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ABSTRACT

Continual Learning (CL) aims to learn in non-stationary scenarios, progressively
acquiring and maintaining knowledge from sequential tasks. Recent Prompt-
based Continual Learning (PCL) has achieved remarkable performance with Pre-
Trained Models (PTMs). These approaches grow a prompt sets pool by adding
a new set of prompts when learning each new task (prompt learning) and adopt
a matching mechanism to select the correct set for each testing sample (prompt
retrieval). Previous studies focus on the latter stage by improving the match-
ing mechanism to enhance Prompt Retrieval Accuracy (PRA). To promote cross-
task knowledge facilitation and form an effective and efficient prompt sets pool,
we propose a plug-in module in the former stage to Learn Whether to Grow
(LW2G) based on the disparities between tasks. Specifically, a shared set of
prompts is utilized when several tasks share certain commonalities, and a new set
is added when there are significant differences between the new task and previous
tasks. Inspired by Gradient Projection Continual Learning, our LW2G develops a
metric called Hinder Forward Capability (HFC) to measure the hindrance imposed
on learning new tasks by surgically modifying the original gradient onto the or-
thogonal complement of the old feature space. With HFC, an automated scheme
Dynamic Growing Approach adaptively learns whether to grow with a dynamic
threshold. Furthermore, we design a gradient-based constraint to ensure the con-
sistency between the updating prompts and pre-trained knowledge, and a prompts
weights reusing strategy to enhance forward transfer. Extensive experiments show
the effectiveness of our method.

1 INTRODUCTION

Compared to learning in stationary scenarios, Continual Learning (CL) equips systems with the
ability to learn in non-stationary environments, which is a core step toward achieving human-level
intelligence and human-like adaptation. In this learning paradigm, Deep Neural Networks (DNNs)
need to learn from a sequential tasks while retaining past knowledge and acquiring novel knowledge.
However, simply utilizing standard optimization methods Diederik (2014); Ruder (2016) for train-
ing DNNs inevitably erases the parametric representations of old tasks with new input representa-
tions during updating. Therefore, a well-known problem Catastrophic Forgetting (CF) arises French
(1999); Ramasesh et al. (2021); McCloskey & Cohen (1989); Rebuffi et al. (2017); Lewandowsky
& Li (1995), where DNNs suffer severe performance degradation on old tasks due to the absence of
old data and domain shift in data distributions, making CL an extremely challenging problem.

Recently, Prompt-based Continual Learning (PCL) offers fresh insights into addressing CF Wang
et al. (2024); Douillard et al. (2022); Smith et al. (2023b); Zhou et al. (2023a); Wang et al. (2022a;b);
Zhou et al. (2022). These methods leverage frozen Pre-Trained Models (PTMs) rather than training
from scratch and employ Parameter-Efficient Fine-Tuning techniques (PEFTs) (Zhu et al., 2023;
Dettmers et al., 2024; Wang et al., 2020; Houlsby et al., 2019; Jia et al., 2022; Hu et al., 2021),
e.g., prompt. Specifically, PCL involves two stages: (a) prompt learning: learning a task-wised set
of prompts to conditionally guide the PTM for the current task, which are stored in an expanding
prompt sets pool, and (b) prompt retrieval: predicting which task each testing sample belongs to
and choosing the corresponding prompt set. Recent studies Wang et al. (2024); Huang et al. (2024);
Tran et al. (2023) have found that Prompt Retrieval Accuracy (PRA) can significantly influence
the performance, since an incorrect set for the testing samples results in a performance decline.
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Figure 1: Illustration of HFC. Si represents
the feature space spanned by the old task i,
while S⊥

i denotes the orthogonal complement
to Si. Then, HFC(g, g⊥

i ) is denoted as HFCi.

Additionally, learning each task individually not
only limits the potential for cross-task knowledge
facilitation but also leads to parameter redundancy
Yu et al. (2024); Rypeść et al. (2024).

One simple solution to this problem is to mimic hu-
mans’ integration of information Roediger & Mc-
Dermott (1995); Hunt (2006); Arndt (2006). For
instance, when several tasks share certain com-
monalities, they can use a shared set of prompts.
However, when tasks differ significantly, a new set
should be added. Thus, by adaptively learning
whether to grow a new set for PCL, the amount
of selectable options is reduced, and the divergence between sets is increased, thereby improving
PRA. Furthermore, aggregating multiple tasks’ knowledge into a single set can also facilitate mu-
tual knowledge utilization and promotion among tasks. Nevertheless, establishing suitable metrics
to measure this commonality and obtaining task information a priori – all of which are challenging
in practice. Moreover, gradually integrating knowledge from multiple tasks into a single set also
presents an unresolved query, as the knowledge from different tasks can interfere with each other
during sequential learning.

Thanks to Gradient Projection-based Continual Learning (GPCL) Zhao et al. (2023); Saha et al.
(2021); Lopez-Paz & Ranzato (2017), which proposes that learning would not forget if the updated
gradient is orthogonal to the feature space spanned by old tasks (denoted as orthogonal condition),
we propose to use the orthogonal condition in GPCL to integrate the knowledge from multiple tasks
into a single set of prompts. Specifically, in Figure 1, the gradient g of the new task is modified to its
projection g⊥

1 onto S⊥
1 , and g⊥

1 serves as the real gradient for updating parameters, thereby reducing
the forgetting of old knowledge in task 1. Furthermore, to address the dilemma of whether to grow
(i.e., initializing a new set of prompts) or not to grow (i.e., selecting an old set of prompts from the
pool), we introduce a novel metric called Hinder Forward Capability (HFC). HFC is calculated
as the angle θ between the gradient of the new task g and its’ projection g⊥. As illustrated in Figure
1, as HFC1¡HFC2 then g⊥

1 ¿g⊥
2 , it implies that the hindrance to learning on the set of prompts to task

2 is larger than that on the set of prompts to task 1 when updating under the orthogonal condition.
Thus, when the hindrance on learning a new task is severe, PCL should choose to grow a new set;
conversely, it tends not to grow. Meanwhile, g presents a large projection onto S2 indicating higher
similarity between the new task and task 2 than with task 1.

Based on the analysis, we propose a plug-in module within PCL to Learn Whether to Grow
(LW2G), consisting of three components: Dynamic Growing Approach (DGA), Consistency with
Pre-trained Knowledge (CPK), and Facilitation for Forward Transfer (FFT). DGA is an automated
scheme to learn whether to grow (adopt a new set of prompts and store it in the pool) or not to grow
(utilize an existing set of prompts from the pool) for new tasks based on the introduced HFC metric.
Specifically, to incorporate knowledge from multiple tasks into a single set of prompts, we first em-
ploy the orthogonal condition to learn new tasks without forgetting and calculate the hindrance on
learning with each set in the pool through HFC. Meanwhile, we consider an ideal scenario to gener-
ate a dynamic threshold, which learn the new task on the pre-trained knowledge feature space Spre

without any obstacles from old tasks. DGA chooses to grow if all HFC values are above this thresh-
old, indicating that learning with each set in the pool encounters excessive hindrance. Conversely,
DGA chooses not to grow by selecting the old set of prompts with the minimum HFC and learning
the new task under the orthogonal condition. CPK aims to balance the disruption to pre-trained
knowledge caused by continual learning on new tasks and the reduced plasticity brought by strict
orthogonality to the entire pre-trained feature space Spre. Therefore, we propose applying a soft con-
straint to the gradient when learning new tasks, aiming to align the gradient direction as closely as
possible with the feature space of the pre-trained knowledge, ensuring consistency between prompt
updates and pre-trained knowledge. Finally, FFT reuses the frozen weights from the existing set of
prompts with the maximum HFC to enhance forward transfer.

The contributions of this paper can be summarized as follows:

2
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• We propose an automated learning scheme within PCL, by learning whether to grow or not to
grow set of prompts. We aim to form an effective and efficient prompt sets pool where each single
set contains knowledge from multiple tasks, thus facilitating cross-task promotion.
• We introduce HFC metric, which not only measures the difference between new and old tasks but
also evaluates the hindrance on learning new tasks under the strict orthogonal condition.
• LW2G is a plug-in module within existing PCL. Extensive experiments demonstrate its superiority
across multiple benchmarks and various CL settings.

2 RELATED WORK

Continual Learning and Gradient Projection Numerous efforts have been made to alleviate the
core issue of CF French (1999); Ramasesh et al. (2021); McCloskey & Cohen (1989), which can
be roughly categorized into three main categories: (1) Architecture-based, (2) Rehearsal-based, and
(3) Regularization-based. Architecture-based methods Rusu et al. (2016); Yoon et al. (2017); Li
et al. (2019); Loo et al. (2020); Mallya & Lazebnik (2018); Serra et al. (2018); Ke et al. (2020)
segregate components within the DNNs for each task by expanding the model or constraining the
learning rate of part of parameters. However, most of them designed for Task-CL, which is not
suitable for challenging Class-CL. Rehearsal-based methods Buzzega et al. (2020); Cha et al. (2021);
Rebuffi et al. (2017); Wu et al. (2019); Ebrahimi et al. (2020); Pham et al. (2021); Zhao et al.
(2021); De Lange et al. (2021); Wang et al. (2018) mitigate forgetting by replaying real or generated
samples of old tasks, which raises concerns about efficiency and privacy. Regularization-based
methods Kirkpatrick et al. (2017); Zenke et al. (2017) achieve a balance between new and old tasks
by designing sophisticated regularization terms. Among them, GPCL methods Zhao et al. (2023);
Saha et al. (2021); Lopez-Paz & Ranzato (2017); Qiao et al. (2023); Lin et al. (2022b;a); Zhu et al.
(2023); Yu et al. (2020); Wang et al. (2021); Duncker et al. (2020); Wang et al. (2023); Smith et al.
(2023a); Chen et al. (2020; 2022) focus on the gradient of the parameter. These methods project
the gradient orthogonally to the feature space spanned by the old tasks, thereby not affecting the old
knowledge.
Prompt-based Methods and Transfer Learning PCL garnered significant attention due to their
utilization of PEFT techniques (Zhu et al., 2023; Dettmers et al., 2024; Wang et al., 2020; Houlsby
et al., 2019; Jia et al., 2022; Hu et al., 2021; Yang et al., 2024) to leverage PTMs, achieving rehearsal-
free and promising performance Wang et al. (2024); Douillard et al. (2022); Smith et al. (2023b);
Zhou et al. (2023a); Wang et al. (2022a;b); Zhou et al. (2022); Qiao et al. (2023); Wang et al. (2022c);
Huang et al. (2024); Zhou et al. (2024b;a; 2023b). Among them, DualPrompt Wang et al. (2022b)
proposed partitioning the knowledge of tasks into general and specific categories, and learns them
with g-prompt and e-prompt, respectively. Similarly, S-liPrompt and S-iPrompt Wang et al. (2022a)
addressed Domain-CL by leveraging Vision-Language Models (VLMs) to further enhance the learn-
ing ability. CODAPrompt Smith et al. (2023b), S-Prompt++ Wang et al. (2024) and HidePrompt
Wang et al. (2024) improved prompt retrieval stage through attention mechanisms and auxiliary
adapter classifiers. Additionally, recent studies show that fine-tuning downstream tasks or continual
learning with PTMs often leads to overfitting due to relatively limited downstream training data,
resulting in degradation of pre-trained knowledge Lee et al. (2023); Li et al. (2024); Zheng et al.
(2023); Zhu et al. (2023).

3 PRELIMINARIES AND NOTATIONS

Continual Learning Assume there is a sequence of tasks and their corresponding training datasets{
Di, i = 1, 2, . . .

}
without overlapping classes, where Dt = {(xi,t,yi,t)}nt

i=1 belongs to the task t.

We denote the DNN as W =
{
θl
}L

l=1
, where θl is the weight of layer l. Given a training sample

xi,t, we denote xl
i,t as the input of layer l and the output is xl+1

i,t = f l
(
θl,xl

i,t

)
, where f l is the

operation of layer l. We simplify the loss function for learning task t as Lt(Dt) and Wt =
{
θlt
}L

l=1
as the DNN after training on task t.

Gradient Projection Continual Learning First, for any matrix A with suitable dimensions, its
projection onto a given space S is denoted as follows:

ProjS (A) = AB (B)
T
, (1)
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where B is the bases for S and (·)T is the matrix transpose.

Then, following Saha et al. (2021), we briefly introduce how GPCL reduces the interference of old
knowledge when learning new tasks. After leaning task 1, GPCL first constructs a representation
matrix for layer l as Rl

1 ∈ RN×d from task 1 only. Next, Singular Value Decomposition (SVD)
is performed on Rl

1 followed by its k-rank approximation
(
Rl

1

)
k

with threshold, ϵ. Therefore, the
feature space for layer l spanned by task 1 is built by Sl

1 = span
{
Bl

1

}
, where Bl

1 is the bases for Sl
1.

And Sl
1 is stored in memory M =

{
Sl
1

}
. When learning task 2, the gradient of layer l is denoted as

g = ∇θlL2. As illustrated in Figure 1, GPCL modify the gradient as follows:

g⊥
1 = ProjS⊥

1
(g), (2)

where S⊥
1 is the orthogonal complement of Sl

1 and g⊥
1 serves as the real gradient for updating layer

l. Let ∆θl1 denote the change in layer l after learning task 2. For xi,1 ∈ Sl
1 from task 1, it follows

that ∆θl1xi,1 = 0 due to the orthogonality of g⊥
1 with respect to Sl

1 Zhang et al. (2021); Saha et al.
(2021). Therefore, we can obtain:

θl2x
l
i,1 = (θl1 +∆θl1)x

l
i,1 = θl1x

l
i,1. (3)

It demonstrates that there is no forgetting of knowledge of task 1, if the gradient for updating pa-
rameters is orthogonal to the old feature space. We denote the above condition as the orthogonal
condition. After learning task 2, a new representation matrix for layer l denoted as Rl

2 is built from
task 2 only. And Sl

1 in M needs to be updated by updating Bl
1 with unique bases from Rl

2. Details
are in Appendix B.2.

Prompt-based Continual Learning Recent studies Wang et al. (2024); Smith et al. (2023b);
Wang et al. (2022c;b;a) utilized prompts to leverage the PTMs. Therefore, the DNN is a Vision
Transformer (VIT), and the operation of layer l, f l, is the attention mechanism within each trans-
former block. Hence, the input of VIT after patch embedding is xe ∈ RLe×d, where Le is the token
length. Specifically, VPT Jia et al. (2022); Li & Liang (2021) prepend a set of learnable tokens
p ∈ RLp×d to xe and treat [p,xe] ∈ R(Le+Lp)×d as the input, minimizing L to encode task-specific
knowledge into these prompts while keeping pre-trained weights frozen. PCL involves two stages:
prompt learning and prompt retrieval. In prompt learning, PCL grows the prompt sets pool P by
initializing a new set of prompt (pi,ki) before learning each new task i, where pi is combined with
the training samples by the attention mechanism. Meanwhile, ki is optimized by being pulled closer
to the vanilla features of the training samples obtained by a VIT without combining with prompts.
In prompt retrieval, ki serves as the query vector for predicting which set of pi to choose for each
testing sample by a matching mechanism. More details are in Appendix C.

4 THEORY AND METHOD

In this section, we first present a theoretical analysis of GPCL concerning the hindrance on learning
new tasks under the orthogonal condition (Theorem 1 and Definition 1). Subsequently, as illustrated
in Figure 2, we introduce the plug-in module Learning Whether to Grow (LW2G), which consists
of three components: DGA, CPK, and FFT.

4.1 THEORETICAL ANALYSIS ON HINDRANCE IN GPCL

For simplicity, the notation of layer l is omitted in the following analysis. While learning on task
i, GPCL update the parameters under the orthogonal condition to avoid interfering with old knowl-
edge. However, since the gradient represents the direction of local optimal descent for the loss func-
tion, modifying it inevitably results in a reduction of local information. To quantify the hindrance
under the orthogonal condition in GPCL, we first define the following metric.
Definition 1 (Hinder Forward Capability, HFC). In GPCL, while continually encoding new knowl-
edge into a single model under the orthogonal condition, Hinder Forward Capability (HFC) is
defined to evaluate the hindrance on learning new tasks. HFC is the angle between the original
gradient obtained through backpropagation g and its projection g⊥ = ProjS⊥

old
(g) onto S⊥

old,

HFC(g, g⊥) = arccos

(
g · g⊥

∥g∥∥g⊥∥

)
.

4
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Figure 2: Illustration of three components in LW2G. Before learning task 3, assume there are two
sets in P = {(p1,k1), (p2,k2)}. In P , blue represents frozen and unlearnable sets of prompts,
whereas red represents learnable sets.

As illustrated in Figure 1, a large HFC indicates a significant gap between original gradient g and
the real gradient g⊥. Therefore, a large reduction of local information leads to greater hindrance on
learning new tasks. Based on this, we formally present the following theorem (see Appendix B.1 for
a detailed proof):
Theorem 1. Given a space S1 = span{B1}, where B1 = [b1, . . . , bl] ∈ Rn×l is a set of l bases
for S1, and a space S2 = span{B2}, where B2 = [b1, . . . , bl, bl+1, . . . , bl+k] ∈ Rn×(l+k) is a set
of l + k bases for S2. Then, ∀α there always exists:

HFC(α,ProjS1
(α)) > HFC(α,ProjS2

(α)).

The above Theorem 1 shows that fewer bases result in a larger HFC. As Sold in M continues to
expand with new bases from each new task, its corresponding orthogonal complement S⊥

old progres-
sively shrinks. Consequently, the bases in S⊥

old steadily decrease, leading to a large HFC and more
severe hindrance on learning new tasks.

4.2 DYNAMIC GROWING APPROACH

Instead of naively growing a new set of prompts for each new task regardless of task dissimilarities,
we propose a Dynamic Growing Approach (DGA). DGA involves dynamically learning whether
to grow (initialize a new set of prompts and store it in the pool) or not to grow (utilize an existing
set from the pool).

For simplicity, we adopt an example with three tasks to illustrate our method in Figure 2. A more
general description is presented in pseudocode, which can be found in Appendix A.

Before learning task 3, we first qualify the hindrance on each old set in the pool under the orthogonal
condition. Specifically, we iteratively select an old set (p1,k1) from P and S1 from M, where S1

is the old feature space corresponding to task 1. We construct a subset of training dataset from task
3, denoted as D3

sub. For clarity, the gradient to update (p1,k1) with D3
sub is denoted as:

g1 = ∇(p1,k1)L3(D3
sub). (4)

To prevent the influence of old knowledge contained in (p1,k1) while learning task 3, the gradient
g1 is required to be modified to ProjS⊥

1
(g1), where S⊥

1 is the orthogonal complement of S1. Then,
ProjS⊥

1
(g1) serves as the real gradient for updating parameters. Based on Theorem 1, we evaluate

the hindrance under the orthogonal condition while learning task 3 on (p1,k1) as follows:

HFC1 = HFC(g1,ProjS⊥
1
(g1)). (5)

5
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Besides, we define a dynamic threshold based on the task 3 and the PTM being used. Firstly, we
initialize a new set with (p1,k1) as follows:

(p3,k3) ⇐ (p1,k1). (6)

Here, the newly initialized (p3,k3) does not contain any knowledge from previous tasks (task 1 or
task 2), which represents an ideal scenario for learning task 3. Likewise, the gradient to updated
(p3,k3) is denoted as:

g3 = ∇(p3,k3)L3(D3
sub). (7)

Then, we can obtain a representation matrix Rpre
3 by feeding D3

sub into the VIT without prompts. We
can newly build Spre

3 after performing SVD and k-rank approximation with pre-trained threshold,
ϵpre. Then, we can also calculate:

HFCpre
1 = HFC(g3,ProjSpre,⊥

3
(g3)), (8)

where Spre,⊥
3 is the orthogonal complement of Spre

3 . Here, HFCpre
1 represents the relationship be-

tween the gradient of learning task 3 and the pre-trained knowledge from task 3. As (p3,k3) is
newly initialized specifically for training task 3, it contains no prior knowledge, and thus, there are
no obstacles from old tasks. Therefore, HFCpre

1 signifies the ideal scenario when learning new tasks
in PCL, which is the dynamic threshold to evaluate the relative magnitude of hindrance. Based on
this, the gap between learning on old set (p1,k1) under the orthogonal condition and leaning on
new set (p3,k3) in an ideal scenario is denoted as follows:

Z1 = HFC1 − HFCpre
1 . (9)

Thus, if Z1 > 0, it indicates that learning on the old set (p1,k1) from P encounters excessive
hindrance.

Likewise, the gap between learning on old set (p2,k2) under the orthogonal condition and leaning
on new set (p3,k3) in an ideal scenario can also be calculated as Z2, where (p3,k3) is a newly
initialized set with (p2,k2).

Opting To Grow or Not To Grow Based on the analysis, we propose a dynamic growing approach
as follows:  To Grow if min

m∈(1,2)
Zm > 0

Not To Grow else min
m∈(1,2)

Zm ≤ 0.
(10)

• While chosing To Grow, we initialize a new set (p3,k3). Then, update (p3,k3) with task 3 and
build a new feature space S3 with threshold, ϵtask, from task 3 only and store S3 into M.
• While chosing Not To Grow, we select an old set (pt,kt) from P , where t = argminm∈(1,2)Zm.
Then, update (pt,kt) with task 3 under orthogonal condition and update the old feature space St

with threshold, ϵtask, with new bases from task 3.

4.3 CONSISTENCY WITH PRE-TRAINED KNOWLEDGE

Recent studies in transfer learning and domain adaptation revealed that when employing PEFT for
fine-tuning PTM, the performance after fine-tuning often falls short of the pre-trained knowledge of
PTM itself. However, this aspect has not been extensively studied in PCL.

Therefore, we exploit two distinct level of forgetting issues faced in PCL: (1) continuous fine-tuning
on downstream tasks leading to the forgetting of pre-trained knowledge, and (2) continual learning
on new tasks resulting in the forgetting of old tasks.

To tackle the former issue, we adjust the gradient of the new tasks to be orthogonal to the pre-
trained feature space. However, due to the domain gap between the incremental task training data
and the pre-trained data, a fully orthogonal manner is too stringent and can significantly impact the
plasticity. To achieve a balance between maintaining plasticity and fully utilization of the pre-trained
knowledge, we propose to apply a soft constraint to the gradient as follows:

g = g − (1− ϕ)ProjSpre
3
(g), (11)

6
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Table 1: Results of adding LW2G on three baselines: DualPrompt, S-Prompt++, and HidePrompt.
Since the official code of Hideprompt1 has a code inplementation issue about prompt retrieval, we
asked the authors for the fixed version of code and reproduced the following experimental results.
More details about the issue and the fixed version of official code are provided in Appendix E.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 85.94 59.44 6.38 10
DualPrompt [+ LW2G] 86.86 78.33 6.03 2
S-Prompt++ 89.25 99.52 4.10 10
S-Prompt++ [+ LW2G] 89.32 100.0 3.46 7
HidePrompt 85.77 80.78 6.19 10
HidePrompt [+ LW2G] 87.60 95.39 4.28 2

IMR INC20 TASK10

DualPrompt 63.63 41.05 6.41 10
DualPrompt [+ LW2G] 65.60 80.40 5.72 2
S-Prompt++ 63.26 44.31 6.22 10
S-Prompt++ [+ LW2G] 65.44 79.35 6.01 5
HidePrompt 62.42 62.07 8.89 10
HidePrompt [+ LW2G] 63.23 65.13 7.19 6

CUB INC20 TASK10

DualPrompt 82.09 66.71 6.40 10
DualPrompt [+ LW2G] 82.43 70.09 5.25 7
S-Prompt++ 82.57 66.30 4.85 10
S-Prompt++ [+ LW2G] 82.61 87.49 4.54 3
HidePrompt 85.59 88.58 3.22 10
HidePrompt [+ LW2G] 86.17 92.53 3.08 4

where ϕ is the coefficient of the soft constraint to control the orthogonality and Spre
3 is the pre-trained

feature space for task 3. When learning on task 3, the gradient can be obtained from Equation
4 while DGA chooses to grow, or from Equation 7 while DGA chooses not to grow. And ϕ can
flexibly control the real gradient g, aligning it as closely as possible with the feature space of the
pre-trained knowledge, while ensuring the learning ability on new tasks.

4.4 FACILITATION FOR FORWARD TRANSFER

To facilitate forward knowledge transfer during learning task 3, we propose a simple yet effective
method: reusing the frozen weights of prompts from P . Specifically, before learning task 3, we
can characterize the correlation between the new task 3 and the existing feature space in M with
HFC metric. A larger HFC indicates more projection onto the old feature space S2 than S1, as
illustrated in Figure 1. Therefore, it indicates that task 3 has higher similarity with task 2 than
task 1. Consequently, naturally reusing the set of prompts corresponding to task 2 can effectively
facilitate the learning of task 3.

p∗
i = [p, stg(pK)] , (12)

where stg(·) means stop gradient to frozen the pK. Besides, p is a newly initialized set of prompts
when DGA chooses to grow or an old set of prompts from P when DGA chooses not to grow. And
pK is obtained as follows:

K = argmax
{ui}Ni=1∈{1,2}

HFC(gui , ProjSui
(gui)), (13)

where K represents a subset of sets with top-N from P .

5 EXPERIMENT

In this section, we first describe the experimental setups, and then present the experimental results.

5.1 EXPERIMENTAL SETUPS

Benchmarks We evaluate our method on multiple datasets against state-of-the-art baselines.
Specifically, we use the following datasets: CIFAR100 Krizhevsky et al. (2009) (CIFAR), which
contains 100 classes with 100 images per class; CUB200 Wah et al. (2011) (CUB), which consists
of 11,788 images across 200 birds classes; ImageNet-R Hendrycks et al. (2021) (IMR), which in-
cludes 30,000 images from 200 classes that pose challenges for PTMs pre-trained on ImageNet;
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Table 2: Results on OMNI benchmark with two extreme settings: 30 tasks and 60 tasks. Addition-
ally, we provide SSP, FLOPS and Training Time (TT) to measure the computational overhead and
methods’ complexity.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓) FLOPS (G) (↓) TT (h) (↓)

OMNI INC10 TASK30

DualPrompt 63.36 68.47 12.92 30 35.19 4.5
DualPrompt [+ LW2G] 65.12 80.95 10.75 9 37.21 5.0
S-Prompt++ 64.44 55.87 9.02 30 35.17 4.5
S-Prompt++ [+ LW2G] 65.90 63.86 8.50 10 37.24 5.2

OMNI INC5 TASK60

DualPrompt 61.85 69.94 13.50 60 35.19 5.0
DualPrompt [+ LW2G] 63.17 75.31 12.01 17 37.21 6.1
S-Prompt++ 62.31 54.59 10.04 60 35.17 5.1
S-Prompt++ [+ LW2G] 63.70 62.60 9.90 18 37.24 6.2

Table 3: Ablation study on three components in LW2G. Here we present FFA and PRA for all
baselines and variants in LW2G, e.g., “DGA” refers to the use of Dynamic Growing Approach
within the baseline methods, DualPrompt and S-Prompt++.

Variants FFA (↑) PRA (↑) Variants FFA (↑) PRA (↑)
DualPrompt (baseline) 63.63 41.05 S-Prompt++ (baseline) 63.26 44.31
DualPrompt [+ DGA] 65.02 77.68 S-Prompt++ [+ DGA] 65.18 76.35
DualPrompt [+ CPK] 64.34 50.39 S-Prompt++ [+ CPK] 63.90 52.67
DualPrompt [+ FFT] 64.08 47.17 S-Prompt++ [+ FFT] 63.89 50.02
DualPrompt [+ LW2G] 65.60 80.40 S-Prompt++ [+ LW2G] 65.44 79.35

and Omnibenchmark Zhang et al. (2022) (OMNI), which comprises over 90,000 images from
300 classes. Besides, we denote different experimental settings as ‘Dataset IncN TaskM’, e.g.,
‘CIFAR INC10 Task10’, which means learning on CIFAR with 10 tasks and each task contains 10
classes.

Baselines We use DualPrompt Wang et al. (2022b), S-Prompt++ Wang et al. (2024) and Hide-
Prompt Wang et al. (2024) as our baselines for Class-CL. Following Wang et al. (2024), we record
the average accuracy of all encountered classes after learning on each task, presenting the last one
as the Final Average Accuracy (FAA). We also present the Final Forgetting Measure (FFM) of all
tasks and Prompt Retrieval Accuracy (PRA) to measure the accuracy during prompt retrieval. Addi-
tionally, Selectable Sets of Prompts (SSP) is also provided to demonstrate the amount of sets in P .
Please refer to Appendix D.2 for more details.

Implementations Our LW2G needs to set the value of four hyperparameters: ϵtask, ϵpre, ϕ, and
N . Details on different benchmarks are provided in Appendix D.1. We use VIT pretrained on
ImageNet-21K for all experiments. All results are the average under three different random seeds.
Furthermore, as the pre-trained feature space is built from PTM, we further validate the effectiveness
of LW2G under other PTMs. Results are provided in Appendix F.6.

5.2 MAIN RESULTS

Typical Settings Table 1 presents the results of applying different state-of-the-art PCL methods
and incorporating LW2G. We report four metrics FFA, PRA, FFM and SSP, where FFA and FFM
are the typical metrics in CL to evaluate the performance. Additionally, PRA and SSP are unique
for PCL. LW2G outperforms existing PCL by a large margin in each setting. For IMR, LW2G is
better than DualPrompt, S-Prompt++ and Hideprompt by 1.97%, 2.17% and 0.81%, respectively
on FFA. For CIFAR, it appears that LW2G brings a significant decent in anti-forgetting, especially
comparing with S-Prompt++ and Hideprompt on FFM. As for the PCL unique metrics PRA and SSP,
LW2G leads to notable improvements in PRA for all three baselines, with the largest improvement
reaching up to 39.35%. Additionally, it also results in a substantial reduction in SSP. For example,
DualPrompt combined with LW2G on CIFAR only requires 2 sets of prompts compared to the
original DualPrompt, which utilizes 10 sets. The same reduction in parameters can be observed
across multiple settings.

Long Task Settings Learning in the context of long sequential tasks has long been regarded as a
more challenging setting in CL. We showcase the performance of DualPrompt and S-Prompt++ on
two extreme settings: OMNI INC10 TASK30 and OMNI INC5 TASK60 in Table 2. Existing base-
lines employ a pool with the size equivalent to the length of tasks, resulting in poor performance on
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Figure 3: The x-axis denotes the enhancement in PRA with LW2G compared to the baseline. Apart
from baseline and LW2G, we also present the results of Task-CL. Task-CL ensures the real upper
bound of PCL by providing a correct prompt set for each testing sample through a given task ID.

PRA. However, incorporating the LW2G significantly enhances PRA, leading to noticeable improve-
ments in both FFA and FFM. Moreover, we observe that LW2G requires to maitain a memory M for
gradient modification, unavoidably introducing additional computational overhead and lengthening
training time. Nevertheless, the results indicate that the extra cost compared to baselines is relatively
modest. Additionally, we find that the adoption of LW2G results in a substantial decrease in the total
amount of selectable sets, approximately by 70%.

5.3 ABLATION STUDY

We conduct an extensive ablation study presented in Table 3 to validate the effectiveness of the three
components in LW2G. Initially, we construct DualPrompt and S-Prompt++ as baselines and pro-
gressively incorporate the DGA, CPK, and FFT. Overall, optimizing each component yields clear
benefits, with all contributing to the robust gains of LW2G. Interestingly, while CPK and FFT ex-
hibits less pronounced improvements compared to the baseline, the enhancement from DGA is more
significant. Besides, the combination of all three components provides the optimal performance,
suggesting highly synergistic and complementary effects rather than operating in isolation. More-
over, it is noteworthy that CPK and FFT do not reduce SSP, hence the performance improvement
solely stemmed from the enhanced representational capacity of prompts. DGA not only integrates
knowledge from multiple tasks into a single set of prompts, thereby enhancing the representational
capacity, but importantly, the notable improvement in PRA is attributed to the reduction in the total
amount of available sets during prompt retrieval, thereby aiding PCL performance.

5.4 DETAIL ANALYSIS

Table 4: Different implementations on DGA. Here we
present FFA for all variants.

DGA Variants
CIFAR IMR

DualPrompt S-Prompt++ DualPrompt S-Prompt++

No-DGA (Baseline) 85.94 89.25 63.63 63.26

DGA-Rand 85.99 88.32 64.82 64.76

DGA-AG 84.78 85.17 63.73 63.43

DGA-Max HFC 86.08 86.73 64.31 63.91

DGA-Min HFC 86.86 89.32 65.60 65.44

Effectiveness of DGA While chosing
not to grow, DGA utilized in LW2G se-
lects the set (p∗,k∗) with the Min-Z from
P when learning task i, and learns new
knowledge based on this set, adjusting
gradient to prevent forgetting of the old
knowledge contained in (p∗,k∗). After
learning, (p,k) encompasses both the new
knowledge from task i and the existing old
knowledge. Here, we explore the impact
of different implementations of DGA on
FFA. In Table 4, No-DGA represents base-
line methods, e.g., S-Prompt++ and DualPrompt. DGA-Rand represents randomly selecting an old
set of prompts from P . DGA-AG represents that P consists of only a single set, implying continu-
ous learning of new knowledge on this set of parameters. DGA-Max HFC indicates selecting the set
from P with the maximum HFC value. The results clearly demonstrate the superiority of DGA-Min
HFC employed in LW2G over other variants, aligning with the conclusion in Theorem 1.

Gains on Each Task Figure 3 presents detailed accuracy on each task. Here, we provide a com-
parison between DualPrompt and S-Prompt++ on two benchmarks. The x-axis of each plot repre-
sents the change from baseline to baseline+LW2G in terms of PRA. Apart from (c), the addition of
LW2G all leads to consistent improvements in accuracy on each task, as the PRA of the baseline
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Table 5: Variation process of DualPrompt [+ LW2G] on IMR.
Task Calculation Process Minimal Z Option Prompt sets pool

1 / / To Grow a new (p1,k1) (p1,k1) → Task 1

2 HFC1=13.90, HFCpre
1 =40.23 Z1=-26.33<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2

3 HFC1=20.22, HFCpre
1 =40.80 Z1=-20.58<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3

4 HFC1=25.09, HFCpre
1 =41.50 Z1=-16.41<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4

5 HFC1=29.15, HFCpre
1 =42.92 Z1=-13.77<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5

6 HFC1=32.85, HFCpre
1 =42.78 Z1=-9.33<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5,6

7 HFC1=36.35, HFCpre
1 =41.85 Z1=-5.5<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5,6,7

8 HFC1=39.39, HFCpre
1 =42.42 Z1=-3.03<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5,6,7,8

9 HFC1=42.54, HFCpre
1 =41.37 Z1=1.17>0 To Grow a new (p2,k2) (p1,k1) → Task 1,2,3,4,5,6,7,8

(p2,k2) → Task 9

10 HFC1=42.54, HFCpre
1 =40.92

HFC2=13.81, HFCpre
2 =41.81

Z2=-28.00<0 Not To Grow with (p2,k2) (p1,k1) → Task 1,2,3,4,5,6,7,8
(p2,k2) → Task 9,10

method in (c) has already reached 99.52%. In the other three settings, PRA experiences significant
increasment, thereby enhancing classification accuracy. Additionally, we also provide results for
baseline+taskID, i.e., PCL on Task-CL. In this setting, during inference, taskid is provided to select
the correct set for each testing sample, which is considered as the upper bound of PCL. It further
demonstrates that our proposed LW2G can effectively reduce the optionality during prompt retrieval
while ensuring the integration of old and new knowledge, thereby improving performance.

Visualization of the Dynamic Growing Process In the proposed LW2G method, the DGA mod-
ule determines whether to grow a new set of prompts or reuse an existing set from the prompt sets
pool based on the HFC metric, which can measure the hindrance on learning new tasks while main-
taining old knowledge under orthogonal condition. We provide a detailed dynamic process in the
following Table 5. Before learning each task (except task 1), LW2G first calculates the HFC value
and subsequently decides whether to perform dynamic expansion based on the minimum Z value
using Equation 9 and 10. Further results can be found in Appendix F.5.

6 CONCLUSION

In this paper, we propose a plug-in module within existing Prompt-based Continual Learning (PCL),
called Learning Whether To Grow (LW2G). Specifically, LW2G enables PCL to dynamically learn
to whether to add a new set of prompts for each task (to grow) or to utilize an existing set of
prompts (not to grow) based on the relationships between tasks. Inspired by Gradient Projection-
based Continual Learning (GPCL), we utilize the orthogonal condition to form an effective and
efficient prompt sets pool. Besides, we also provide a theoretical analysis on hindrance under the
orthogonal condition in GPCL. Extensive experiments show the effectiveness of our method.

Limitations LW2G needs to construct the feature space of old tasks and store it in memory M for
gradient projection, which results in additional computational overhead. Therefore, while exploring
alternative methods for constructing the old feature space goes beyond the scope of this study, it is
crucial for enhancing the practicality of both LW2G and GPCL.
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A ALGORITHM

Algorithm 1 LW2G: Learning Whether to Grow.
Input: Task length T , Datasets for each task: {D1,D2, · · · , }, Pool P = {}, Memory M = {}, Training
Epochs E.
Output: Updated Pool P and M.
1: for i = 1, 2, · · · , T do
2: if i = 1 then ▷ DGA learns to grow or not to grow
3: DGA chose to grow;
4: Initialization (pi, ki) and Store in P;
5: else
6: Get a subset from Di

sub.
7: Get all selectable sets in P , denoted as L;
8: for j in L do
9: Get the old set from P , (pj , kj);

10: Get the old feature space from M, Sj ;
11: Get g on (pj , kj) with Di

sub;
12: Get HFCj via Equation 5 and HFCpre via Equation 8 and Zj via Equation 9;
13: DGA chose to grow or not to grow via Equation 10;
14: if DGA chose to grow then
15: Initialization (pi, ki) and Store in P;
16: else
17: Selection (pt, kt), where t = argmaxj∈LZj ;
18: Change (pt, kt) to (pi, ki);
19: Change St to Si;
20: for e = 1, 2, · · · , E do ▷ Start Training
21: Get sets of most similar tasks via Equation 13; ▷ FFT to forward facilitate
22: Get g on (pi, ki) with Di;
23: Apply soft constraints on g via Equation 11; ▷ CPK to apply soft constraints
24: Update (pi, ki);
25: Build or update space Si in M via Appendix B.2; ▷ DGA dynamically build or update space

return P , M;

B THEORETICAL FOUNDATION

B.1 PROOF OF THEOREM 1

Given a space S1 = span{B1}, where B1 = [b1, . . . , bl] ∈ Rn×l is a set of l bases for S1, and a
space S2 = span{B2}, where B2 = [b1, . . . , bl, bl+1, . . . , bk] ∈ Rn×(l+k) is a set of l + k bases
for S2. ∀α ∈ Rn×1, denoted α on space Si is ProjSi

(α). Following Definition 1, the ange between
α and ProjSi

(α) is denoted as HFC(α,ProjSi
(α)). Then there always exists:

HFC(α,ProjS1
(α)) ≥ HFC(α,ProjS2

(α)). (14)

Proof. ∀α ∈ Rn×1, α = [α1, . . . , αn]
T . Without loss of generality, {bi, i = 1, . . . , k} is a set of

standard orthonormal basis. As we defined, ProjS1
(α) = [g1, . . . , gl] ∈ Rl×1 and ProjS2

(α) =

[g1, . . . , gl, gl+1, . . . , gl+k] ∈ R(l+k)×1, where gi = ⟨α, bi⟩.
Then, we have

cos(α,ProjS1
(α)) =

α · ProjS1
(α)

∥α∥∥ProjS1
(α)∥

=

∑l
i=1 (gi)

2√∑l
i=1 (gi)

2
√∑n

i=1 (gi)
2

(15)
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Likewise, we have

cos(α,ProjS2
(α)) =

α · ProjS2
(α)

∥α∥∥ProjS2
(α)∥

=

∑l+k
i=1 (gi)

2√∑l+k
i=1 (gi)

2
√∑n

i=1 (gi)
2

(16)

In addition,

cos(α,ProjS2
(α))

cos(α,ProjS1
(α))

=

∑l+k
i=1 (gi)

2∑l
i=1 (gi)

2

√∑l
i=1 (gi)

2√∑l+k
i=1 (gi)

2
(17)

=
1 + C√
(1 + C)

(18)

=
√
(1 + C) ≥ 1. (19)

Where C =
∑l+k

i=l+1(gi)
2∑l

i=1(gi)
2 ≥ 0. Thus, cos(α,ProjS2

(α)) ≥ cos(α,ProjS1
(α)). Thus,

HFC(α,ProjS1
(α)) ≥ HFC(α,ProjS2

(α)).

This finishes the proof.

B.2 BUILDING AND UPDATING OF FEATURE SPACE

In GPCL, a feature space spanned by the old tasks is required during gradient modification, involving
two stages: (1) Building of the new feature space, and (2) Updating of old faeture space. We first
introduce the technique used in matrix factorization, Singular Value Decomposition (SVD). Then,
details on building or updating of the feature space are also provided.

Singular Value Decomposition (SVD) SVD is a general geometrical tool used in matrix factoriza-
tion to factorize a given matrix A ∈ Rm×n into the product of three matrices as follows Deisenroth
et al. (2020):

A = UΣ(V )T , (20)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal. Σ ∈ Rm×n contains the sorted singular values
along its main diagonal. Specifically, the diagonal value σi = Σii are the singular values of A and
the number of non-zero σi is equal to r = rank(A). Besides, the columns of U and the rows of
(V )T are two sets of orthogonal bases {u1,u2, . . . ,um} and {v1,v2, . . . ,vn}, respectively. As
the singular values are sorted in Σ along its diagonal, the SVD of A can be also denoted as follows:

A =

r∑
i=1

σiuiv
′
i. (21)

Therefore, the k-rank approximation (A)k of A can be denoted as follows:

||(A)k||2F ≥ ϵ||A||2F , (22)

where ϵ is a given error tolerance and || · ||2F is the Frobenius norm.

Building of the New Feature Space After training on task 1, for each layer we construct a rep-
resentation matrix Rl

1 =
[
xl
1,1, . . . ,x

l
1,n1

]
∈ Rn×d by concatenating representations of n samples

along the columns obtained from sending n samples only from task 1 into the current DNN, W1.
Next, we perform SVD on Rl

1 = U l
1Σ

l
1(V

l
1 )

T followed by its k-rank approximation (Rl
1)k accord-

ing to the following criteria for the given threshold, ϵtask:

||(Rl
1)k||2F ≥ ϵtask||Rl

1||2F . (23)

Therefore, the feature space for layer l is built by Sl
1 = span

{
Bl

1

}
, where Bl

1 =
{
ul
1, . . . ,u

l
k

}
and

ul
i is the first k vectors in U l

1. And Sl
1 is stored in memory M =

{
Sl
1

}
.
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Updating of the Old Feature Space After learning task i, where i ≥ 2, Sl
i−1 in M needs to be

updated to Sl
i with new task-specific bases from task i. To obtain such bases, for each layer l, we

utilize the current DNN, Wi, to construct a representation matrix Rl
i =

[
xl
1,1, . . . ,x

l
1,n

]
∈ Rn×d

from task i only. Before performing SVD and subsequent k-rank approximation, we first eliminate
the common bases that already present in Sl

i−1 so that newly added bases are unique and orthogonal
to the existing bases in Sl

i−1. To accomplish this, we proceed as follows:

R̂l
i = Rl

i −Bl
i−1

(
Bl

i−1

)T (
Rl

i

)
= Rl

i −Rl
i,proj. (24)

Afterwards, SVD is performed on R̂l
i = Û l

i Σ̂
l
i(V̂

l
i )

T , thus obtaining h new orthogonal bases for
minimun value of h statisfying the following criteria for the given threshold, ϵtask:

||Rl
i,proj||2F + ||R̂l

i||2F ≥ ϵtask||Rl
i||2F . (25)

Bl
i−1 is then updated to Bl

i =
[
Bl

i−1,u
l
1, . . . ,u

l
h

]
with h new bases. And Sl

i−1 is updated to
Sl
i = span

{
Bl

i

}
.

C REVIEW OF EXISTING PCL

In this section, we review existing PCL with its pipeline. As illustrated in Figure 4, existing PCL
such as HidePrompt Wang et al. (2024), S-Prompt++ Wang et al. (2024), DualPrompt Wang et al.
(2022b), L2P Wang et al. (2022c), S-liPrompt, and S-iPrompt Wang et al. (2022a) generally involves
two stages: (1) prompt learning, and (2) prompt retrieval.

Prompt Learning Given a pre-trained model, such as a Vision Transformer (denoted as VIT), an
image after patch embedding is denoted as xe ∈ RLe×d, where Le is the length of the patch tokens
and d denotes the length of the channels. Before learning task i, PCL follows Houlsby et al. (2019);
Jia et al. (2022) by utilizing a task-wised set of prompts pi ∈ RLp×Lb×d, where Lp is the length of
layer-wised prompts and Lb represents the depth of the blocks into which the prompts is inserted.
The new knowledge in task i can be encoded into these newly initialized pi as follows:[

cls tokenl,xl
e,p

l
]
= blockl(

[
cls tokenl−1,xl−1

e ,pl−1
i

]
) l = 1, 2, . . . , N (26)

y = Headi(cls tokenN ). (27)

Here, pl−1
i ∈ RLp×d represents the prompts for block l. xl−1

e is the original input of block l.
Additionally, Headi represents the classifier head corresponding to task i. Since PCL typically
considers Class-CL scenarios, a unified classifier head is adopted. This means that while learning
task i, the weights of the unified classifier head from tasks 1 to i−1 are frozen. Then, pi is optimized
using the cross entropy loss. Meanwhile, PCL sent xe ∈ RLe×d into the VIT without any prompts
as follows: [

cls tokenl,xl
e

]
= blocki(

[
cls tokenl−1,xl−1

e

]
) l = 1, 2, . . . , N. (28)

Here, we use q = cls tokenN from the output of the last block as the valinia feature of the input
sample. Then, ki is optimized by minimizing the distance between q and ki. There are various
methods to measure this distance, such as using cosine similarity as in S-Prompt++ Wang et al.
(2024), DualPrompt Wang et al. (2022b), and L2P Wang et al. (2022c); using KNN in S-liPrompt
and S-iPrompt Wang et al. (2022a); or, in the case of HidePrompt Wang et al. (2024), forgoing ki

and instead utilizing an auxiliary classifier head. Overall, the goal is to design a metric that brings
ki closer to q, so that during prompt retrieval, the correct pi can be selected for each testing sample.

After learning task i, PCL stores (pi,ki) as a pair into the pool P = {(pi,ki), i = 1, 2, . . . }.

Prompt Retrieval In Class-CL, we do not have access to the task ID. Therefore, given a testing
sample, PCL needs to predict which task it belongs to and select the corresponding set from the pool
P . Briefly, they first obtain the vanilla feature by sending the testing sample into the VIT without
prompts. Then, they use the vanilla feature as a query vector to match {ki, i = 1, 2, . . . } in the pool
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Figure 4: Pipline of existing PCL. Here, we separate it into two stages: prompt learning and prompt
retrieval. In P , blue represents frozen and unlearnable set of prompts, whereas red represents learn-
able prompt sets.

P through the metric used in prompt learning. After selecting the kx, the px is combined with xe

for further inference.

Therefore, predicting the ground truth set of prompts for each testing sample is a crucial step for
PCL, enabling it to achieve appealing performance.

D IMPLEMENTATION DETAILS

In this section, we provide the implementation details of all experiments.

D.1 TRAINING REGIME AND HYPERPARAMETERS

Following the implementations of previous work Wang et al. (2024), we train DualPrompt on CI-
FAR, IMR and CUB with 40, 50, and 50 epochs, respectively; Hideprompt on CIFAR, IMR and
CUB with 50, 150, and 50 epochs, respectively; S-Prompt++ on CIFAR, IMR and CUB with 40,
120, and 40 epochs, respectively. The length of prompts Le is 20 for all settings. Depth of prompts
are as follows: In DualPrompt: g-prompts are inserted in the block 0− 1 and e-prompts are inserted
in the block 2 − 4. In HidePrompt and S-Prompt++ prompts are inserted in the block 0 − 4. All
the experimental results in this paper are averaged over five trials with five different random
seeds. We use 1 4090 GPU for experiments in typical setting and 1 A800 GPU for experiments in
long task settings.

For LW2G, the detailed settings for ϵtask, ϵpre, ϕ, and N are illustrated in Table 6.

D.2 EVALUATION METRICS

We utilize four evaluation metrics for PCL, including the Final Average Accuracy (FAA), Final
Forgetting Measure (FFM), Prompt Retrieval Accuracy (PRA) and Selectable Sets of Prompts (SSP).
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Table 6: Hyperparameters of ϵtask, ϵpre, ϕ, and N in typical settings.

Settings Methods ϵtask ϵpre ϕ N

CIFAR INC10 TASK10
DualPrompt 0.95 0.95 0.5 1
S-Prompt++ 0.95 0.95 1.0 1
HidePrompt 0.99 0.99 0.5 1

IMR INC20 TASK10
DualPrompt 0.99 0.99 0.6 1
S-Prompt++ 0.99 0.99 0.4 1
HidePrompt 0.90 0.90 0.2 1

CUB INC20 TASK10
DualPrompt 0.90 0.90 0.3 1
S-Prompt++ 0.99 0.99 0.9 1
HidePrompt 0.95 0.95 0.7 1

FAA and FFM are common evaluation metrics in Continual Learning and are formally defined as
follows:

FAA =
1

T

T∑
i=1

Ai,T , (29)

FFM =
1

T − 1

T−1∑
i=1

max
t∈{1,...,T−1}

(Ai,t −Ai,T ), (30)

where T is the length of the sequential tasks, Ai,T is the classification accuracy on the task i after
learning the last task T .

As analyzed in Appendix C, predicting the ground truth set of prompts for each testing sample is
a crucial step in PCL. Therefore, we adopt a unique evaluation metric, Prompt Retrieval Accuracy
(PRA), for PCL, which is formally defined as follows:

PRA =
1

T

T∑
i=1

Ri,T , (31)

where Ri,T is the accuracy of predicting the set of prompts for each testing sample on task i after
learning the last task T . Besides, we also use Selectable Sets of Prompt (SSP) to represent the total
amount of selectable sets of prompts in the pool P . SSP is not only positively correlated with the
number of learnable parameters, but it also effectively reflects how the LW2G proposed in this paper
can significantly reduce the selectable amount in baseline methods, thereby benefiting PRA.

E REPRODUCTION OF BASELINES

In this section, we first analyze the specific locations and sources of the implementation issues in the
official code (Appendix E.1). Subsequently, we further analyze the impact of these implementation
issues on model performance and the resulting task ID information leakage problem (Appendix E.2).
Finally, after fixing this implementation issue, we observed a significant decline in the performance
of the baseline method, which led us to perform a grid search on the hyperparameters in HidePrompt
(Appendix E.3).

E.1 AN IMPLEMENTATION ISSUE ABOUT PROMPT RETRIEVAL

For the compared methods, DualPrompt, S-Prompt++ and HidePrompt, we use the offi-
cial code1 from HidePrompt Wang et al. (2024). However, after inspecting the code line
by line, we identified an implementation issue that leads to significant discrepancies be-
tween the specific implementation and the method itself. Specifically, the issue occurs
during prompt retrieval at https://github.com/thu-ml/HiDe-Prompt/blob/
fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.
py#L109-L111, which is provided as following Listing 1.

1https://github.com/thu-ml/HiDe-Prompt
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Listing 1: prompt retrieval before fixing the typo.
1num_layers, dual, batch_size, top_k, length, num_heads,

heads_embed_dim = batched_prompt_raw.shape
2batched_prompt = batched_prompt_raw.reshape(
3num_layers, batch_size, dual, top_k * length, num_heads,

heads_embed_dim
4)

As analyzed in Appendix C, in the prompt retrieval stage, PCL methods (DualPrompt, S-Prompt++,
and HidePrompt) need to predict the ground truth set of prompts for each testing sample. The
tensor ‘batched prompt raw’ in Listing 1 is the prompt sets predicted for each sample during prompt
retrieval. Since DualPrompt, S-Prompt++, and HidePrompt all utilize pre-fix tuning methods, they
can be divided into three steps:

1. obtaining representations from input samples via patch embedding,
2. multiplying the representations with the Q, K, and V matrices in the attention mechanism to get
the Q, K, and V values, respectively,
3. dividing the selected prompt into two parts, prompt k and prompt v, and prepending them to
the K and V values, respectively. Here, prompt k corresponds to key 1 in Figure 5, and prompt v
corresponds to value 1.

Therefore, the purpose of Listing 1 is to swap the dimensions ‘dim=1’ and ‘dim=2’ of the tensor
‘batched prompt raw’. However, when swapping two dimensions of a tensor, we should use the
‘permute operation’ instead of the ‘reshape operation’, as the ‘reshape operation’ can disrupt the
order of the element in the tensor. To further illustrate the impact of this erroneous operation, we
provide a floatmap in Figure 5. As shown in Figure 5, if a ‘reshape operation’ is used, key 2 will
be prepended to the V value of sample 1 instead of value 1. This would render the prompt retrieval
module ineffective, because while it can accurately predict the required prompt sets for each sample,
the incorrect use of a ‘reshape operation’ causes confusion between prompt k and prompt v across
samples. In contrast, using a ‘permute operation’ will avoid this issue.

Furthermore, we checked the official code implementation of DualPrompt2 and found
the same issue at https://github.com/JH-LEE-KR/dualprompt-pytorch/blob/
7eb457d988409a6abf97af2b121ffa62dd4b498a/prompt.py#L119-L122. Since
HidePrompt is built upon the DualPrompt, this issue has persisted. Additionally, we discovered that
other researchers have raised the same concern in the issue of DualPrompt repository: https://
github.com/JH-LEE-KR/dualprompt-pytorch/issues/8. We also found that other
researchers have identified similar problems in their ongoing work based on this series of stud-
ies like https://github.com/JingyangQiao/prompt-gradient-projection/
issues/4 and https://github.com/gulzainali98/LGCL/issues/3. Therefore,
this implementation issue is a commonly recognized problem within the Prompt-based Contin-
ual Learning community. We have corrected this implementation issue, using the fix mentioned in
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8, as illustrated
in the following Listing 2. After the correction, we reproduced the experimental results of the
three comparing methods, DualPrompt, S-Prompt++ and HidePrompt. Finally, we also commu-
nicated with the authors of HidePrompt via email to request their assistance. The authors
acknowledged this typo and expressed their approval of our correction plan and the repro-
duced experimental results in Table 1.

Listing 2: prompt retrieval after fixing the typo.
1num_layers, dual, batch_size, top_k, length, num_heads,

heads_embed_dim = batched_prompt_raw.shape
2batched_prompt_raw = batched_prompt_raw.permute(0, 2, 1, 3, 4, 5, 6)
3batched_prompt = batched_prompt_raw.reshape(
4num_layers, batch_size, dual, top_k * length, num_heads,

heads_embed_dim
5)

2https://github.com/JH-LEE-KR/dualprompt-pytorch
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Figure 5: A floatmap shows the difference between the original code and the corrected code.

E.2 HOW THE IMPLEMENTATION ISSUE AFFECT THE PERFORMANCE

First, the implementation issue may lead to the leakage of task ID information during testing, thereby
improving performance. To better illustrate the effect of the implementation issue, we provide a spe-
cific example. Consider a batch of testing samples with a batch size of 4, all from task 3. Suppose
the prompt retrieval module predicts the prompt sets for the 4 testing samples as: 3, 3, 2, 3, respec-
tively. The implementation issue in the official code utilized a reshape operation (refer to Figure 5).
If using a reshape operation, then sample 1 will add key3 and key3; sample 2 will add key2 and
key3; sample 3 will add value3 and value3; and sample 4 will add value2 and value3. In this combi-
nation, each testing sample contains at least part of its ground truth prompt set, which increases the
probability of correct predictions and thus enhances the model’s performance.

Specifically, testing samples (e.g., Sample 3 from task 3) has an incorrect prompt retrieval results
(where Sample 3 is misidentified as belonging to task 2), but it still utilizes the task 3 related prompt
set. However, in fact, according to the basic design of PCL methods, each testing sample should
utilize the prompt set predicted by the prompt retrieval module (e.g., Sample 3 should use the prompt
set related to task 2).

Such operations can be considered as task ID information leakage (not utilizing the task ID predic-
tion from the prompt retrieval module). These observations indicate that the implementation issue
leads to incorrect testing processes, with task ID leakage contributing to the performance improve-
ment.

Table 7: The results reproduced by the original official code (which has an implementation issue)
and our corrected version. Here, we present the FFA results for all experiments.

Methods CIFAR IMR
HidePrompt(-Before) 91.07 72.05
HidePrompt(-Before without leak information about task id) 85.56 62.33
HidePrompt(-After) 85.77 62.42
HidePrompt(-After with leak information about task id) 92.91 72.69

To further illustrate the validity of the above analysis, we conducted ablation experiments using the
original official code (which has an implementation issue) and our corrected version. The results
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are shown in Table 7. Specifically, {HidePrompt(-Before)} is the result reproduced from the official
code from HidePrompt Wang et al. (2024). {HidePrompt(-After)} is the results reproduced from
the corrected version. Besides, we additionally provide two experimental results: {HidePrompt (-
Before without leak information about task ID)} and {HidePrompt (-After with leak information
about task ID)}. Based on the above analysis, the official code of HidePrompt contains an imple-
mentation issue that leaks task ID information, allowing the model to achieve high performance. In
{HidePrompt (-Before without leak information about task ID)}, we removed the task ID informa-
tion leakage and observed a significant drop in model performance, which was similar to the results
of {HidePrompt (-After)}. In {HidePrompt (-After with leak information about task ID)}, we mim-
icked the implementation in the official code and incorporated task ID information in our corrected
version, resulting in a significant improvement in performance.

Table 8: Reproduced results of 3 baselines before and after fixing the implementation issue. Here,
we present the FFA for all experiments.

Methods CIFAR IMR CUB
DualPrompt(-Before) 86.16 65.09 81.50
DualPrompt(-After) 85.94 63.63 82.09
S-Prompt++(-Before) 88.73 65.10 81.89
S-Prompt++(-After) 89.26 63.26 82.57
HidePrompt(-Before) 92.47 72.05 86.56
HidePrompt(-After) 85.77 62.42 85.59

E.3 HYPERPARAMETER SEARCH RESULTS

After addressing the issue mentioned in Appendix E.1, we reproduced the results of the three base-
lines adpoted in this paper: DualPrompt, S-Prompt++, and HidePrompt. It is important to note that
we still used the official code of HidePrompt, with the only difference being that we modified the
‘reshape operation’ to a ‘permute operation’ after consulting the author, as shown in Listing 1 and
Listing 2. We compared the reproduced results before and after fixing the implementation issue, as
illustrated in Table 8.

We found that the performance (FFA) of DualPrompt and S-Prompt++ did not decrease after the
implementation was corrected; in fact, it improved in some settings. This indicates that the imple-
mentation issue fundamentally affected the effectiveness of the prompt retrieval module, thus hin-
dering the performance of PCL. Additionally, we observed a significant decrease in the performance
(FFA) of HidePrompt on CIFAR and IMR, while the changes on CUB were minimal. We suspect
this may be due to the fact that the previously used hyperparameters are likely no longer applicable
after the corrections. Therefore, based on the author’s suggestions, we conducted a grid search for
the following hyperparameters of HidePrompt. The adjustable hyperparameters in HidePrompt are
listed as follows:

1. sched, This hyperparameters determines how the learning rate (LR) changes during model up-
dates as the number of epochs increases.
We search for sched from {constant, cosine, step}.
2. prompt momentum, This hyperparameters determines the proportion of prompt sets from old
tasks that are retained in the prompt set for new tasks.
We search for prompt momentum from {0.01, 0.1}.
3. reg, This hyperparameters sets the weight of the contrastive loss in HidePrompt.
We search for it from {0.001, 0.01, 0.1, 0.5}.

Since HidePrompt experienced a significant performance drop only on CIFAR and IMR while main-
taining good performance on CUB, we conducted the grid search for hyperparameters solely on these
two benchmarks. The results are shown in Table 9 and Table 10, respectively.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Hyperparameters of sched, prompt momentum, and reg for HidePrompt on CI-
FAR INC10 TASK10. Here, we present FFA and FFM for the performance.

sched prompt momentum reg FFA ↑ FFM ↓

step

0.01
0.001 85.85 6.34
0.01 85.60 6.57
0.1 85.77 6.18
0.5 85.86 6.35

0.1
0.001 85.94 6.15
0.01 85.78 6.31
0.1 85.91 6.37
0.5 85.92 6.21

cosine

0.01
0.001 85.55 6.37
0.01 85.47 6.38
0.1 85.41 6.43
0.5 85.48 6.44

0.1
0.001 85.85 6.16
0.01 85.78 6.10
0.1 85.68 6.17
0.5 85.69 6.28

constant

0.01
0.001 86.22 6.14
0.01 85.95 6.32
0.1 86.03 6.33
0.5 86.01 6.26

0.1
0.001 86.18 6.13
0.01 86.03 6.18
0.1 86.10 6.22
0.5 86.10 6.26

Table 10: Hyperparameters of sched, prompt momentum, and reg for HidePrompt on
IMR INC20 TASK10. Here, we present FFA and FFM for the performance.

sched prompt momentum reg FFA ↑ FFM ↓

step

0.01
0.001 61.00 8.60
0.01 61.06 8.43
0.1 61.30 8.54
0.5 60.81 8.41

0.1
0.001 60.84 8.40
0.01 61.05 8.64
0.1 61.22 8.28
0.5 60.80 8.73

cosine

0.01
0.001 62.93 8.27
0.01 62.57 8.27
0.1 62.47 8.43
0.5 62.40 8.14

0.1
0.001 62.53 8.74
0.01 62.45 8.77
0.1 62.40 8.76
0.5 62.33 9.00

constant

0.01
0.001 62.21 8.61
0.01 63.01 8.12
0.1 62.86 7.98
0.5 62.56 8.78

0.1
0.001 62.77 8.13
0.01 62.31 7.80
0.1 62.17 8.05
0.5 63.05 8.02
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Table 11: Impact of Distinct Threshold of ϵtask, ϵpre on CIFAR INC10 TASK10.

Settings ϵtask ϵpre FFA (↑) PRA (↑) FFM (↓)
DualPrompt Na Na 85.94 59.44 6.38

DualPrompt [+ LW2G]

0.50 0.50 86.89 60.67 5.44
0.90 0.90 87.03 65.57 5.77
0.95 0.95 86.86 78.33 6.03
0.99 0.99 86.48 100.0 7.12

S-Prompt++ Na Na 89.25 99.52 4.10

S-Prompt++ [+ LW2G]

0.50 0.50 89.28 99.76 4.33
0.90 0.90 88.54 100.0 4.48
0.95 0.95 89.32 100.0 3.46
0.99 0.99 89.25 92.32 6.00

HidePrompt Na Na 85.77 80.78 6.19

HidePrompt [+ LW2G]

0.50 0.50 86.85 81.70 5.78
0.90 0.90 86.57 84.93 5.14
0.95 0.95 86.93 90.10 5.02
0.99 0.99 87.60 95.39 4.28

F FURTHER RESULTS

F.1 ABLATION STUDIES ON FOUR HYPERPARAMETERS IN LW2G

ϵtask, ϵpre: In Gradient Projection Continual Learning (GPCL), ϵ is usually used to construct the
feature space in the SVD. Previous works set it between 0.9 and 0.99. In LW2G, ϵtask and ϵpre are
also used for feature space construction (old knowledge and pre-trained knowledge feature space).
Thus, we follow the value in Saha et al. (2021); Qiao et al. (2023); Zhao et al. (2023) and set
these two parameters with the same value. We performed a grid search for appropriate values under
different settings. As shown in Table 11, LW2G consistently bring performance improvement for
any of the aforementioned values.

ϕ: ϕ controls the pre-trained knowledge and the acquisition of new task knowledge. We performed
a grid search for ϕ and the results are shown in Table 12.

N : Experiments showed significant improvement at N = 1 compared to N = 0, with no added
benefit and increased computational overhead at higher values. Table 1 in the main paper indicates
that SSP remains small when combined with LW2G. Thus, for efficiency and generality, we chosed
N = 1 as the default.

F.2 ABLATION STUDIES ON THREE MODULES IN LW2G

In this section, we provide all experiments of any combination of proposed modules and the results
are shown in Table 13. The performance of any combimation can consistently outperform that of
the baseline, illustrating the effectiveness of these modules.

F.3 OVERHEAD ABOUT CALCULATION BURDEN AND TIME COST

First, LW2G only requires selecting prompt sets from the pool to calculate gradients and HFC before
learning each new task. The purpose is to decide whether to learn on a newly initialized set of
prompts or reuse an existing set from the prompt pool when learning a new task. After this, if opting
to grow, the parameter update process does not introduce additional computation compared to the
baseline. If opting not to grow, gradient projection is used during parameter updates to minimize
the impact on old tasks. The computational overhead introduced by this step is a common issue
in Gradient Projection Continual Learning (GPCL). This is detailed in Table 2 of the main paper,
where both FLOPS and TT (Training Time) are shown to increase.

Additionally, we further analyze the memory cost. In LW2G, the extra memory is divided into two
parts: a set of bases for the pre-trained knowledge space and a set of bases for the old task feature
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Table 12: Impact of Distinct Threshold of ϕ in DualPrompt [+ LW2G] on three typical settings.

(a) CIFAR INC10 TASK10

ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Baseline
FFA 78.33 78.33 78.33 74.03 78.33 72.66 74.03 72.66 72.66 64.81 59.44
PRA 86.42 86.61 86.52 86.18 86.86 86.38 86.82 86.39 86.49 86.68 85.94
FFM 6.25 6.15 6.04 6.04 6.03 5.74 6.48 5.73 5.50 5.70 6.38
SSP 2 2 2 3 2 3 3 3 3 5 10

(b) IMR INC20 TASK10

ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Baseline
FFA 87.65 87.68 80.39 80.39 80.39 80.39 80.39 80.39 76.26 54.81 41.05
PRA 65.33 65.29 65.56 65.48 65.34 65.59 65.58 65.36 65.17 64.36 63.63
FFM 6.27 6.29 5.75 5.82 6.00 5.72 5.77 5.92 5.98 5.11 6.41
SSP 2 2 2 2 2 2 2 2 2 5 10

(c) CUB INC20 TASK10

ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Baseline
FFA 69.05 69.05 70.10 70.11 70.94 70.04 68.71 69.05 70.04 66.52 66.71
PRA 81.57 81.50 82.43 82.22 82.01 82.07 81.58 81.64 82.07 82.51 82.09
FFM 6.21 6.42 5.25 5.59 6.12 5.88 6.68 6.08 5.93 5.60 6.40
SSP 7 7 7 6 7 7 8 7 7 8 10

Table 13: Ablation studies in any combination of LW2G.

Variants FFA PRA SSP
DualPrompt 63.63 41.05 10
DualPrompt [+ DGA] 65.02 77.68 2
DualPrompt [+ CPK] 64.34 50.39 10
DualPrompt [+ FFT] 64.08 47.17 10
DualPrompt [+ DGA, CPK] 65.37 78.13 2
DualPrompt [+ DGA, FFT] 65.12 77.90 2
DualPrompt [+ CPK, FFT] 64.49 51.20 10
DualPrompt [+ LW2G] 65.60 80.40 2

space. The size of these two sets depends on the choice of ϵ during the SVD. In the following Table
14, we analyze the memory introduced by Gradient Projection as ϵ varies. The ‘Bases’ indicates the
total number of bases for the two sets, ‘Extra Memory’ represents the additional memory required.
Specifically, we calculate the memory by considering each base as a tensor of length 768, stored as
float32.

It is also worth reiterating that the proposed LW2G, inspired by gradient projection methods, intro-
duces a novel and dynamic prompt growing strategy for prompt continual learning. The calculation
burden and time cost are common issues with GPCL methods, which we explicitly mention in the
limitations section. Although addressing this problem is beyond the scope of this study, we will
consider it as a direction for future research.

F.4 COMPARISON WITH TWO CONCURRENT WORKS

We note that two concurrent works, SEED (Rypeść et al., 2024) and PGP Qiao et al. (2023), are
closely related to our motivation and methodology, respectively. In this section, we compare our
proposed LW2G with these approaches.

PGP first introduced Gradient Projection-based Continual Learning (GPCL) in the context of PCL,
leveraging GPCL to ensure that old knowledge is not forgotten. They demonstrated that in the sce-
nario of PCL, the construction of the feature space could be translated into the prompt space and
input space. However, unlike PGP, LW2G aims to dynamically learn whether to grow (initialize
a new set of prompts) or not to grow (reuse prompts in pool) for each new task based on specific
commonalities between tasks. To achieve this, LW2G adopts the idea of the orthogonal condition
in GPCL to integrate knowledge from multiple tasks into a single set of prompts while preserving
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Table 14: Discussion of the effects of memory on IMR INC20 TASK10.

ϵ FFA Bases Extra Memory
HidePrompt / 85.77 0 0

HidePrompt [+ LW2G] 0.90 86.57 429 ≤ 5 MB
0.95 86.93 509 ≤ 5 MB
0.99 87.60 640 ≤ 5 MB

Table 15: Results on typical and long task settings. Here, we present DualPrompt as the baseline,
with PGP and LW2G added to the baseline respectively. The best results are highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10
DualPrompt 85.94 59.44 6.38 10
DualPrompt [+ PGP] 86.72 59.15 6.01 10
DualPrompt [+ LW2G] 86.86 78.33 6.03 2

IMR INC20 TASK10
DualPrompt 63.63 41.05 6.41 10
DualPrompt [+ PGP] 63.82 41.18 5.65 10
DualPrompt [+ LW2G] 65.60 80.40 5.72 2

CUB INC20 TASK10
DualPrompt 82.09 66.71 6.40 10
DualPrompt [+ PGP] 81.58 66.88 7.01 10
DualPrompt [+ LW2G] 82.43 70.09 5.25 7

OMNI INC10 TASK30
DualPrompt 63.36 68.47 12.92 30
DualPrompt [+ PGP] 63.74 67.95 12.97 30
DualPrompt [+ LW2G] 65.12 80.95 10.75 9

OMNI INC5 TASK60
DualPrompt 61.85 69.94 13.50 60
DualPrompt [+ PGP] 62.24 68.68 14.64 60
DualPrompt [+ LW2G] 63.17 75.31 12.01 17

old knowledge. Additionally, we analyze the hindrance on learning new tasks caused by the or-
thogonal condition and use the degree of inhibition under this condition as an adaptive criterion for
our Dynamic Growing Approach. Furthermore, in Table 15, we compare the results of the Baseline,
Baseline + PGP, and Baseline + LW2G. In both typical and long task settings, Baseline + LW2G con-
sistently outperforms Baseline + PGP. Moreover, LW2G significantly outperforms PGP in PRA and
SSP, further highlighting our approach’s focus on the amount of selectable sets during the prompt
retrieval stage in PCL.

Meanwhile, SEED proposed a continual learning method based on Mixture-of-Experts (MoE).
Specifically, SEED maintains multiple sets of experts and dynamically determines which expert
should be used to learn new tasks with minimal impact on old tasks. However, SEED fixes the total
number of experts at the start of training, which inevitably reduces plasticity as the amount of tasks
increases. In contrast, LW2G achieves complete dynamic expansion of ’experts’ (which are sets of
prompts in PCL) by assessing the degree of inhibition on new tasks under the orthogonal condition,
thus eliminating the need to predefine the amount of experts.

F.5 VISUALIZATION OF DYNAMIC PROCESS OF LW2G WITH PCL

In this section, we further demonstrate how LW2G dynamically decides to grow or not to grow
based on the HFC metric before learning each task. The results are illustrated in Table 16. It can be
observed that HidePrompt [+ LW2G] only requires 6 sets of prompts to surpass HidePrompt (which
requires 10 sets of prompts) on the IMR benchmark.
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Table 16: Variation process of HidePrompt [+ LW2G] on IMR.

Task Calculation Process Minimal Z Option Prompt sets pool

1 / / To Grow a new (p1,k1) (p1,k1)→ Task 1

2 HFC1=8.81, HFCpre
1 =7.17 Z1=1.64>0 To Grow a new (p2,k2) (p1,k1)→ Task 1

(p2,k2)→ Task 2

3 HFC1=8.83, HFCpre
1 =7.22

HFC2=9.24, HFCpre
2 =8.03

Z2=1.21>0 To Grow a new (p3,k3) (p1,k1)→ Task 1
(p2,k2)→ Task 2
(p3,k3)→ Task 3

4 HFC1=7.34, HFCpre
1 =8.82

HFC2=9.26, HFCpre
2 =8.00

HFC3=9.15, HFCpre
3 =8.97

Z1=-1.48<0 Not To Grow with (p1,k1) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3

5 HFC1=9.24, HFCpre
1 =8.12

HFC2=9.11, HFCpre
2 =9.07

HFC3=12.95, HFCpre
3 =7.24

Z2=0.04>0 To Grow a new (p4,k4) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3
(p4,k4)→ Task 5

6 HFC1=9.23, HFCpre
1 =8.02

HFC2=9.29, HFCpre
2 =9.23

HFC3=12.94, HFCpre
3 =7.29

HFC4=9.03, HFCpre
4 =9.14

Z4=-0.11<0 Not To Grow with (p4,k4) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3
(p4,k4)→ Task 5,6

7 HFC1=9.23, HFCpre
1 =8.08

HFC2=12.96, HFCpre
2 =7.33

HFC3=9.14, HFCpre
3 =9.25

HFC4=12.84, HFCpre
4 =9.16

Z3=-0.11<0 Not To Grow with (p3,k3) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6

8 HFC1=9.21, HFCpre
1 =8.19

HFC2=12.94, HFCpre
2 =7.50

HFC3=12.86, HFCpre
3 =9.23

HFC4=12.60, HFCpre
4 =9.02

Z1=1.02>0 To Grow a new (p5,k5) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6
(p5,k5)→ Task 8

9 HFC1=9.41, HFCpre
1 =8.08

HFC2=12.95, HFCpre
2 =7.26

HFC3=12.83, HFCpre
3 =9.26

HFC4=12.61, HFCpre
4 =9.17

HFC5=7.98, HFCpre
5 =7.50

Z5=0.48>0 To Grow a new (p6,k6) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6
(p5,k5)→ Task 8
(p6,k6)→ Task 9

10 HFC1=9.24, HFCpre
1 =7.99

HFC2=12.97, HFCpre
2 =7.29

HFC3=12.84, HFCpre
3 =9.10

HFC4=12.59, HFCpre
4 =9.03

HFC5=7.98, HFCpre
5 =8.99

HFC6=6.99, HFCpre
6 =7.53

Z5=-1.01<0 Not To Grow with (p5,k5) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6
(p5,k5)→ Task 8,10
(p6,k6)→ Task 9

F.6 PERFORMANCE UNDER OTHER PTMS

To show the efficacy of proposed method under different PTMs, we evaluate our method by extend-
ing three distinct PTMs, namely IBOT1k Zhou et al. (2021), IBOT21k Zhou et al. (2021) and DINO
Caron et al. (2021). The results are shown in the Table 17, Table 18 and Table 19.
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Table 17: Results under IBOT21k when comparing LW2G with three baselines. The best results are
highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 74.03 72.16 15.93 10
DualPrompt [+ LW2G] 74.76 78.33 13.92 3
S-Prompt++ 78.37 78.83 9.00 10
S-Prompt++ [+ LW2G] 78.83 75.20 8.69 3
HidePrompt 86.12 85.02 5.98 10
HidePrompt [+ LW2G] 86.40 92.06 5.84 2

IMR INC20 TASK10

DualPrompt 47.96 38.62 5.36 10
DualPrompt [+ LW2G] 49.13 64.05 5.33 3
S-Prompt++ 46.20 37.77 7.01 10
S-Prompt++ [+ LW2G] 48.97 71.04 6.30 3
HidePrompt 62.00 67.28 5.63 10
HidePrompt [+ LW2G] 63.67 82.18 5.80 3

Table 18: Results under IBOT1k when comparing LW2G with three baselines. The best results are
highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 71.58 84.72 19.41 10
DualPrompt [+ LW2G] 71.79 84.90 18.99 3
S-Prompt++ 75.70 83.76 9.46 10
S-Prompt++ [+ LW2G] 76.01 84.37 8.91 3
HidePrompt 84.83 83.50 6.48 10
HidePrompt [+ LW2G] 85.54 88.02 5.75 3

IMR INC20 TASK10

DualPrompt 56.68 38.15 5.18 10
DualPrompt [+ LW2G] 56.89 57.57 5.04 3
S-Prompt++ 52.38 39.78 7.18 10
S-Prompt++ [+ LW2G] 55.82 55.90 7.13 3
HidePrompt 64.77 67.94 6.90 10
HidePrompt [+ LW2G] 65.15 78.27 4.86 3

Table 19: Results under DINO when comparing LW2G with three baselines. The best results are
highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 69.46 88.80 18.96 10
DualPrompt [+ LW2G] 70.13 89.01 18.03 3
S-Prompt++ 74.62 87.60 10.71 10
S-Prompt++ [+ LW2G] 71.36 89.30 12.38 2
HidePrompt 82.89 82.05 7.45 10
HidePrompt [+ LW2G] 83.58 88.57 7.08 3

IMR INC20 TASK10

DualPrompt 52.41 38.74 5.93 10
DualPrompt [+ LW2G] 54.22 75.75 5.77 2
S-Prompt++ 50.00 37.72 6.75 10
S-Prompt++ [+ LW2G] 65.44 79.35 6.01 5
HidePrompt 62.42 62.07 8.89 10
HidePrompt [+ LW2G] 64.04 86.43 4.82 2
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