

Table 11: Impact of Distinct Threshold of €, €pre 0n CIFAR_INC10_TASK10.

Settings €ask € FFA(T) PRA(T) FEM(])
DualPrompt Na Na 85.94 59.44 6.38
0.50 0.50 86.89 60.67 5.44
090 090 87.03 65.57 5.77
095 0.95 86.86 78.33 6.03
099 0.99 8648 100.0 7.12
S-Prompt++ Na Na 89.25 99.52 4.10
0.50 0.50 89.28 99.76 4.33
090 090 88.54 100.0 4.48
095 095 89.32 100.0 3.46
099 099 89.25 92.32 6.00
HidePrompt Na Na 85.77 80.78 6.19
0.50 0.50 86.85 81.70 5.78
090 0.90 86.57 84.93 5.14
095 095 86.93 90.10 5.02
099 0.99 87.60 95.39 4.28

DualPrompt [+ LW2G]

S-Prompt++ [+ LW2G]

HidePrompt [+ LW2G]

F FURTHER RESULTS

F.1 ABLATION STUDIES ON FOUR HYPERPARAMETERS IN LW2G

€tasks €pre: In Gradient Projection Continual Learning (GPCL), € is usually used to construct the
feature space in the SVD. Previous works set it between 0.9 and 0.99. In LW2G, €, and €, are
also used for feature space construction (old knowledge and pre-trained knowledge feature space).
Thus, we follow the value in [Saha et al.| (2021); |Qiao et al.| (2023); |[Zhao et al. (2023)) and set
these two parameters with the same value. We performed a grid search for appropriate values under
different settings. As shown in Table [[T LW2G consistently bring performance improvement for
any of the aforementioned values.

¢: ¢ controls the pre-trained knowledge and the acquisition of new task knowledge. We performed
a grid search for ¢ and the results are shown in Table

N: Experiments showed significant improvement at N = 1 compared to N = 0, with no added
benefit and increased computational overhead at higher values. Table|l|in the main paper indicates
that SSP remains small when combined with LW2G. Thus, for efficiency and generality, we chosed
N =1 as the default.

F.2 ABLATION STUDIES ON THREE MODULES IN LW2G

In this section, we provide all experiments of any combination of proposed modules and the results
are shown in Table The performance of any combimation can consistently outperform that of
the baseline, illustrating the effectiveness of these modules.

F.3 OVERHEAD ABOUT CALCULATION BURDEN AND TIME COST

First, LW2G only requires selecting prompt sets from the pool to calculate gradients and HFC before
learning each new task. The purpose is to decide whether to learn on a newly initialized set of
prompts or reuse an existing set from the prompt pool when learning a new task. After this, if opting
to grow, the parameter update process does not introduce additional computation compared to the
baseline. If opting not to grow, gradient projection is used during parameter updates to minimize
the impact on old tasks. The computational overhead introduced by this step is a common issue
in Gradient Projection Continual Learning (GPCL). This is detailed in Table [2| of the main paper,
where both FLOPS and TT (Training Time) are shown to increase.

Additionally, we further analyze the memory cost. In LW2G, the extra memory is divided into two
parts: a set of bases for the pre-trained knowledge space and a set of bases for the old task feature

25

Under review as a conference paper at ICLR 2025

Table 12: Impact of Distinct Threshold of ¢ in DualPrompt [+ LW2G] on three typical settings.

(a) CIFAR_INC10_TASK10

¢ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 | Baseline
FFA | 7833 78.33 78.33 74.03 7833 7266 7403 72.66 72.66 64.81 59.44
PRA | 8642 86.61 86.52 86.18 86.86 86.38 86.82 86.39 86.49 86.68 85.94
FFM | 625 6.15 604 604 6.03 574 648 573 550 5.70 6.38
SSP 2 2 2 3 2 3 3 3 3 5 10
(b) IMR_INC20_TASK10
¢ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 | Baseline
FFA | 87.65 87.68 80.39 80.39 80.39 80.39 80.39 80.39 76.26 54.81 41.05
PRA | 6533 65.29 65.56 6548 6534 6559 6558 6536 6517 64.36 63.63
FFM | 627 629 575 582 600 572 577 592 598 5.11 6.41
SSP 2 2 2 2 2 2 2 2 2 5 10
(c) CUB_INC20_-TASK10
¢ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 | Baseline
FFA | 69.05 69.05 70.10 70.11 7094 70.04 68.71 69.05 70.04 66.52 66.71
PRA | 81.57 81.50 82.43 8222 82.01 82.07 81.58 81.64 82.07 8251 82.09
FFM | 621 642 525 559 6.2 588 6.68 608 593 5.60 6.40
SSP 7 7 7 6 7 7 8 7 7 8 10

Table 13: Ablation studies in any combination of LW2G.

Variants FFA PRA SSpP
DualPrompt 63.63 41.05 10
DualPrompt [+ DGA] 65.02 77.68 2
DualPrompt [+ CPK] 64.34 50.39 10
DualPrompt [+ FFT] 64.08 47.17 10
DualPrompt [+ DGA, CPK] 65.37 78.13 2
DualPrompt [+ DGA, FFT] 65.12 77.90 2
DualPrompt [+ CPK, FFT] 64.49 51.20 10
DualPrompt [+ LW2G] 65.60 80.40 2

space. The size of these two sets depends on the choice of € during the SVD. In the following Table
[[4] we analyze the memory introduced by Gradient Projection as € varies. The ‘Bases’ indicates the
total number of bases for the two sets, ‘Extra Memory’ represents the additional memory required.
Specifically, we calculate the memory by considering each base as a tensor of length 768, stored as
float32.

It is also worth reiterating that the proposed LW2G, inspired by gradient projection methods, intro-
duces a novel and dynamic prompt growing strategy for prompt continual learning. The calculation
burden and time cost are common issues with GPCL methods, which we explicitly mention in the
limitations section. Although addressing this problem is beyond the scope of this study, we will
consider it as a direction for future research.

F.4 COMPARISON WITH TWO CONCURRENT WORKS

We note that two concurrent works, SEED (Rypes¢ et al., |2024) and PGP |Qiao et al.| (2023), are
closely related to our motivation and methodology, respectively. In this section, we compare our
proposed LW2G with these approaches.

PGP first introduced Gradient Projection-based Continual Learning (GPCL) in the context of PCL,
leveraging GPCL to ensure that old knowledge is not forgotten. They demonstrated that in the sce-
nario of PCL, the construction of the feature space could be translated into the prompt space and
input space. However, unlike PGP, LW2G aims to dynamically learn whether to grow (initialize
a new set of prompts) or not to grow (reuse prompts in pool) for each new task based on specific
commonalities between tasks. To achieve this, LW2G adopts the idea of the orthogonal condition
in GPCL to integrate knowledge from multiple tasks into a single set of prompts while preserving

26

Under review as a conference paper at ICLR 2025

Table 14: Discussion of the effects of memory on IMR_INC20_TASK10.

€ FFA Bases Extra Memory
HidePrompt / 85.77 0 0
HidePrompt [+ LW2G] | 0.90 86.57 429 <5MB
095 8693 509 <5MB
0.99 87.60 640 <5MB

Table 15: Results on typical and long task settings. Here, we present DualPrompt as the baseline,
with PGP and LW2G added to the baseline respectively. The best results are highlighted in bold.

Settings Methods FFA (1) PRA (1) FEM ({) SSP ({)
DualPrompt 85.94 59.44 6.38 10
CIFAR_INC10_.TASK10 DualPrompt [+ PGP] 86.72 59.15 6.01 10
DualPrompt [+ LW2G] 86.86 78.33 6.03 2
DualPrompt 63.63 41.05 6.41 10
IMR_INC20_-TASK10 DualPrompt [+ PGP] 63.82 41.18 5.65 10
DualPrompt [+ LW2G] 65.60 80.40 5.72 2
DualPrompt 82.09 66.71 6.40 10
CUB_INC20_-TASK10 DualPrompt [+ PGP] 81.58 66.88 7.01 10
DualPrompt [+ LW2G] 82.43 70.09 5.25 7
DualPrompt 63.36 68.47 12.92 30
OMNI_INC10_-TASK30 DualPrompt [+ PGP] 63.74 67.95 12.97 30
DualPrompt [+ LW2G] 65.12 80.95 10.75 9
DualPrompt 61.85 69.94 13.50 60
OMNI_INC5_TASK60 DualPrompt [+ PGP] 62.24 68.68 14.64 60
DualPrompt [+ LW2G] 63.17 75.31 12.01 17

old knowledge. Additionally, we analyze the hindrance on learning new tasks caused by the or-
thogonal condition and use the degree of inhibition under this condition as an adaptive criterion for
our Dynamic Growing Approach. Furthermore, in Table[I5] we compare the results of the Baseline,
Baseline + PGP, and Baseline + LW2G. In both typical and long task settings, Baseline + LW2G con-
sistently outperforms Baseline + PGP. Moreover, LW2G significantly outperforms PGP in PRA and
SSP, further highlighting our approach’s focus on the amount of selectable sets during the prompt
retrieval stage in PCL.

Meanwhile, SEED proposed a continual learning method based on Mixture-of-Experts (MoE).
Specifically, SEED maintains multiple sets of experts and dynamically determines which expert
should be used to learn new tasks with minimal impact on old tasks. However, SEED fixes the total
number of experts at the start of training, which inevitably reduces plasticity as the amount of tasks
increases. In contrast, LW2G achieves complete dynamic expansion of ’experts’ (which are sets of
prompts in PCL) by assessing the degree of inhibition on new tasks under the orthogonal condition,
thus eliminating the need to predefine the amount of experts.

F.5 VISUALIZATION OF DYNAMIC PROCESS OF LW2G WITH PCL

In this section, we further demonstrate how LW2G dynamically decides to grow or not to grow
based on the HFC metric before learning each task. The results are illustrated in Table[I6] It can be
observed that HidePrompt [+ LW2G] only requires 6 sets of prompts to surpass HidePrompt (which
requires 10 sets of prompts) on the IMR benchmark.

27

Under review as a conference paper at ICLR 2025

Table 16: Variation process of HidePrompt [+ LW2G] on IMR.

Task | Calculation Process Minimal Z Option Prompt sets pool
1 / / To Grow a new (p1, k1) (p1,k1)— Task 1
2 HFC;=8.81, HFC!"*=7.17 Z1=1.64>0 | To Grow a new (p2, k2) (p1, k1)— Task 1
(p2, k2)— Task 2
3 HFC,=8.83, HFC}“=7.22 Z3>=1.21>0 | To Grow a new (ps, k3) (p1, k1)— Task 1
HFC2=9.24, HFC5*=8.03 (p2, k2)— Task 2
(ps, kg)—) Task 3
4 HFC;=7.34, HFC}"*=8.82 Z1=-1.48<0 | Not To Grow with (p1, k1) | (p1,k1)— Task 1,4
HFC2=9.26, HFC}=8.00 (p2, k2)— Task 2
HFC3=9.15, HFC5*=8.97 (p3, k3)— Task 3
5 HFC,=9.24, HFC|*=8.12 Z5=0.04>0 | To Grow a new (p4, k4) (p1, k1)— Task 1,4
HFC2=9.11, HFC5*=9.07 (p2, k2)— Task 2
HFC5=12.95, HFC}*=7.24 (ps3, k3)— Task 3
(p4, k4)*> Task 5
6 HFC;=9.23, HFC°=8.02 Z4=-0.11<0 | Not To Grow with (p4, k1) | (p1,k1)— Task 1,4
HFC2=9.29, HFC5=9.23 (p2, k2)— Task 2
HFC5=12.94, HFC5*=7.29 (ps3, k3)— Task 3
HFC4=9.03, HFC}"=9.14 (pa, ka)— Task 5,6
7 HFC;=9.23, HFC}*=8.08 Z3=-0.11<0 | Not To Grow with (ps, k3) | (p1,k1)— Task 1,4
HFC2=12.96, HFC5“=7.33 (p2, k2)— Task 2
HFC3=9.14, HFC§"=9.25 (ps3, k3)— Task 3,7
HFC4=12.84, HFCY=9.16 (p4, k4)— Task 5,6
8 HFC;=9.21, HFC|"*=8.19 Z1=1.02>0 | To Grow a new (ps, ks) (p1, k1)— Task 1,4
HFC2=12.94, HFC5*=7.50 (p2, k2)— Task 2
HFC5=12.86, HFC}°=9.23 (ps3, k3)— Task 3,7
HFC4=12.60, HFC[*=9.02 (p4, k4)— Task 5,6
(ps, ks)— Task 8
9 HFC;=9.41, HFC|"*=8.08 Z5=0.48>0 | To Grow a new (ps, ks) (p1, k1)— Task 1,4
HFC2=12.95, HFCY*=7.26 (p2, k2)— Task 2
HFC5=12.83, HFC5°=9.26 (ps, k3)— Task 3,7
HFC4=12.61, HFC/[°=9.17 (p4, k4)— Task 5,6
HFC5=7.98, HFCE“=7.50 (ps, ks)— Task 8
(p6, ke)— Task 9
10 HFC,=9.24, HFC|"*=7.99 Z5=-1.01<0 | Not To Grow with (ps, ks) | (p1,k1)— Task 1,4
HFC2=12.97, HFC)*=7.29 (p2, k2)— Task 2
HFC3=12.84, HFC5°=9.10 (ps, k3)— Task 3,7
HFC4=12.59, HFC[*=9.03 (p4, k4)— Task 5,6
HFC5=7.98, HFCE =8.99 (ps, ks)— Task 8,10
HFC6=6.99, HFC{°=7.53 (ps, ke)— Task 9

F.6 PERFORMANCE UNDER OTHER PTMSs

To show the efficacy of proposed method under different PTMs, we evaluate our method by extend-
ing three distinct PTMs, namely IBOT 1k [Zhou et al.[(2021), IBOT21k[Zhou et al.|(2021) and DINO

Caron et al| (2021)). The results are shown in the Table[I7] Table[T8]and Table 19}

28

Under review as a conference paper at ICLR 2025

Table 17: Results under IBOT21k when comparing LW2G with three baselines. The best results are
highlighted in bold.

Sctings Methods FFA (1) PRA(T) FFM (J) SSP (1)
DualPrompt 7403 72.16 15.93 10
DualPrompt [+ LW2G] 7476 78.33 13.92 3
S-Prompt++ 78.37 78.83 9.00 10

CIFARINCIO.-TASKIO g b ooir [+ LW2G] 7883 75.20 8.69 3
HidePrompt 86.12 85.02 5.98 10
HidePrompt [+ LW2G] 86.40 92.06 5.84 2
DualPrompt 37.96 38.62 536 10
DualPrompt [+ LW2G] 49.13 64.05 533 3
S-Prompt++ 4620 37.77 7.01 10

IMR_INC20-TASK10 S-Prompt++ [+ LW2G] 48.97 71.04 6.30 3
HidePrompt 62.00 6728 5.63 10
HidePrompt [+ LW2G] 63.67 82.18 5.80 3

Table 18: Results under IBOT 1k when comparing LW2G with three baselines. The best results are
highlighted in bold.

Scttings Methods FFA (1) PRA(T) FEM(J) SSP ()
DualPrompt 7158) 041 0
DualPrompt [+ LW2G] 71.79 84.90 18.99 3
S-Prompt++ 75.70 83.76 9.46 10

CIFARINCIO-TASKIO g b s [+ LW2G] 7601 84.37 8.91 3
HidePrompt 84.83 83.50 6.48 10
HidePrompt [+ LW2G] 85.54 88.02 575 3
DualPrompt 36.68 3815 5.18 10
DualPrompt [+ LW2G] 56.89 5757 5.04 3
S-Prompt++ 52.38 39.78 7.18 10

IMR_INC20-TASK10 S-Prompt++ [+ LW2G] 55.82 55.90 713 3
HidePrompt 64.77 67.94 6.90 10
HidePrompt [+ LW2G] 65.15 78.27 4.86 3

Table 19: Results under DINO when comparing LW2G with three baselines. The best results are
highlighted in bold.

Scttings Methods FFA (1) PRA(T) FEM(J) SSP ()
DualPrompt 69.46 88.80 18.96 10
DualPrompt [+ LW2G] 70.13 89.01 18.03 3
S-Prompt++ 74.62 87.60 10.71 10

CIFARINCIO-TASKIO o promptrs [+ LW2G] 7136 89.30 12.38 2
HidePrompt 82.89 82.05 7.45 10
HidePrompt [+ LW2G] 83.58 88.57 7.08 3
DualPrompt 5241 38.74 5.93 10
DualPrompt [+ LW2G] 54.22 75.75 577 2
S-Prompt++ 50.00 3772 6.75 10

IMR-INC20-TASKI10 S-Prompt++ [+ LW2G] 65.44 79.35 6.01 5
HidePrompt 62.42 62.07 8.89 10
HidePrompt [+ LW2G] 64.04 86.43 4.82 2

29

	Introduction
	Related Work
	Preliminaries and Notations
	Theory and Method
	Theoretical Analysis on Hindrance in GPCL
	Dynamic Growing Approach
	Consistency with Pre-trained Knowledge
	Facilitation for Forward Transfer

	Experiment
	Experimental Setups
	Main Results
	Ablation Study
	Detail Analysis

	Conclusion
	Algorithm
	Theoretical Foundation
	Proof of Theorem 1
	Building and Updating of Feature Space

	Review of Existing PCL
	Implementation Details
	Training Regime and Hyperparameters
	Evaluation Metrics

	Reproduction of Baselines
	An implementation issue about prompt retrieval
	How the implementation issue affect the performance
	Hyperparameter Search Results

	Further Results
	Ablation studies on four hyperparameters in LW2G
	Ablation studies on three modules in LW2G
	Overhead about calculation burden and time cost
	Comparison with Two Concurrent Works
	Visualization of Dynamic Process of LW2G with PCL
	Performance Under Other PTMs

