
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LW2G: LEARNING WHETHER TO GROW FOR PROMPT-
BASED CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) aims to learn in non-stationary scenarios, progressively
acquiring and maintaining knowledge from sequential tasks. Recent Prompt-
based Continual Learning (PCL) has achieved remarkable performance with Pre-
Trained Models (PTMs). These approaches grow a prompt sets pool by adding
a new set of prompts when learning each new task (prompt learning) and adopt
a matching mechanism to select the correct set for each testing sample (prompt
retrieval). Previous studies focus on the latter stage by improving the match-
ing mechanism to enhance Prompt Retrieval Accuracy (PRA). To promote cross-
task knowledge facilitation and form an effective and efficient prompt sets pool,
we propose a plug-in module in the former stage to Learn Whether to Grow
(LW2G) based on the disparities between tasks. Specifically, a shared set of
prompts is utilized when several tasks share certain commonalities, and a new set
is added when there are significant differences between the new task and previous
tasks. Inspired by Gradient Projection Continual Learning, our LW2G develops a
metric called Hinder Forward Capability (HFC) to measure the hindrance imposed
on learning new tasks by surgically modifying the original gradient onto the or-
thogonal complement of the old feature space. With HFC, an automated scheme
Dynamic Growing Approach adaptively learns whether to grow with a dynamic
threshold. Furthermore, we design a gradient-based constraint to ensure the con-
sistency between the updating prompts and pre-trained knowledge, and a prompts
weights reusing strategy to enhance forward transfer. Extensive experiments show
the effectiveness of our method.

1 INTRODUCTION

Compared to learning in stationary scenarios, Continual Learning (CL) equips systems with the
ability to learn in non-stationary environments, which is a core step toward achieving human-level
intelligence and human-like adaptation. In this learning paradigm, Deep Neural Networks (DNNs)
need to learn from a sequential tasks while retaining past knowledge and acquiring novel knowledge.
However, simply utilizing standard optimization methods Diederik (2014); Ruder (2016) for train-
ing DNNs inevitably erases the parametric representations of old tasks with new input representa-
tions during updating. Therefore, a well-known problem Catastrophic Forgetting (CF) arises French
(1999); Ramasesh et al. (2021); McCloskey & Cohen (1989); Rebuffi et al. (2017); Lewandowsky
& Li (1995), where DNNs suffer severe performance degradation on old tasks due to the absence of
old data and domain shift in data distributions, making CL an extremely challenging problem.

Recently, Prompt-based Continual Learning (PCL) offers fresh insights into addressing CF Wang
et al. (2024); Douillard et al. (2022); Smith et al. (2023b); Zhou et al. (2023a); Wang et al. (2022a;b);
Zhou et al. (2022). These methods leverage frozen Pre-Trained Models (PTMs) rather than training
from scratch and employ Parameter-Efficient Fine-Tuning techniques (PEFTs) (Zhu et al., 2023;
Dettmers et al., 2024; Wang et al., 2020; Houlsby et al., 2019; Jia et al., 2022; Hu et al., 2021),
e.g., prompt. Specifically, PCL involves two stages: (a) prompt learning: learning a task-wised set
of prompts to conditionally guide the PTM for the current task, which are stored in an expanding
prompt sets pool, and (b) prompt retrieval: predicting which task each testing sample belongs to
and choosing the corresponding prompt set. Recent studies Wang et al. (2024); Huang et al. (2024);
Tran et al. (2023) have found that Prompt Retrieval Accuracy (PRA) can significantly influence
the performance, since an incorrect set for the testing samples results in a performance decline.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of HFC. Si represents
the feature space spanned by the old task i,
while S⊥

i denotes the orthogonal complement
to Si. Then, HFC(g, g⊥

i) is denoted as HFCi.

Additionally, learning each task individually not
only limits the potential for cross-task knowledge
facilitation but also leads to parameter redundancy
Yu et al. (2024); Rypeść et al. (2024).

One simple solution to this problem is to mimic hu-
mans’ integration of information Roediger & Mc-
Dermott (1995); Hunt (2006); Arndt (2006). For
instance, when several tasks share certain com-
monalities, they can use a shared set of prompts.
However, when tasks differ significantly, a new set
should be added. Thus, by adaptively learning
whether to grow a new set for PCL, the amount
of selectable options is reduced, and the divergence between sets is increased, thereby improving
PRA. Furthermore, aggregating multiple tasks’ knowledge into a single set can also facilitate mu-
tual knowledge utilization and promotion among tasks. Nevertheless, establishing suitable metrics
to measure this commonality and obtaining task information a priori – all of which are challenging
in practice. Moreover, gradually integrating knowledge from multiple tasks into a single set also
presents an unresolved query, as the knowledge from different tasks can interfere with each other
during sequential learning.

Thanks to Gradient Projection-based Continual Learning (GPCL) Zhao et al. (2023); Saha et al.
(2021); Lopez-Paz & Ranzato (2017), which proposes that learning would not forget if the updated
gradient is orthogonal to the feature space spanned by old tasks (denoted as orthogonal condition),
we propose to use the orthogonal condition in GPCL to integrate the knowledge from multiple tasks
into a single set of prompts. Specifically, in Figure 1, the gradient g of the new task is modified to its
projection g⊥

1 onto S⊥
1 , and g⊥

1 serves as the real gradient for updating parameters, thereby reducing
the forgetting of old knowledge in task 1. Furthermore, to address the dilemma of whether to grow
(i.e., initializing a new set of prompts) or not to grow (i.e., selecting an old set of prompts from the
pool), we introduce a novel metric called Hinder Forward Capability (HFC). HFC is calculated
as the angle θ between the gradient of the new task g and its’ projection g⊥. As illustrated in Figure
1, as HFC1¡HFC2 then g⊥

1 ¿g⊥
2 , it implies that the hindrance to learning on the set of prompts to task

2 is larger than that on the set of prompts to task 1 when updating under the orthogonal condition.
Thus, when the hindrance on learning a new task is severe, PCL should choose to grow a new set;
conversely, it tends not to grow. Meanwhile, g presents a large projection onto S2 indicating higher
similarity between the new task and task 2 than with task 1.

Based on the analysis, we propose a plug-in module within PCL to Learn Whether to Grow
(LW2G), consisting of three components: Dynamic Growing Approach (DGA), Consistency with
Pre-trained Knowledge (CPK), and Facilitation for Forward Transfer (FFT). DGA is an automated
scheme to learn whether to grow (adopt a new set of prompts and store it in the pool) or not to grow
(utilize an existing set of prompts from the pool) for new tasks based on the introduced HFC metric.
Specifically, to incorporate knowledge from multiple tasks into a single set of prompts, we first em-
ploy the orthogonal condition to learn new tasks without forgetting and calculate the hindrance on
learning with each set in the pool through HFC. Meanwhile, we consider an ideal scenario to gener-
ate a dynamic threshold, which learn the new task on the pre-trained knowledge feature space Spre

without any obstacles from old tasks. DGA chooses to grow if all HFC values are above this thresh-
old, indicating that learning with each set in the pool encounters excessive hindrance. Conversely,
DGA chooses not to grow by selecting the old set of prompts with the minimum HFC and learning
the new task under the orthogonal condition. CPK aims to balance the disruption to pre-trained
knowledge caused by continual learning on new tasks and the reduced plasticity brought by strict
orthogonality to the entire pre-trained feature space Spre. Therefore, we propose applying a soft con-
straint to the gradient when learning new tasks, aiming to align the gradient direction as closely as
possible with the feature space of the pre-trained knowledge, ensuring consistency between prompt
updates and pre-trained knowledge. Finally, FFT reuses the frozen weights from the existing set of
prompts with the maximum HFC to enhance forward transfer.

The contributions of this paper can be summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We propose an automated learning scheme within PCL, by learning whether to grow or not to
grow set of prompts. We aim to form an effective and efficient prompt sets pool where each single
set contains knowledge from multiple tasks, thus facilitating cross-task promotion.
• We introduce HFC metric, which not only measures the difference between new and old tasks but
also evaluates the hindrance on learning new tasks under the strict orthogonal condition.
• LW2G is a plug-in module within existing PCL. Extensive experiments demonstrate its superiority
across multiple benchmarks and various CL settings.

2 RELATED WORK

Continual Learning and Gradient Projection Numerous efforts have been made to alleviate the
core issue of CF French (1999); Ramasesh et al. (2021); McCloskey & Cohen (1989), which can
be roughly categorized into three main categories: (1) Architecture-based, (2) Rehearsal-based, and
(3) Regularization-based. Architecture-based methods Rusu et al. (2016); Yoon et al. (2017); Li
et al. (2019); Loo et al. (2020); Mallya & Lazebnik (2018); Serra et al. (2018); Ke et al. (2020)
segregate components within the DNNs for each task by expanding the model or constraining the
learning rate of part of parameters. However, most of them designed for Task-CL, which is not
suitable for challenging Class-CL. Rehearsal-based methods Buzzega et al. (2020); Cha et al. (2021);
Rebuffi et al. (2017); Wu et al. (2019); Ebrahimi et al. (2020); Pham et al. (2021); Zhao et al.
(2021); De Lange et al. (2021); Wang et al. (2018) mitigate forgetting by replaying real or generated
samples of old tasks, which raises concerns about efficiency and privacy. Regularization-based
methods Kirkpatrick et al. (2017); Zenke et al. (2017) achieve a balance between new and old tasks
by designing sophisticated regularization terms. Among them, GPCL methods Zhao et al. (2023);
Saha et al. (2021); Lopez-Paz & Ranzato (2017); Qiao et al. (2023); Lin et al. (2022b;a); Zhu et al.
(2023); Yu et al. (2020); Wang et al. (2021); Duncker et al. (2020); Wang et al. (2023); Smith et al.
(2023a); Chen et al. (2020; 2022) focus on the gradient of the parameter. These methods project
the gradient orthogonally to the feature space spanned by the old tasks, thereby not affecting the old
knowledge.
Prompt-based Methods and Transfer Learning PCL garnered significant attention due to their
utilization of PEFT techniques (Zhu et al., 2023; Dettmers et al., 2024; Wang et al., 2020; Houlsby
et al., 2019; Jia et al., 2022; Hu et al., 2021; Yang et al., 2024) to leverage PTMs, achieving rehearsal-
free and promising performance Wang et al. (2024); Douillard et al. (2022); Smith et al. (2023b);
Zhou et al. (2023a); Wang et al. (2022a;b); Zhou et al. (2022); Qiao et al. (2023); Wang et al. (2022c);
Huang et al. (2024); Zhou et al. (2024b;a; 2023b). Among them, DualPrompt Wang et al. (2022b)
proposed partitioning the knowledge of tasks into general and specific categories, and learns them
with g-prompt and e-prompt, respectively. Similarly, S-liPrompt and S-iPrompt Wang et al. (2022a)
addressed Domain-CL by leveraging Vision-Language Models (VLMs) to further enhance the learn-
ing ability. CODAPrompt Smith et al. (2023b), S-Prompt++ Wang et al. (2024) and HidePrompt
Wang et al. (2024) improved prompt retrieval stage through attention mechanisms and auxiliary
adapter classifiers. Additionally, recent studies show that fine-tuning downstream tasks or continual
learning with PTMs often leads to overfitting due to relatively limited downstream training data,
resulting in degradation of pre-trained knowledge Lee et al. (2023); Li et al. (2024); Zheng et al.
(2023); Zhu et al. (2023).

3 PRELIMINARIES AND NOTATIONS

Continual Learning Assume there is a sequence of tasks and their corresponding training datasets{
Di, i = 1, 2, . . .

}
without overlapping classes, where Dt = {(xi,t,yi,t)}nt

i=1 belongs to the task t.

We denote the DNN as W =
{
θl
}L

l=1
, where θl is the weight of layer l. Given a training sample

xi,t, we denote xl
i,t as the input of layer l and the output is xl+1

i,t = f l
(
θl,xl

i,t

)
, where f l is the

operation of layer l. We simplify the loss function for learning task t as Lt(Dt) and Wt =
{
θlt
}L

l=1
as the DNN after training on task t.

Gradient Projection Continual Learning First, for any matrix A with suitable dimensions, its
projection onto a given space S is denoted as follows:

ProjS (A) = AB (B)
T
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where B is the bases for S and (·)T is the matrix transpose.

Then, following Saha et al. (2021), we briefly introduce how GPCL reduces the interference of old
knowledge when learning new tasks. After leaning task 1, GPCL first constructs a representation
matrix for layer l as Rl

1 ∈ RN×d from task 1 only. Next, Singular Value Decomposition (SVD)
is performed on Rl

1 followed by its k-rank approximation
(
Rl

1

)
k

with threshold, ϵ. Therefore, the
feature space for layer l spanned by task 1 is built by Sl

1 = span
{
Bl

1

}
, where Bl

1 is the bases for Sl
1.

And Sl
1 is stored in memory M =

{
Sl
1

}
. When learning task 2, the gradient of layer l is denoted as

g = ∇θlL2. As illustrated in Figure 1, GPCL modify the gradient as follows:

g⊥
1 = ProjS⊥

1
(g), (2)

where S⊥
1 is the orthogonal complement of Sl

1 and g⊥
1 serves as the real gradient for updating layer

l. Let ∆θl1 denote the change in layer l after learning task 2. For xi,1 ∈ Sl
1 from task 1, it follows

that ∆θl1xi,1 = 0 due to the orthogonality of g⊥
1 with respect to Sl

1 Zhang et al. (2021); Saha et al.
(2021). Therefore, we can obtain:

θl2x
l
i,1 = (θl1 +∆θl1)x

l
i,1 = θl1x

l
i,1. (3)

It demonstrates that there is no forgetting of knowledge of task 1, if the gradient for updating pa-
rameters is orthogonal to the old feature space. We denote the above condition as the orthogonal
condition. After learning task 2, a new representation matrix for layer l denoted as Rl

2 is built from
task 2 only. And Sl

1 in M needs to be updated by updating Bl
1 with unique bases from Rl

2. Details
are in Appendix B.2.

Prompt-based Continual Learning Recent studies Wang et al. (2024); Smith et al. (2023b);
Wang et al. (2022c;b;a) utilized prompts to leverage the PTMs. Therefore, the DNN is a Vision
Transformer (VIT), and the operation of layer l, f l, is the attention mechanism within each trans-
former block. Hence, the input of VIT after patch embedding is xe ∈ RLe×d, where Le is the token
length. Specifically, VPT Jia et al. (2022); Li & Liang (2021) prepend a set of learnable tokens
p ∈ RLp×d to xe and treat [p,xe] ∈ R(Le+Lp)×d as the input, minimizing L to encode task-specific
knowledge into these prompts while keeping pre-trained weights frozen. PCL involves two stages:
prompt learning and prompt retrieval. In prompt learning, PCL grows the prompt sets pool P by
initializing a new set of prompt (pi,ki) before learning each new task i, where pi is combined with
the training samples by the attention mechanism. Meanwhile, ki is optimized by being pulled closer
to the vanilla features of the training samples obtained by a VIT without combining with prompts.
In prompt retrieval, ki serves as the query vector for predicting which set of pi to choose for each
testing sample by a matching mechanism. More details are in Appendix C.

4 THEORY AND METHOD

In this section, we first present a theoretical analysis of GPCL concerning the hindrance on learning
new tasks under the orthogonal condition (Theorem 1 and Definition 1). Subsequently, as illustrated
in Figure 2, we introduce the plug-in module Learning Whether to Grow (LW2G), which consists
of three components: DGA, CPK, and FFT.

4.1 THEORETICAL ANALYSIS ON HINDRANCE IN GPCL

For simplicity, the notation of layer l is omitted in the following analysis. While learning on task
i, GPCL update the parameters under the orthogonal condition to avoid interfering with old knowl-
edge. However, since the gradient represents the direction of local optimal descent for the loss func-
tion, modifying it inevitably results in a reduction of local information. To quantify the hindrance
under the orthogonal condition in GPCL, we first define the following metric.
Definition 1 (Hinder Forward Capability, HFC). In GPCL, while continually encoding new knowl-
edge into a single model under the orthogonal condition, Hinder Forward Capability (HFC) is
defined to evaluate the hindrance on learning new tasks. HFC is the angle between the original
gradient obtained through backpropagation g and its projection g⊥ = ProjS⊥

old
(g) onto S⊥

old,

HFC(g, g⊥) = arccos

(
g · g⊥

∥g∥∥g⊥∥

)
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

C
PK FF

T

D
G

A

Update

D
G

A

+ ...

Select with -N

To Grow

Not To Grow

Bulid
with Task 3

Update
Orthogonal
Condition

Update
with Task

In
iti

al
iz

at
io

n
Se

le
ct

io
n

M

M

M

Figure 2: Illustration of three components in LW2G. Before learning task 3, assume there are two
sets in P = {(p1,k1), (p2,k2)}. In P , blue represents frozen and unlearnable sets of prompts,
whereas red represents learnable sets.

As illustrated in Figure 1, a large HFC indicates a significant gap between original gradient g and
the real gradient g⊥. Therefore, a large reduction of local information leads to greater hindrance on
learning new tasks. Based on this, we formally present the following theorem (see Appendix B.1 for
a detailed proof):
Theorem 1. Given a space S1 = span{B1}, where B1 = [b1, . . . , bl] ∈ Rn×l is a set of l bases
for S1, and a space S2 = span{B2}, where B2 = [b1, . . . , bl, bl+1, . . . , bl+k] ∈ Rn×(l+k) is a set
of l + k bases for S2. Then, ∀α there always exists:

HFC(α,ProjS1
(α)) > HFC(α,ProjS2

(α)).

The above Theorem 1 shows that fewer bases result in a larger HFC. As Sold in M continues to
expand with new bases from each new task, its corresponding orthogonal complement S⊥

old progres-
sively shrinks. Consequently, the bases in S⊥

old steadily decrease, leading to a large HFC and more
severe hindrance on learning new tasks.

4.2 DYNAMIC GROWING APPROACH

Instead of naively growing a new set of prompts for each new task regardless of task dissimilarities,
we propose a Dynamic Growing Approach (DGA). DGA involves dynamically learning whether
to grow (initialize a new set of prompts and store it in the pool) or not to grow (utilize an existing
set from the pool).

For simplicity, we adopt an example with three tasks to illustrate our method in Figure 2. A more
general description is presented in pseudocode, which can be found in Appendix A.

Before learning task 3, we first qualify the hindrance on each old set in the pool under the orthogonal
condition. Specifically, we iteratively select an old set (p1,k1) from P and S1 from M, where S1

is the old feature space corresponding to task 1. We construct a subset of training dataset from task
3, denoted as D3

sub. For clarity, the gradient to update (p1,k1) with D3
sub is denoted as:

g1 = ∇(p1,k1)L3(D3
sub). (4)

To prevent the influence of old knowledge contained in (p1,k1) while learning task 3, the gradient
g1 is required to be modified to ProjS⊥

1
(g1), where S⊥

1 is the orthogonal complement of S1. Then,
ProjS⊥

1
(g1) serves as the real gradient for updating parameters. Based on Theorem 1, we evaluate

the hindrance under the orthogonal condition while learning task 3 on (p1,k1) as follows:

HFC1 = HFC(g1,ProjS⊥
1
(g1)). (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Besides, we define a dynamic threshold based on the task 3 and the PTM being used. Firstly, we
initialize a new set with (p1,k1) as follows:

(p3,k3) ⇐ (p1,k1). (6)

Here, the newly initialized (p3,k3) does not contain any knowledge from previous tasks (task 1 or
task 2), which represents an ideal scenario for learning task 3. Likewise, the gradient to updated
(p3,k3) is denoted as:

g3 = ∇(p3,k3)L3(D3
sub). (7)

Then, we can obtain a representation matrix Rpre
3 by feeding D3

sub into the VIT without prompts. We
can newly build Spre

3 after performing SVD and k-rank approximation with pre-trained threshold,
ϵpre. Then, we can also calculate:

HFCpre
1 = HFC(g3,ProjSpre,⊥

3
(g3)), (8)

where Spre,⊥
3 is the orthogonal complement of Spre

3 . Here, HFCpre
1 represents the relationship be-

tween the gradient of learning task 3 and the pre-trained knowledge from task 3. As (p3,k3) is
newly initialized specifically for training task 3, it contains no prior knowledge, and thus, there are
no obstacles from old tasks. Therefore, HFCpre

1 signifies the ideal scenario when learning new tasks
in PCL, which is the dynamic threshold to evaluate the relative magnitude of hindrance. Based on
this, the gap between learning on old set (p1,k1) under the orthogonal condition and leaning on
new set (p3,k3) in an ideal scenario is denoted as follows:

Z1 = HFC1 − HFCpre
1 . (9)

Thus, if Z1 > 0, it indicates that learning on the old set (p1,k1) from P encounters excessive
hindrance.

Likewise, the gap between learning on old set (p2,k2) under the orthogonal condition and leaning
on new set (p3,k3) in an ideal scenario can also be calculated as Z2, where (p3,k3) is a newly
initialized set with (p2,k2).

Opting To Grow or Not To Grow Based on the analysis, we propose a dynamic growing approach
as follows:  To Grow if min

m∈(1,2)
Zm > 0

Not To Grow else min
m∈(1,2)

Zm ≤ 0.
(10)

• While chosing To Grow, we initialize a new set (p3,k3). Then, update (p3,k3) with task 3 and
build a new feature space S3 with threshold, ϵtask, from task 3 only and store S3 into M.
• While chosing Not To Grow, we select an old set (pt,kt) from P , where t = argminm∈(1,2)Zm.
Then, update (pt,kt) with task 3 under orthogonal condition and update the old feature space St

with threshold, ϵtask, with new bases from task 3.

4.3 CONSISTENCY WITH PRE-TRAINED KNOWLEDGE

Recent studies in transfer learning and domain adaptation revealed that when employing PEFT for
fine-tuning PTM, the performance after fine-tuning often falls short of the pre-trained knowledge of
PTM itself. However, this aspect has not been extensively studied in PCL.

Therefore, we exploit two distinct level of forgetting issues faced in PCL: (1) continuous fine-tuning
on downstream tasks leading to the forgetting of pre-trained knowledge, and (2) continual learning
on new tasks resulting in the forgetting of old tasks.

To tackle the former issue, we adjust the gradient of the new tasks to be orthogonal to the pre-
trained feature space. However, due to the domain gap between the incremental task training data
and the pre-trained data, a fully orthogonal manner is too stringent and can significantly impact the
plasticity. To achieve a balance between maintaining plasticity and fully utilization of the pre-trained
knowledge, we propose to apply a soft constraint to the gradient as follows:

g = g − (1− ϕ)ProjSpre
3
(g), (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results of adding LW2G on three baselines: DualPrompt, S-Prompt++, and HidePrompt.
Since the official code of Hideprompt1 has a code inplementation issue about prompt retrieval, we
asked the authors for the fixed version of code and reproduced the following experimental results.
More details about the issue and the fixed version of official code are provided in Appendix E.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 85.94 59.44 6.38 10
DualPrompt [+ LW2G] 86.86 78.33 6.03 2
S-Prompt++ 89.25 99.52 4.10 10
S-Prompt++ [+ LW2G] 89.32 100.0 3.46 7
HidePrompt 85.77 80.78 6.19 10
HidePrompt [+ LW2G] 87.60 95.39 4.28 2

IMR INC20 TASK10

DualPrompt 63.63 41.05 6.41 10
DualPrompt [+ LW2G] 65.60 80.40 5.72 2
S-Prompt++ 63.26 44.31 6.22 10
S-Prompt++ [+ LW2G] 65.44 79.35 6.01 5
HidePrompt 62.42 62.07 8.89 10
HidePrompt [+ LW2G] 63.23 65.13 7.19 6

CUB INC20 TASK10

DualPrompt 82.09 66.71 6.40 10
DualPrompt [+ LW2G] 82.43 70.09 5.25 7
S-Prompt++ 82.57 66.30 4.85 10
S-Prompt++ [+ LW2G] 82.61 87.49 4.54 3
HidePrompt 85.59 88.58 3.22 10
HidePrompt [+ LW2G] 86.17 92.53 3.08 4

where ϕ is the coefficient of the soft constraint to control the orthogonality and Spre
3 is the pre-trained

feature space for task 3. When learning on task 3, the gradient can be obtained from Equation
4 while DGA chooses to grow, or from Equation 7 while DGA chooses not to grow. And ϕ can
flexibly control the real gradient g, aligning it as closely as possible with the feature space of the
pre-trained knowledge, while ensuring the learning ability on new tasks.

4.4 FACILITATION FOR FORWARD TRANSFER

To facilitate forward knowledge transfer during learning task 3, we propose a simple yet effective
method: reusing the frozen weights of prompts from P . Specifically, before learning task 3, we
can characterize the correlation between the new task 3 and the existing feature space in M with
HFC metric. A larger HFC indicates more projection onto the old feature space S2 than S1, as
illustrated in Figure 1. Therefore, it indicates that task 3 has higher similarity with task 2 than
task 1. Consequently, naturally reusing the set of prompts corresponding to task 2 can effectively
facilitate the learning of task 3.

p∗
i = [p, stg(pK)] , (12)

where stg(·) means stop gradient to frozen the pK. Besides, p is a newly initialized set of prompts
when DGA chooses to grow or an old set of prompts from P when DGA chooses not to grow. And
pK is obtained as follows:

K = argmax
{ui}Ni=1∈{1,2}

HFC(gui , ProjSui
(gui)), (13)

where K represents a subset of sets with top-N from P .

5 EXPERIMENT

In this section, we first describe the experimental setups, and then present the experimental results.

5.1 EXPERIMENTAL SETUPS

Benchmarks We evaluate our method on multiple datasets against state-of-the-art baselines.
Specifically, we use the following datasets: CIFAR100 Krizhevsky et al. (2009) (CIFAR), which
contains 100 classes with 100 images per class; CUB200 Wah et al. (2011) (CUB), which consists
of 11,788 images across 200 birds classes; ImageNet-R Hendrycks et al. (2021) (IMR), which in-
cludes 30,000 images from 200 classes that pose challenges for PTMs pre-trained on ImageNet;

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results on OMNI benchmark with two extreme settings: 30 tasks and 60 tasks. Addition-
ally, we provide SSP, FLOPS and Training Time (TT) to measure the computational overhead and
methods’ complexity.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓) FLOPS (G) (↓) TT (h) (↓)

OMNI INC10 TASK30

DualPrompt 63.36 68.47 12.92 30 35.19 4.5
DualPrompt [+ LW2G] 65.12 80.95 10.75 9 37.21 5.0
S-Prompt++ 64.44 55.87 9.02 30 35.17 4.5
S-Prompt++ [+ LW2G] 65.90 63.86 8.50 10 37.24 5.2

OMNI INC5 TASK60

DualPrompt 61.85 69.94 13.50 60 35.19 5.0
DualPrompt [+ LW2G] 63.17 75.31 12.01 17 37.21 6.1
S-Prompt++ 62.31 54.59 10.04 60 35.17 5.1
S-Prompt++ [+ LW2G] 63.70 62.60 9.90 18 37.24 6.2

Table 3: Ablation study on three components in LW2G. Here we present FFA and PRA for all
baselines and variants in LW2G, e.g., “DGA” refers to the use of Dynamic Growing Approach
within the baseline methods, DualPrompt and S-Prompt++.

Variants FFA (↑) PRA (↑) Variants FFA (↑) PRA (↑)
DualPrompt (baseline) 63.63 41.05 S-Prompt++ (baseline) 63.26 44.31
DualPrompt [+ DGA] 65.02 77.68 S-Prompt++ [+ DGA] 65.18 76.35
DualPrompt [+ CPK] 64.34 50.39 S-Prompt++ [+ CPK] 63.90 52.67
DualPrompt [+ FFT] 64.08 47.17 S-Prompt++ [+ FFT] 63.89 50.02
DualPrompt [+ LW2G] 65.60 80.40 S-Prompt++ [+ LW2G] 65.44 79.35

and Omnibenchmark Zhang et al. (2022) (OMNI), which comprises over 90,000 images from
300 classes. Besides, we denote different experimental settings as ‘Dataset IncN TaskM’, e.g.,
‘CIFAR INC10 Task10’, which means learning on CIFAR with 10 tasks and each task contains 10
classes.

Baselines We use DualPrompt Wang et al. (2022b), S-Prompt++ Wang et al. (2024) and Hide-
Prompt Wang et al. (2024) as our baselines for Class-CL. Following Wang et al. (2024), we record
the average accuracy of all encountered classes after learning on each task, presenting the last one
as the Final Average Accuracy (FAA). We also present the Final Forgetting Measure (FFM) of all
tasks and Prompt Retrieval Accuracy (PRA) to measure the accuracy during prompt retrieval. Addi-
tionally, Selectable Sets of Prompts (SSP) is also provided to demonstrate the amount of sets in P .
Please refer to Appendix D.2 for more details.

Implementations Our LW2G needs to set the value of four hyperparameters: ϵtask, ϵpre, ϕ, and
N . Details on different benchmarks are provided in Appendix D.1. We use VIT pretrained on
ImageNet-21K for all experiments. All results are the average under three different random seeds.
Furthermore, as the pre-trained feature space is built from PTM, we further validate the effectiveness
of LW2G under other PTMs. Results are provided in Appendix F.6.

5.2 MAIN RESULTS

Typical Settings Table 1 presents the results of applying different state-of-the-art PCL methods
and incorporating LW2G. We report four metrics FFA, PRA, FFM and SSP, where FFA and FFM
are the typical metrics in CL to evaluate the performance. Additionally, PRA and SSP are unique
for PCL. LW2G outperforms existing PCL by a large margin in each setting. For IMR, LW2G is
better than DualPrompt, S-Prompt++ and Hideprompt by 1.97%, 2.17% and 0.81%, respectively
on FFA. For CIFAR, it appears that LW2G brings a significant decent in anti-forgetting, especially
comparing with S-Prompt++ and Hideprompt on FFM. As for the PCL unique metrics PRA and SSP,
LW2G leads to notable improvements in PRA for all three baselines, with the largest improvement
reaching up to 39.35%. Additionally, it also results in a substantial reduction in SSP. For example,
DualPrompt combined with LW2G on CIFAR only requires 2 sets of prompts compared to the
original DualPrompt, which utilizes 10 sets. The same reduction in parameters can be observed
across multiple settings.

Long Task Settings Learning in the context of long sequential tasks has long been regarded as a
more challenging setting in CL. We showcase the performance of DualPrompt and S-Prompt++ on
two extreme settings: OMNI INC10 TASK30 and OMNI INC5 TASK60 in Table 2. Existing base-
lines employ a pool with the size equivalent to the length of tasks, resulting in poor performance on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10
(a)59.44% --> 78.33%

78
80
82
84
86
88
90
92

Ac
cu

ra
cy

DualPrompt on CIFAR_INC10_TASK10

baseline
baseline+taskid
baseline+auto

1 2 3 4 5 6 7 8 9 10
(b)41.05% --> 80.04%

55

60

65

70

75

Ac
cu

ra
cy

DualPrompt on IMR_INC20_TASK10

baseline
baseline+taskid
baseline+auto

1 2 3 4 5 6 7 8 9 10
(c)99.52% --> 100.0%

82

84

86

88

90

92

Ac
cu

ra
cy

S-Prompt++ on CIFAR_INC10_TASK10

baseline
baseline+taskid
baseline+auto

1 2 3 4 5 6 7 8 9 10
(d)44.31% --> 79.35%

55

60

65

70

75

Ac
cu

ra
cy

S-Prompt++ on IMR_INC20_TASK10

baseline
baseline+taskid
baseline+auto

Figure 3: The x-axis denotes the enhancement in PRA with LW2G compared to the baseline. Apart
from baseline and LW2G, we also present the results of Task-CL. Task-CL ensures the real upper
bound of PCL by providing a correct prompt set for each testing sample through a given task ID.

PRA. However, incorporating the LW2G significantly enhances PRA, leading to noticeable improve-
ments in both FFA and FFM. Moreover, we observe that LW2G requires to maitain a memory M for
gradient modification, unavoidably introducing additional computational overhead and lengthening
training time. Nevertheless, the results indicate that the extra cost compared to baselines is relatively
modest. Additionally, we find that the adoption of LW2G results in a substantial decrease in the total
amount of selectable sets, approximately by 70%.

5.3 ABLATION STUDY

We conduct an extensive ablation study presented in Table 3 to validate the effectiveness of the three
components in LW2G. Initially, we construct DualPrompt and S-Prompt++ as baselines and pro-
gressively incorporate the DGA, CPK, and FFT. Overall, optimizing each component yields clear
benefits, with all contributing to the robust gains of LW2G. Interestingly, while CPK and FFT ex-
hibits less pronounced improvements compared to the baseline, the enhancement from DGA is more
significant. Besides, the combination of all three components provides the optimal performance,
suggesting highly synergistic and complementary effects rather than operating in isolation. More-
over, it is noteworthy that CPK and FFT do not reduce SSP, hence the performance improvement
solely stemmed from the enhanced representational capacity of prompts. DGA not only integrates
knowledge from multiple tasks into a single set of prompts, thereby enhancing the representational
capacity, but importantly, the notable improvement in PRA is attributed to the reduction in the total
amount of available sets during prompt retrieval, thereby aiding PCL performance.

5.4 DETAIL ANALYSIS

Table 4: Different implementations on DGA. Here we
present FFA for all variants.

DGA Variants
CIFAR IMR

DualPrompt S-Prompt++ DualPrompt S-Prompt++

No-DGA (Baseline) 85.94 89.25 63.63 63.26

DGA-Rand 85.99 88.32 64.82 64.76

DGA-AG 84.78 85.17 63.73 63.43

DGA-Max HFC 86.08 86.73 64.31 63.91

DGA-Min HFC 86.86 89.32 65.60 65.44

Effectiveness of DGA While chosing
not to grow, DGA utilized in LW2G se-
lects the set (p∗,k∗) with the Min-Z from
P when learning task i, and learns new
knowledge based on this set, adjusting
gradient to prevent forgetting of the old
knowledge contained in (p∗,k∗). After
learning, (p,k) encompasses both the new
knowledge from task i and the existing old
knowledge. Here, we explore the impact
of different implementations of DGA on
FFA. In Table 4, No-DGA represents base-
line methods, e.g., S-Prompt++ and DualPrompt. DGA-Rand represents randomly selecting an old
set of prompts from P . DGA-AG represents that P consists of only a single set, implying continu-
ous learning of new knowledge on this set of parameters. DGA-Max HFC indicates selecting the set
from P with the maximum HFC value. The results clearly demonstrate the superiority of DGA-Min
HFC employed in LW2G over other variants, aligning with the conclusion in Theorem 1.

Gains on Each Task Figure 3 presents detailed accuracy on each task. Here, we provide a com-
parison between DualPrompt and S-Prompt++ on two benchmarks. The x-axis of each plot repre-
sents the change from baseline to baseline+LW2G in terms of PRA. Apart from (c), the addition of
LW2G all leads to consistent improvements in accuracy on each task, as the PRA of the baseline

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Variation process of DualPrompt [+ LW2G] on IMR.
Task Calculation Process Minimal Z Option Prompt sets pool

1 / / To Grow a new (p1,k1) (p1,k1) → Task 1

2 HFC1=13.90, HFCpre
1 =40.23 Z1=-26.33<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2

3 HFC1=20.22, HFCpre
1 =40.80 Z1=-20.58<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3

4 HFC1=25.09, HFCpre
1 =41.50 Z1=-16.41<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4

5 HFC1=29.15, HFCpre
1 =42.92 Z1=-13.77<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5

6 HFC1=32.85, HFCpre
1 =42.78 Z1=-9.33<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5,6

7 HFC1=36.35, HFCpre
1 =41.85 Z1=-5.5<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5,6,7

8 HFC1=39.39, HFCpre
1 =42.42 Z1=-3.03<0 Not To Grow with (p1,k1) (p1,k1) → Task 1,2,3,4,5,6,7,8

9 HFC1=42.54, HFCpre
1 =41.37 Z1=1.17>0 To Grow a new (p2,k2) (p1,k1) → Task 1,2,3,4,5,6,7,8

(p2,k2) → Task 9

10 HFC1=42.54, HFCpre
1 =40.92

HFC2=13.81, HFCpre
2 =41.81

Z2=-28.00<0 Not To Grow with (p2,k2) (p1,k1) → Task 1,2,3,4,5,6,7,8
(p2,k2) → Task 9,10

method in (c) has already reached 99.52%. In the other three settings, PRA experiences significant
increasment, thereby enhancing classification accuracy. Additionally, we also provide results for
baseline+taskID, i.e., PCL on Task-CL. In this setting, during inference, taskid is provided to select
the correct set for each testing sample, which is considered as the upper bound of PCL. It further
demonstrates that our proposed LW2G can effectively reduce the optionality during prompt retrieval
while ensuring the integration of old and new knowledge, thereby improving performance.

Visualization of the Dynamic Growing Process In the proposed LW2G method, the DGA mod-
ule determines whether to grow a new set of prompts or reuse an existing set from the prompt sets
pool based on the HFC metric, which can measure the hindrance on learning new tasks while main-
taining old knowledge under orthogonal condition. We provide a detailed dynamic process in the
following Table 5. Before learning each task (except task 1), LW2G first calculates the HFC value
and subsequently decides whether to perform dynamic expansion based on the minimum Z value
using Equation 9 and 10. Further results can be found in Appendix F.5.

6 CONCLUSION

In this paper, we propose a plug-in module within existing Prompt-based Continual Learning (PCL),
called Learning Whether To Grow (LW2G). Specifically, LW2G enables PCL to dynamically learn
to whether to add a new set of prompts for each task (to grow) or to utilize an existing set of
prompts (not to grow) based on the relationships between tasks. Inspired by Gradient Projection-
based Continual Learning (GPCL), we utilize the orthogonal condition to form an effective and
efficient prompt sets pool. Besides, we also provide a theoretical analysis on hindrance under the
orthogonal condition in GPCL. Extensive experiments show the effectiveness of our method.

Limitations LW2G needs to construct the feature space of old tasks and store it in memory M for
gradient projection, which results in additional computational overhead. Therefore, while exploring
alternative methods for constructing the old feature space goes beyond the scope of this study, it is
crucial for enhancing the practicality of both LW2G and GPCL.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jason Arndt. Distinctive information and false recognition: The contribution of encoding and re-
trieval factors. Journal of Memory and Language, 54(1):113–130, 2006.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Cheng Chen, Ji Zhang, Jingkuan Song, and Lianli Gao. Class gradient projection for continual
learning. In Proceedings of the 30th ACM International Conference on Multimedia, pp. 5575–
5583, 2022.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning.
Cambridge University Press, 2020.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
for continual learning with dynamic token expansion. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 9285–9295, 2022.

Lea Duncker, Laura Driscoll, Krishna V Shenoy, Maneesh Sahani, and David Sussillo. Organizing
recurrent network dynamics by task-computation to enable continual learning. Advances in neural
information processing systems, 33:14387–14397, 2020.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
sarial continual learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16, pp. 386–402. Springer, 2020.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wei-Cheng Huang, Chun-Fu Chen, and Hsiang Hsu. Ovor: Oneprompt with virtual outlier regular-
ization for rehearsal-free class-incremental learning. arXiv preprint arXiv:2402.04129, 2024.

R Reed Hunt. The concept of distinctiveness in memory research. Distinctiveness and memory, pp.
3–25, 2006.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar and
dissimilar tasks. Advances in Neural Information Processing Systems, 33:18493–18504, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Dongjun Lee, Seokwon Song, Jihee Suh, Joonmyeong Choi, Sanghyeok Lee, and Hyunwoo J Kim.
Read-only prompt optimization for vision-language few-shot learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1401–1411, 2023.

Stephan Lewandowsky and Shu-Chen Li. Catastrophic interference in neural networks: Causes,
solutions, and data. In Interference and inhibition in cognition, pp. 329–361. Elsevier, 1995.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International Conference
on Machine Learning, pp. 3925–3934. PMLR, 2019.

Yukun Li, Guansong Pang, Wei Suo, Chenchen Jing, Yuling Xi, Lingqiao Liu, Hao Chen, Guoqiang
Liang, and Peng Wang. Coleclip: Open-domain continual learning via joint task prompt and
vocabulary learning. arXiv preprint arXiv:2403.10245, 2024.

Guoliang Lin, Hanlu Chu, and Hanjiang Lai. Towards better plasticity-stability trade-off in incre-
mental learning: A simple linear connector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 89–98, 2022a.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931, 2022b.

Noel Loo, Siddharth Swaroop, and Richard E Turner. Generalized variational continual learning.
arXiv preprint arXiv:2011.12328, 2020.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. Advances
in Neural Information Processing Systems, 34:16131–16144, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jingyang Qiao, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, Yuan Xie, et al. Prompt gra-
dient projection for continual learning. In The Twelfth International Conference on Learning
Representations, 2023.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Henry L Roediger and Kathleen B McDermott. Creating false memories: Remembering words not
presented in lists. Journal of experimental psychology: Learning, Memory, and Cognition, 21(4):
803, 1995.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Grzegorz Rypeść, Sebastian Cygert, Valeriya Khan, Tomasz Trzciński, Bartosz Zieliński, and
Bartłomiej Twardowski. Divide and not forget: Ensemble of selectively trained experts in contin-
ual learning. arXiv preprint arXiv:2401.10191, 2024.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International conference on machine learning, pp.
4548–4557. PMLR, 2018.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv
preprint arXiv:2304.06027, 2023a.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023b.

Quyen Tran, Lam Tran, Khoat Than, Toan Tran, Dinh Phung, and Trung Le. Koppa: Improving
prompt-based continual learning with key-query orthogonal projection and prototype-based one-
versus-all. arXiv preprint arXiv:2311.15414, 2023.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Hui Wang, Hanbin Zhao, Xi Li, and Xu Tan. Progressive blockwise knowledge distillation for neural
network acceleration. In IJCAI, pp. 2769–2775, 2018.

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical de-
composition of prompt-based continual learning: Rethinking obscured sub-optimality. Advances
in Neural Information Processing Systems, 36, 2024.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Guihong Cao, Daxin Jiang,
Ming Zhou, et al. K-adapter: Infusing knowledge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808, 2020.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 184–193, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv
preprint arXiv:2310.14152, 2023.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 35:5682–5695, 2022a.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
139–149, June 2022c.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 374–382, 2019.

Longrong Yang, Hanbin Zhao, Yunlong Yu, Xiaodong Zeng, and Xi Li. Rcs-prompt: Learning
prompt to rearrange class space for prompt-based continual learning. In European Conference on
Computer Vision (ECCV), 2024.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23219–23230, 2024.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu. Benchmarking omni-vision representation
through the lens of visual realms. In European Conference on Computer Vision, pp. 594–611.
Springer, 2022.

Hanbin Zhao, Xin Qin, Shihao Su, Yongjian Fu, Zibo Lin, and Xi Li. When video classification
meets incremental classes. In Proceedings of the 29th ACM International Conference on Multi-
media, pp. 880–889, 2021.

Zhen Zhao, Zhizhong Zhang, Xin Tan, Jun Liu, Yanyun Qu, Yuan Xie, and Lizhuang Ma. Rethinking
gradient projection continual learning: Stability/plasticity feature space decoupling. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3718–3727,
2023.

Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
zero-shot transfer degradation in continual learning of vision-language models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 19125–19136, 2023.

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learn-
ing with pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint
arXiv:2303.07338, 2023a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Da-Wei Zhou, Yuanhan Zhang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Learning
without forgetting for vision-language models. arXiv preprint arXiv:2305.19270, 2023b.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
with pre-trained models: A survey. arXiv preprint arXiv:2401.16386, 2024a.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. arXiv preprint arXiv:2403.12030, 2024b.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for
prompt tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 15659–15669, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ALGORITHM

Algorithm 1 LW2G: Learning Whether to Grow.
Input: Task length T , Datasets for each task: {D1,D2, · · · , }, Pool P = {}, Memory M = {}, Training
Epochs E.
Output: Updated Pool P and M.
1: for i = 1, 2, · · · , T do
2: if i = 1 then ▷ DGA learns to grow or not to grow
3: DGA chose to grow;
4: Initialization (pi, ki) and Store in P;
5: else
6: Get a subset from Di

sub.
7: Get all selectable sets in P , denoted as L;
8: for j in L do
9: Get the old set from P , (pj , kj);

10: Get the old feature space from M, Sj ;
11: Get g on (pj , kj) with Di

sub;
12: Get HFCj via Equation 5 and HFCpre via Equation 8 and Zj via Equation 9;
13: DGA chose to grow or not to grow via Equation 10;
14: if DGA chose to grow then
15: Initialization (pi, ki) and Store in P;
16: else
17: Selection (pt, kt), where t = argmaxj∈LZj ;
18: Change (pt, kt) to (pi, ki);
19: Change St to Si;
20: for e = 1, 2, · · · , E do ▷ Start Training
21: Get sets of most similar tasks via Equation 13; ▷ FFT to forward facilitate
22: Get g on (pi, ki) with Di;
23: Apply soft constraints on g via Equation 11; ▷ CPK to apply soft constraints
24: Update (pi, ki);
25: Build or update space Si in M via Appendix B.2; ▷ DGA dynamically build or update space

return P , M;

B THEORETICAL FOUNDATION

B.1 PROOF OF THEOREM 1

Given a space S1 = span{B1}, where B1 = [b1, . . . , bl] ∈ Rn×l is a set of l bases for S1, and a
space S2 = span{B2}, where B2 = [b1, . . . , bl, bl+1, . . . , bk] ∈ Rn×(l+k) is a set of l + k bases
for S2. ∀α ∈ Rn×1, denoted α on space Si is ProjSi

(α). Following Definition 1, the ange between
α and ProjSi

(α) is denoted as HFC(α,ProjSi
(α)). Then there always exists:

HFC(α,ProjS1
(α)) ≥ HFC(α,ProjS2

(α)). (14)

Proof. ∀α ∈ Rn×1, α = [α1, . . . , αn]
T . Without loss of generality, {bi, i = 1, . . . , k} is a set of

standard orthonormal basis. As we defined, ProjS1
(α) = [g1, . . . , gl] ∈ Rl×1 and ProjS2

(α) =

[g1, . . . , gl, gl+1, . . . , gl+k] ∈ R(l+k)×1, where gi = ⟨α, bi⟩.
Then, we have

cos(α,ProjS1
(α)) =

α · ProjS1
(α)

∥α∥∥ProjS1
(α)∥

=

∑l
i=1 (gi)

2√∑l
i=1 (gi)

2
√∑n

i=1 (gi)
2

(15)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Likewise, we have

cos(α,ProjS2
(α)) =

α · ProjS2
(α)

∥α∥∥ProjS2
(α)∥

=

∑l+k
i=1 (gi)

2√∑l+k
i=1 (gi)

2
√∑n

i=1 (gi)
2

(16)

In addition,

cos(α,ProjS2
(α))

cos(α,ProjS1
(α))

=

∑l+k
i=1 (gi)

2∑l
i=1 (gi)

2

√∑l
i=1 (gi)

2√∑l+k
i=1 (gi)

2
(17)

=
1 + C√
(1 + C)

(18)

=
√
(1 + C) ≥ 1. (19)

Where C =
∑l+k

i=l+1(gi)
2∑l

i=1(gi)
2 ≥ 0. Thus, cos(α,ProjS2

(α)) ≥ cos(α,ProjS1
(α)). Thus,

HFC(α,ProjS1
(α)) ≥ HFC(α,ProjS2

(α)).

This finishes the proof.

B.2 BUILDING AND UPDATING OF FEATURE SPACE

In GPCL, a feature space spanned by the old tasks is required during gradient modification, involving
two stages: (1) Building of the new feature space, and (2) Updating of old faeture space. We first
introduce the technique used in matrix factorization, Singular Value Decomposition (SVD). Then,
details on building or updating of the feature space are also provided.

Singular Value Decomposition (SVD) SVD is a general geometrical tool used in matrix factoriza-
tion to factorize a given matrix A ∈ Rm×n into the product of three matrices as follows Deisenroth
et al. (2020):

A = UΣ(V)T , (20)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal. Σ ∈ Rm×n contains the sorted singular values
along its main diagonal. Specifically, the diagonal value σi = Σii are the singular values of A and
the number of non-zero σi is equal to r = rank(A). Besides, the columns of U and the rows of
(V)T are two sets of orthogonal bases {u1,u2, . . . ,um} and {v1,v2, . . . ,vn}, respectively. As
the singular values are sorted in Σ along its diagonal, the SVD of A can be also denoted as follows:

A =

r∑
i=1

σiuiv
′
i. (21)

Therefore, the k-rank approximation (A)k of A can be denoted as follows:

||(A)k||2F ≥ ϵ||A||2F , (22)

where ϵ is a given error tolerance and || · ||2F is the Frobenius norm.

Building of the New Feature Space After training on task 1, for each layer we construct a rep-
resentation matrix Rl

1 =
[
xl
1,1, . . . ,x

l
1,n1

]
∈ Rn×d by concatenating representations of n samples

along the columns obtained from sending n samples only from task 1 into the current DNN, W1.
Next, we perform SVD on Rl

1 = U l
1Σ

l
1(V

l
1)

T followed by its k-rank approximation (Rl
1)k accord-

ing to the following criteria for the given threshold, ϵtask:

||(Rl
1)k||2F ≥ ϵtask||Rl

1||2F . (23)

Therefore, the feature space for layer l is built by Sl
1 = span

{
Bl

1

}
, where Bl

1 =
{
ul
1, . . . ,u

l
k

}
and

ul
i is the first k vectors in U l

1. And Sl
1 is stored in memory M =

{
Sl
1

}
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Updating of the Old Feature Space After learning task i, where i ≥ 2, Sl
i−1 in M needs to be

updated to Sl
i with new task-specific bases from task i. To obtain such bases, for each layer l, we

utilize the current DNN, Wi, to construct a representation matrix Rl
i =

[
xl
1,1, . . . ,x

l
1,n

]
∈ Rn×d

from task i only. Before performing SVD and subsequent k-rank approximation, we first eliminate
the common bases that already present in Sl

i−1 so that newly added bases are unique and orthogonal
to the existing bases in Sl

i−1. To accomplish this, we proceed as follows:

R̂l
i = Rl

i −Bl
i−1

(
Bl

i−1

)T (
Rl

i

)
= Rl

i −Rl
i,proj. (24)

Afterwards, SVD is performed on R̂l
i = Û l

i Σ̂
l
i(V̂

l
i)

T , thus obtaining h new orthogonal bases for
minimun value of h statisfying the following criteria for the given threshold, ϵtask:

||Rl
i,proj||2F + ||R̂l

i||2F ≥ ϵtask||Rl
i||2F . (25)

Bl
i−1 is then updated to Bl

i =
[
Bl

i−1,u
l
1, . . . ,u

l
h

]
with h new bases. And Sl

i−1 is updated to
Sl
i = span

{
Bl

i

}
.

C REVIEW OF EXISTING PCL

In this section, we review existing PCL with its pipeline. As illustrated in Figure 4, existing PCL
such as HidePrompt Wang et al. (2024), S-Prompt++ Wang et al. (2024), DualPrompt Wang et al.
(2022b), L2P Wang et al. (2022c), S-liPrompt, and S-iPrompt Wang et al. (2022a) generally involves
two stages: (1) prompt learning, and (2) prompt retrieval.

Prompt Learning Given a pre-trained model, such as a Vision Transformer (denoted as VIT), an
image after patch embedding is denoted as xe ∈ RLe×d, where Le is the length of the patch tokens
and d denotes the length of the channels. Before learning task i, PCL follows Houlsby et al. (2019);
Jia et al. (2022) by utilizing a task-wised set of prompts pi ∈ RLp×Lb×d, where Lp is the length of
layer-wised prompts and Lb represents the depth of the blocks into which the prompts is inserted.
The new knowledge in task i can be encoded into these newly initialized pi as follows:[

cls tokenl,xl
e,p

l
]
= blockl(

[
cls tokenl−1,xl−1

e ,pl−1
i

]
) l = 1, 2, . . . , N (26)

y = Headi(cls tokenN). (27)

Here, pl−1
i ∈ RLp×d represents the prompts for block l. xl−1

e is the original input of block l.
Additionally, Headi represents the classifier head corresponding to task i. Since PCL typically
considers Class-CL scenarios, a unified classifier head is adopted. This means that while learning
task i, the weights of the unified classifier head from tasks 1 to i−1 are frozen. Then, pi is optimized
using the cross entropy loss. Meanwhile, PCL sent xe ∈ RLe×d into the VIT without any prompts
as follows: [

cls tokenl,xl
e

]
= blocki(

[
cls tokenl−1,xl−1

e

]
) l = 1, 2, . . . , N. (28)

Here, we use q = cls tokenN from the output of the last block as the valinia feature of the input
sample. Then, ki is optimized by minimizing the distance between q and ki. There are various
methods to measure this distance, such as using cosine similarity as in S-Prompt++ Wang et al.
(2024), DualPrompt Wang et al. (2022b), and L2P Wang et al. (2022c); using KNN in S-liPrompt
and S-iPrompt Wang et al. (2022a); or, in the case of HidePrompt Wang et al. (2024), forgoing ki

and instead utilizing an auxiliary classifier head. Overall, the goal is to design a metric that brings
ki closer to q, so that during prompt retrieval, the correct pi can be selected for each testing sample.

After learning task i, PCL stores (pi,ki) as a pair into the pool P = {(pi,ki), i = 1, 2, . . . }.

Prompt Retrieval In Class-CL, we do not have access to the task ID. Therefore, given a testing
sample, PCL needs to predict which task it belongs to and select the corresponding set from the pool
P . Briefly, they first obtain the vanilla feature by sending the testing sample into the VIT without
prompts. Then, they use the vanilla feature as a query vector to match {ki, i = 1, 2, . . . } in the pool

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt Learning

Pa
tc

h
E

m
be

dd
in

g

Prompt Retrievel

VIT

VIT

VIT

CE(, GT)

Metric(,)C
ls

To
ke

n

Pa
tc

h
E

m
be

dd
in

g

C
ls

To
ke

n

C
ls

To
ke

n

Initialization

Inference

P

C
ls

To
ke

n

VIT

Cos Similarity/KNN/Auxiliary Classifier/...Matching

Cos Similarity/KNN/Auxiliary Classifier/...

Figure 4: Pipline of existing PCL. Here, we separate it into two stages: prompt learning and prompt
retrieval. In P , blue represents frozen and unlearnable set of prompts, whereas red represents learn-
able prompt sets.

P through the metric used in prompt learning. After selecting the kx, the px is combined with xe

for further inference.

Therefore, predicting the ground truth set of prompts for each testing sample is a crucial step for
PCL, enabling it to achieve appealing performance.

D IMPLEMENTATION DETAILS

In this section, we provide the implementation details of all experiments.

D.1 TRAINING REGIME AND HYPERPARAMETERS

Following the implementations of previous work Wang et al. (2024), we train DualPrompt on CI-
FAR, IMR and CUB with 40, 50, and 50 epochs, respectively; Hideprompt on CIFAR, IMR and
CUB with 50, 150, and 50 epochs, respectively; S-Prompt++ on CIFAR, IMR and CUB with 40,
120, and 40 epochs, respectively. The length of prompts Le is 20 for all settings. Depth of prompts
are as follows: In DualPrompt: g-prompts are inserted in the block 0− 1 and e-prompts are inserted
in the block 2 − 4. In HidePrompt and S-Prompt++ prompts are inserted in the block 0 − 4. All
the experimental results in this paper are averaged over five trials with five different random
seeds. We use 1 4090 GPU for experiments in typical setting and 1 A800 GPU for experiments in
long task settings.

For LW2G, the detailed settings for ϵtask, ϵpre, ϕ, and N are illustrated in Table 6.

D.2 EVALUATION METRICS

We utilize four evaluation metrics for PCL, including the Final Average Accuracy (FAA), Final
Forgetting Measure (FFM), Prompt Retrieval Accuracy (PRA) and Selectable Sets of Prompts (SSP).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters of ϵtask, ϵpre, ϕ, and N in typical settings.

Settings Methods ϵtask ϵpre ϕ N

CIFAR INC10 TASK10
DualPrompt 0.95 0.95 0.5 1
S-Prompt++ 0.95 0.95 1.0 1
HidePrompt 0.99 0.99 0.5 1

IMR INC20 TASK10
DualPrompt 0.99 0.99 0.6 1
S-Prompt++ 0.99 0.99 0.4 1
HidePrompt 0.90 0.90 0.2 1

CUB INC20 TASK10
DualPrompt 0.90 0.90 0.3 1
S-Prompt++ 0.99 0.99 0.9 1
HidePrompt 0.95 0.95 0.7 1

FAA and FFM are common evaluation metrics in Continual Learning and are formally defined as
follows:

FAA =
1

T

T∑
i=1

Ai,T , (29)

FFM =
1

T − 1

T−1∑
i=1

max
t∈{1,...,T−1}

(Ai,t −Ai,T), (30)

where T is the length of the sequential tasks, Ai,T is the classification accuracy on the task i after
learning the last task T .

As analyzed in Appendix C, predicting the ground truth set of prompts for each testing sample is
a crucial step in PCL. Therefore, we adopt a unique evaluation metric, Prompt Retrieval Accuracy
(PRA), for PCL, which is formally defined as follows:

PRA =
1

T

T∑
i=1

Ri,T , (31)

where Ri,T is the accuracy of predicting the set of prompts for each testing sample on task i after
learning the last task T . Besides, we also use Selectable Sets of Prompt (SSP) to represent the total
amount of selectable sets of prompts in the pool P . SSP is not only positively correlated with the
number of learnable parameters, but it also effectively reflects how the LW2G proposed in this paper
can significantly reduce the selectable amount in baseline methods, thereby benefiting PRA.

E REPRODUCTION OF BASELINES

In this section, we first analyze the specific locations and sources of the implementation issues in the
official code (Appendix E.1). Subsequently, we further analyze the impact of these implementation
issues on model performance and the resulting task ID information leakage problem (Appendix E.2).
Finally, after fixing this implementation issue, we observed a significant decline in the performance
of the baseline method, which led us to perform a grid search on the hyperparameters in HidePrompt
(Appendix E.3).

E.1 AN IMPLEMENTATION ISSUE ABOUT PROMPT RETRIEVAL

For the compared methods, DualPrompt, S-Prompt++ and HidePrompt, we use the offi-
cial code1 from HidePrompt Wang et al. (2024). However, after inspecting the code line
by line, we identified an implementation issue that leads to significant discrepancies be-
tween the specific implementation and the method itself. Specifically, the issue occurs
during prompt retrieval at https://github.com/thu-ml/HiDe-Prompt/blob/
fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.
py#L109-L111, which is provided as following Listing 1.

1https://github.com/thu-ml/HiDe-Prompt

20

https://github.com/thu-ml/HiDe-Prompt/blob/fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.py#L109-L111
https://github.com/thu-ml/HiDe-Prompt/blob/fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.py#L109-L111
https://github.com/thu-ml/HiDe-Prompt/blob/fcb6c7a29ce97e07426fa20f3817c975da3c3b3e/peft/prompt/hide_prompt.py#L109-L111

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Listing 1: prompt retrieval before fixing the typo.
1num_layers, dual, batch_size, top_k, length, num_heads,

heads_embed_dim = batched_prompt_raw.shape
2batched_prompt = batched_prompt_raw.reshape(
3num_layers, batch_size, dual, top_k * length, num_heads,

heads_embed_dim
4)

As analyzed in Appendix C, in the prompt retrieval stage, PCL methods (DualPrompt, S-Prompt++,
and HidePrompt) need to predict the ground truth set of prompts for each testing sample. The
tensor ‘batched prompt raw’ in Listing 1 is the prompt sets predicted for each sample during prompt
retrieval. Since DualPrompt, S-Prompt++, and HidePrompt all utilize pre-fix tuning methods, they
can be divided into three steps:

1. obtaining representations from input samples via patch embedding,
2. multiplying the representations with the Q, K, and V matrices in the attention mechanism to get
the Q, K, and V values, respectively,
3. dividing the selected prompt into two parts, prompt k and prompt v, and prepending them to
the K and V values, respectively. Here, prompt k corresponds to key 1 in Figure 5, and prompt v
corresponds to value 1.

Therefore, the purpose of Listing 1 is to swap the dimensions ‘dim=1’ and ‘dim=2’ of the tensor
‘batched prompt raw’. However, when swapping two dimensions of a tensor, we should use the
‘permute operation’ instead of the ‘reshape operation’, as the ‘reshape operation’ can disrupt the
order of the element in the tensor. To further illustrate the impact of this erroneous operation, we
provide a floatmap in Figure 5. As shown in Figure 5, if a ‘reshape operation’ is used, key 2 will
be prepended to the V value of sample 1 instead of value 1. This would render the prompt retrieval
module ineffective, because while it can accurately predict the required prompt sets for each sample,
the incorrect use of a ‘reshape operation’ causes confusion between prompt k and prompt v across
samples. In contrast, using a ‘permute operation’ will avoid this issue.

Furthermore, we checked the official code implementation of DualPrompt2 and found
the same issue at https://github.com/JH-LEE-KR/dualprompt-pytorch/blob/
7eb457d988409a6abf97af2b121ffa62dd4b498a/prompt.py#L119-L122. Since
HidePrompt is built upon the DualPrompt, this issue has persisted. Additionally, we discovered that
other researchers have raised the same concern in the issue of DualPrompt repository: https://
github.com/JH-LEE-KR/dualprompt-pytorch/issues/8. We also found that other
researchers have identified similar problems in their ongoing work based on this series of stud-
ies like https://github.com/JingyangQiao/prompt-gradient-projection/
issues/4 and https://github.com/gulzainali98/LGCL/issues/3. Therefore,
this implementation issue is a commonly recognized problem within the Prompt-based Contin-
ual Learning community. We have corrected this implementation issue, using the fix mentioned in
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8, as illustrated
in the following Listing 2. After the correction, we reproduced the experimental results of the
three comparing methods, DualPrompt, S-Prompt++ and HidePrompt. Finally, we also commu-
nicated with the authors of HidePrompt via email to request their assistance. The authors
acknowledged this typo and expressed their approval of our correction plan and the repro-
duced experimental results in Table 1.

Listing 2: prompt retrieval after fixing the typo.
1num_layers, dual, batch_size, top_k, length, num_heads,

heads_embed_dim = batched_prompt_raw.shape
2batched_prompt_raw = batched_prompt_raw.permute(0, 2, 1, 3, 4, 5, 6)
3batched_prompt = batched_prompt_raw.reshape(
4num_layers, batch_size, dual, top_k * length, num_heads,

heads_embed_dim
5)

2https://github.com/JH-LEE-KR/dualprompt-pytorch

21

https://github.com/JH-LEE-KR/dualprompt-pytorch/blob/7eb457d988409a6abf97af2b121ffa62dd4b498a/prompt.py#L119-L122
https://github.com/JH-LEE-KR/dualprompt-pytorch/blob/7eb457d988409a6abf97af2b121ffa62dd4b498a/prompt.py#L119-L122
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8
https://github.com/JingyangQiao/prompt-gradient-projection/issues/4
https://github.com/JingyangQiao/prompt-gradient-projection/issues/4
https://github.com/gulzainali98/LGCL/issues/3
https://github.com/JH-LEE-KR/dualprompt-pytorch/issues/8

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Reshape

batched_prompt_raw

D
ua
l=
2

Batch_size

Sample1

D
ua
l=
2

Sample4

Batch_size

Ba
tc
h_
si
ze

Dual=2

Sample1

Sample4

Ba
tc
h_
si
ze

Dual=2

Sample1

Sample4

batched_prompt

Permute

Original

Modified

key1

value1

key2 key3 key4

value2 value3 value4

key1

value1

key2 key3 key4

value2 value3 value4

key1 key2

key3 key4

value1 value2

value3 value4

key1 value1

key2 value2

key3 value3

key4 value4

Figure 5: A floatmap shows the difference between the original code and the corrected code.

E.2 HOW THE IMPLEMENTATION ISSUE AFFECT THE PERFORMANCE

First, the implementation issue may lead to the leakage of task ID information during testing, thereby
improving performance. To better illustrate the effect of the implementation issue, we provide a spe-
cific example. Consider a batch of testing samples with a batch size of 4, all from task 3. Suppose
the prompt retrieval module predicts the prompt sets for the 4 testing samples as: 3, 3, 2, 3, respec-
tively. The implementation issue in the official code utilized a reshape operation (refer to Figure 5).
If using a reshape operation, then sample 1 will add key3 and key3; sample 2 will add key2 and
key3; sample 3 will add value3 and value3; and sample 4 will add value2 and value3. In this combi-
nation, each testing sample contains at least part of its ground truth prompt set, which increases the
probability of correct predictions and thus enhances the model’s performance.

Specifically, testing samples (e.g., Sample 3 from task 3) has an incorrect prompt retrieval results
(where Sample 3 is misidentified as belonging to task 2), but it still utilizes the task 3 related prompt
set. However, in fact, according to the basic design of PCL methods, each testing sample should
utilize the prompt set predicted by the prompt retrieval module (e.g., Sample 3 should use the prompt
set related to task 2).

Such operations can be considered as task ID information leakage (not utilizing the task ID predic-
tion from the prompt retrieval module). These observations indicate that the implementation issue
leads to incorrect testing processes, with task ID leakage contributing to the performance improve-
ment.

Table 7: The results reproduced by the original official code (which has an implementation issue)
and our corrected version. Here, we present the FFA results for all experiments.

Methods CIFAR IMR
HidePrompt(-Before) 91.07 72.05
HidePrompt(-Before without leak information about task id) 85.56 62.33
HidePrompt(-After) 85.77 62.42
HidePrompt(-After with leak information about task id) 92.91 72.69

To further illustrate the validity of the above analysis, we conducted ablation experiments using the
original official code (which has an implementation issue) and our corrected version. The results

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

are shown in Table 7. Specifically, {HidePrompt(-Before)} is the result reproduced from the official
code from HidePrompt Wang et al. (2024). {HidePrompt(-After)} is the results reproduced from
the corrected version. Besides, we additionally provide two experimental results: {HidePrompt (-
Before without leak information about task ID)} and {HidePrompt (-After with leak information
about task ID)}. Based on the above analysis, the official code of HidePrompt contains an imple-
mentation issue that leaks task ID information, allowing the model to achieve high performance. In
{HidePrompt (-Before without leak information about task ID)}, we removed the task ID informa-
tion leakage and observed a significant drop in model performance, which was similar to the results
of {HidePrompt (-After)}. In {HidePrompt (-After with leak information about task ID)}, we mim-
icked the implementation in the official code and incorporated task ID information in our corrected
version, resulting in a significant improvement in performance.

Table 8: Reproduced results of 3 baselines before and after fixing the implementation issue. Here,
we present the FFA for all experiments.

Methods CIFAR IMR CUB
DualPrompt(-Before) 86.16 65.09 81.50
DualPrompt(-After) 85.94 63.63 82.09
S-Prompt++(-Before) 88.73 65.10 81.89
S-Prompt++(-After) 89.26 63.26 82.57
HidePrompt(-Before) 92.47 72.05 86.56
HidePrompt(-After) 85.77 62.42 85.59

E.3 HYPERPARAMETER SEARCH RESULTS

After addressing the issue mentioned in Appendix E.1, we reproduced the results of the three base-
lines adpoted in this paper: DualPrompt, S-Prompt++, and HidePrompt. It is important to note that
we still used the official code of HidePrompt, with the only difference being that we modified the
‘reshape operation’ to a ‘permute operation’ after consulting the author, as shown in Listing 1 and
Listing 2. We compared the reproduced results before and after fixing the implementation issue, as
illustrated in Table 8.

We found that the performance (FFA) of DualPrompt and S-Prompt++ did not decrease after the
implementation was corrected; in fact, it improved in some settings. This indicates that the imple-
mentation issue fundamentally affected the effectiveness of the prompt retrieval module, thus hin-
dering the performance of PCL. Additionally, we observed a significant decrease in the performance
(FFA) of HidePrompt on CIFAR and IMR, while the changes on CUB were minimal. We suspect
this may be due to the fact that the previously used hyperparameters are likely no longer applicable
after the corrections. Therefore, based on the author’s suggestions, we conducted a grid search for
the following hyperparameters of HidePrompt. The adjustable hyperparameters in HidePrompt are
listed as follows:

1. sched, This hyperparameters determines how the learning rate (LR) changes during model up-
dates as the number of epochs increases.
We search for sched from {constant, cosine, step}.
2. prompt momentum, This hyperparameters determines the proportion of prompt sets from old
tasks that are retained in the prompt set for new tasks.
We search for prompt momentum from {0.01, 0.1}.
3. reg, This hyperparameters sets the weight of the contrastive loss in HidePrompt.
We search for it from {0.001, 0.01, 0.1, 0.5}.

Since HidePrompt experienced a significant performance drop only on CIFAR and IMR while main-
taining good performance on CUB, we conducted the grid search for hyperparameters solely on these
two benchmarks. The results are shown in Table 9 and Table 10, respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Hyperparameters of sched, prompt momentum, and reg for HidePrompt on CI-
FAR INC10 TASK10. Here, we present FFA and FFM for the performance.

sched prompt momentum reg FFA ↑ FFM ↓

step

0.01
0.001 85.85 6.34
0.01 85.60 6.57
0.1 85.77 6.18
0.5 85.86 6.35

0.1
0.001 85.94 6.15
0.01 85.78 6.31
0.1 85.91 6.37
0.5 85.92 6.21

cosine

0.01
0.001 85.55 6.37
0.01 85.47 6.38
0.1 85.41 6.43
0.5 85.48 6.44

0.1
0.001 85.85 6.16
0.01 85.78 6.10
0.1 85.68 6.17
0.5 85.69 6.28

constant

0.01
0.001 86.22 6.14
0.01 85.95 6.32
0.1 86.03 6.33
0.5 86.01 6.26

0.1
0.001 86.18 6.13
0.01 86.03 6.18
0.1 86.10 6.22
0.5 86.10 6.26

Table 10: Hyperparameters of sched, prompt momentum, and reg for HidePrompt on
IMR INC20 TASK10. Here, we present FFA and FFM for the performance.

sched prompt momentum reg FFA ↑ FFM ↓

step

0.01
0.001 61.00 8.60
0.01 61.06 8.43
0.1 61.30 8.54
0.5 60.81 8.41

0.1
0.001 60.84 8.40
0.01 61.05 8.64
0.1 61.22 8.28
0.5 60.80 8.73

cosine

0.01
0.001 62.93 8.27
0.01 62.57 8.27
0.1 62.47 8.43
0.5 62.40 8.14

0.1
0.001 62.53 8.74
0.01 62.45 8.77
0.1 62.40 8.76
0.5 62.33 9.00

constant

0.01
0.001 62.21 8.61
0.01 63.01 8.12
0.1 62.86 7.98
0.5 62.56 8.78

0.1
0.001 62.77 8.13
0.01 62.31 7.80
0.1 62.17 8.05
0.5 63.05 8.02

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 11: Impact of Distinct Threshold of ϵtask, ϵpre on CIFAR INC10 TASK10.

Settings ϵtask ϵpre FFA (↑) PRA (↑) FFM (↓)
DualPrompt Na Na 85.94 59.44 6.38

DualPrompt [+ LW2G]

0.50 0.50 86.89 60.67 5.44
0.90 0.90 87.03 65.57 5.77
0.95 0.95 86.86 78.33 6.03
0.99 0.99 86.48 100.0 7.12

S-Prompt++ Na Na 89.25 99.52 4.10

S-Prompt++ [+ LW2G]

0.50 0.50 89.28 99.76 4.33
0.90 0.90 88.54 100.0 4.48
0.95 0.95 89.32 100.0 3.46
0.99 0.99 89.25 92.32 6.00

HidePrompt Na Na 85.77 80.78 6.19

HidePrompt [+ LW2G]

0.50 0.50 86.85 81.70 5.78
0.90 0.90 86.57 84.93 5.14
0.95 0.95 86.93 90.10 5.02
0.99 0.99 87.60 95.39 4.28

F FURTHER RESULTS

F.1 ABLATION STUDIES ON FOUR HYPERPARAMETERS IN LW2G

ϵtask, ϵpre: In Gradient Projection Continual Learning (GPCL), ϵ is usually used to construct the
feature space in the SVD. Previous works set it between 0.9 and 0.99. In LW2G, ϵtask and ϵpre are
also used for feature space construction (old knowledge and pre-trained knowledge feature space).
Thus, we follow the value in Saha et al. (2021); Qiao et al. (2023); Zhao et al. (2023) and set
these two parameters with the same value. We performed a grid search for appropriate values under
different settings. As shown in Table 11, LW2G consistently bring performance improvement for
any of the aforementioned values.

ϕ: ϕ controls the pre-trained knowledge and the acquisition of new task knowledge. We performed
a grid search for ϕ and the results are shown in Table 12.

N : Experiments showed significant improvement at N = 1 compared to N = 0, with no added
benefit and increased computational overhead at higher values. Table 1 in the main paper indicates
that SSP remains small when combined with LW2G. Thus, for efficiency and generality, we chosed
N = 1 as the default.

F.2 ABLATION STUDIES ON THREE MODULES IN LW2G

In this section, we provide all experiments of any combination of proposed modules and the results
are shown in Table 13. The performance of any combimation can consistently outperform that of
the baseline, illustrating the effectiveness of these modules.

F.3 OVERHEAD ABOUT CALCULATION BURDEN AND TIME COST

First, LW2G only requires selecting prompt sets from the pool to calculate gradients and HFC before
learning each new task. The purpose is to decide whether to learn on a newly initialized set of
prompts or reuse an existing set from the prompt pool when learning a new task. After this, if opting
to grow, the parameter update process does not introduce additional computation compared to the
baseline. If opting not to grow, gradient projection is used during parameter updates to minimize
the impact on old tasks. The computational overhead introduced by this step is a common issue
in Gradient Projection Continual Learning (GPCL). This is detailed in Table 2 of the main paper,
where both FLOPS and TT (Training Time) are shown to increase.

Additionally, we further analyze the memory cost. In LW2G, the extra memory is divided into two
parts: a set of bases for the pre-trained knowledge space and a set of bases for the old task feature

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 12: Impact of Distinct Threshold of ϕ in DualPrompt [+ LW2G] on three typical settings.

(a) CIFAR INC10 TASK10

ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Baseline
FFA 78.33 78.33 78.33 74.03 78.33 72.66 74.03 72.66 72.66 64.81 59.44
PRA 86.42 86.61 86.52 86.18 86.86 86.38 86.82 86.39 86.49 86.68 85.94
FFM 6.25 6.15 6.04 6.04 6.03 5.74 6.48 5.73 5.50 5.70 6.38
SSP 2 2 2 3 2 3 3 3 3 5 10

(b) IMR INC20 TASK10

ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Baseline
FFA 87.65 87.68 80.39 80.39 80.39 80.39 80.39 80.39 76.26 54.81 41.05
PRA 65.33 65.29 65.56 65.48 65.34 65.59 65.58 65.36 65.17 64.36 63.63
FFM 6.27 6.29 5.75 5.82 6.00 5.72 5.77 5.92 5.98 5.11 6.41
SSP 2 2 2 2 2 2 2 2 2 5 10

(c) CUB INC20 TASK10

ϕ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Baseline
FFA 69.05 69.05 70.10 70.11 70.94 70.04 68.71 69.05 70.04 66.52 66.71
PRA 81.57 81.50 82.43 82.22 82.01 82.07 81.58 81.64 82.07 82.51 82.09
FFM 6.21 6.42 5.25 5.59 6.12 5.88 6.68 6.08 5.93 5.60 6.40
SSP 7 7 7 6 7 7 8 7 7 8 10

Table 13: Ablation studies in any combination of LW2G.

Variants FFA PRA SSP
DualPrompt 63.63 41.05 10
DualPrompt [+ DGA] 65.02 77.68 2
DualPrompt [+ CPK] 64.34 50.39 10
DualPrompt [+ FFT] 64.08 47.17 10
DualPrompt [+ DGA, CPK] 65.37 78.13 2
DualPrompt [+ DGA, FFT] 65.12 77.90 2
DualPrompt [+ CPK, FFT] 64.49 51.20 10
DualPrompt [+ LW2G] 65.60 80.40 2

space. The size of these two sets depends on the choice of ϵ during the SVD. In the following Table
14, we analyze the memory introduced by Gradient Projection as ϵ varies. The ‘Bases’ indicates the
total number of bases for the two sets, ‘Extra Memory’ represents the additional memory required.
Specifically, we calculate the memory by considering each base as a tensor of length 768, stored as
float32.

It is also worth reiterating that the proposed LW2G, inspired by gradient projection methods, intro-
duces a novel and dynamic prompt growing strategy for prompt continual learning. The calculation
burden and time cost are common issues with GPCL methods, which we explicitly mention in the
limitations section. Although addressing this problem is beyond the scope of this study, we will
consider it as a direction for future research.

F.4 COMPARISON WITH TWO CONCURRENT WORKS

We note that two concurrent works, SEED (Rypeść et al., 2024) and PGP Qiao et al. (2023), are
closely related to our motivation and methodology, respectively. In this section, we compare our
proposed LW2G with these approaches.

PGP first introduced Gradient Projection-based Continual Learning (GPCL) in the context of PCL,
leveraging GPCL to ensure that old knowledge is not forgotten. They demonstrated that in the sce-
nario of PCL, the construction of the feature space could be translated into the prompt space and
input space. However, unlike PGP, LW2G aims to dynamically learn whether to grow (initialize
a new set of prompts) or not to grow (reuse prompts in pool) for each new task based on specific
commonalities between tasks. To achieve this, LW2G adopts the idea of the orthogonal condition
in GPCL to integrate knowledge from multiple tasks into a single set of prompts while preserving

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 14: Discussion of the effects of memory on IMR INC20 TASK10.

ϵ FFA Bases Extra Memory
HidePrompt / 85.77 0 0

HidePrompt [+ LW2G] 0.90 86.57 429 ≤ 5 MB
0.95 86.93 509 ≤ 5 MB
0.99 87.60 640 ≤ 5 MB

Table 15: Results on typical and long task settings. Here, we present DualPrompt as the baseline,
with PGP and LW2G added to the baseline respectively. The best results are highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10
DualPrompt 85.94 59.44 6.38 10
DualPrompt [+ PGP] 86.72 59.15 6.01 10
DualPrompt [+ LW2G] 86.86 78.33 6.03 2

IMR INC20 TASK10
DualPrompt 63.63 41.05 6.41 10
DualPrompt [+ PGP] 63.82 41.18 5.65 10
DualPrompt [+ LW2G] 65.60 80.40 5.72 2

CUB INC20 TASK10
DualPrompt 82.09 66.71 6.40 10
DualPrompt [+ PGP] 81.58 66.88 7.01 10
DualPrompt [+ LW2G] 82.43 70.09 5.25 7

OMNI INC10 TASK30
DualPrompt 63.36 68.47 12.92 30
DualPrompt [+ PGP] 63.74 67.95 12.97 30
DualPrompt [+ LW2G] 65.12 80.95 10.75 9

OMNI INC5 TASK60
DualPrompt 61.85 69.94 13.50 60
DualPrompt [+ PGP] 62.24 68.68 14.64 60
DualPrompt [+ LW2G] 63.17 75.31 12.01 17

old knowledge. Additionally, we analyze the hindrance on learning new tasks caused by the or-
thogonal condition and use the degree of inhibition under this condition as an adaptive criterion for
our Dynamic Growing Approach. Furthermore, in Table 15, we compare the results of the Baseline,
Baseline + PGP, and Baseline + LW2G. In both typical and long task settings, Baseline + LW2G con-
sistently outperforms Baseline + PGP. Moreover, LW2G significantly outperforms PGP in PRA and
SSP, further highlighting our approach’s focus on the amount of selectable sets during the prompt
retrieval stage in PCL.

Meanwhile, SEED proposed a continual learning method based on Mixture-of-Experts (MoE).
Specifically, SEED maintains multiple sets of experts and dynamically determines which expert
should be used to learn new tasks with minimal impact on old tasks. However, SEED fixes the total
number of experts at the start of training, which inevitably reduces plasticity as the amount of tasks
increases. In contrast, LW2G achieves complete dynamic expansion of ’experts’ (which are sets of
prompts in PCL) by assessing the degree of inhibition on new tasks under the orthogonal condition,
thus eliminating the need to predefine the amount of experts.

F.5 VISUALIZATION OF DYNAMIC PROCESS OF LW2G WITH PCL

In this section, we further demonstrate how LW2G dynamically decides to grow or not to grow
based on the HFC metric before learning each task. The results are illustrated in Table 16. It can be
observed that HidePrompt [+ LW2G] only requires 6 sets of prompts to surpass HidePrompt (which
requires 10 sets of prompts) on the IMR benchmark.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 16: Variation process of HidePrompt [+ LW2G] on IMR.

Task Calculation Process Minimal Z Option Prompt sets pool

1 / / To Grow a new (p1,k1) (p1,k1)→ Task 1

2 HFC1=8.81, HFCpre
1 =7.17 Z1=1.64>0 To Grow a new (p2,k2) (p1,k1)→ Task 1

(p2,k2)→ Task 2

3 HFC1=8.83, HFCpre
1 =7.22

HFC2=9.24, HFCpre
2 =8.03

Z2=1.21>0 To Grow a new (p3,k3) (p1,k1)→ Task 1
(p2,k2)→ Task 2
(p3,k3)→ Task 3

4 HFC1=7.34, HFCpre
1 =8.82

HFC2=9.26, HFCpre
2 =8.00

HFC3=9.15, HFCpre
3 =8.97

Z1=-1.48<0 Not To Grow with (p1,k1) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3

5 HFC1=9.24, HFCpre
1 =8.12

HFC2=9.11, HFCpre
2 =9.07

HFC3=12.95, HFCpre
3 =7.24

Z2=0.04>0 To Grow a new (p4,k4) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3
(p4,k4)→ Task 5

6 HFC1=9.23, HFCpre
1 =8.02

HFC2=9.29, HFCpre
2 =9.23

HFC3=12.94, HFCpre
3 =7.29

HFC4=9.03, HFCpre
4 =9.14

Z4=-0.11<0 Not To Grow with (p4,k4) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3
(p4,k4)→ Task 5,6

7 HFC1=9.23, HFCpre
1 =8.08

HFC2=12.96, HFCpre
2 =7.33

HFC3=9.14, HFCpre
3 =9.25

HFC4=12.84, HFCpre
4 =9.16

Z3=-0.11<0 Not To Grow with (p3,k3) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6

8 HFC1=9.21, HFCpre
1 =8.19

HFC2=12.94, HFCpre
2 =7.50

HFC3=12.86, HFCpre
3 =9.23

HFC4=12.60, HFCpre
4 =9.02

Z1=1.02>0 To Grow a new (p5,k5) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6
(p5,k5)→ Task 8

9 HFC1=9.41, HFCpre
1 =8.08

HFC2=12.95, HFCpre
2 =7.26

HFC3=12.83, HFCpre
3 =9.26

HFC4=12.61, HFCpre
4 =9.17

HFC5=7.98, HFCpre
5 =7.50

Z5=0.48>0 To Grow a new (p6,k6) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6
(p5,k5)→ Task 8
(p6,k6)→ Task 9

10 HFC1=9.24, HFCpre
1 =7.99

HFC2=12.97, HFCpre
2 =7.29

HFC3=12.84, HFCpre
3 =9.10

HFC4=12.59, HFCpre
4 =9.03

HFC5=7.98, HFCpre
5 =8.99

HFC6=6.99, HFCpre
6 =7.53

Z5=-1.01<0 Not To Grow with (p5,k5) (p1,k1)→ Task 1,4
(p2,k2)→ Task 2
(p3,k3)→ Task 3,7
(p4,k4)→ Task 5,6
(p5,k5)→ Task 8,10
(p6,k6)→ Task 9

F.6 PERFORMANCE UNDER OTHER PTMS

To show the efficacy of proposed method under different PTMs, we evaluate our method by extend-
ing three distinct PTMs, namely IBOT1k Zhou et al. (2021), IBOT21k Zhou et al. (2021) and DINO
Caron et al. (2021). The results are shown in the Table 17, Table 18 and Table 19.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 17: Results under IBOT21k when comparing LW2G with three baselines. The best results are
highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 74.03 72.16 15.93 10
DualPrompt [+ LW2G] 74.76 78.33 13.92 3
S-Prompt++ 78.37 78.83 9.00 10
S-Prompt++ [+ LW2G] 78.83 75.20 8.69 3
HidePrompt 86.12 85.02 5.98 10
HidePrompt [+ LW2G] 86.40 92.06 5.84 2

IMR INC20 TASK10

DualPrompt 47.96 38.62 5.36 10
DualPrompt [+ LW2G] 49.13 64.05 5.33 3
S-Prompt++ 46.20 37.77 7.01 10
S-Prompt++ [+ LW2G] 48.97 71.04 6.30 3
HidePrompt 62.00 67.28 5.63 10
HidePrompt [+ LW2G] 63.67 82.18 5.80 3

Table 18: Results under IBOT1k when comparing LW2G with three baselines. The best results are
highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 71.58 84.72 19.41 10
DualPrompt [+ LW2G] 71.79 84.90 18.99 3
S-Prompt++ 75.70 83.76 9.46 10
S-Prompt++ [+ LW2G] 76.01 84.37 8.91 3
HidePrompt 84.83 83.50 6.48 10
HidePrompt [+ LW2G] 85.54 88.02 5.75 3

IMR INC20 TASK10

DualPrompt 56.68 38.15 5.18 10
DualPrompt [+ LW2G] 56.89 57.57 5.04 3
S-Prompt++ 52.38 39.78 7.18 10
S-Prompt++ [+ LW2G] 55.82 55.90 7.13 3
HidePrompt 64.77 67.94 6.90 10
HidePrompt [+ LW2G] 65.15 78.27 4.86 3

Table 19: Results under DINO when comparing LW2G with three baselines. The best results are
highlighted in bold.

Settings Methods FFA (↑) PRA (↑) FFM (↓) SSP (↓)

CIFAR INC10 TASK10

DualPrompt 69.46 88.80 18.96 10
DualPrompt [+ LW2G] 70.13 89.01 18.03 3
S-Prompt++ 74.62 87.60 10.71 10
S-Prompt++ [+ LW2G] 71.36 89.30 12.38 2
HidePrompt 82.89 82.05 7.45 10
HidePrompt [+ LW2G] 83.58 88.57 7.08 3

IMR INC20 TASK10

DualPrompt 52.41 38.74 5.93 10
DualPrompt [+ LW2G] 54.22 75.75 5.77 2
S-Prompt++ 50.00 37.72 6.75 10
S-Prompt++ [+ LW2G] 65.44 79.35 6.01 5
HidePrompt 62.42 62.07 8.89 10
HidePrompt [+ LW2G] 64.04 86.43 4.82 2

29

	Introduction
	Related Work
	Preliminaries and Notations
	Theory and Method
	Theoretical Analysis on Hindrance in GPCL
	Dynamic Growing Approach
	Consistency with Pre-trained Knowledge
	Facilitation for Forward Transfer

	Experiment
	Experimental Setups
	Main Results
	Ablation Study
	Detail Analysis

	Conclusion
	Algorithm
	Theoretical Foundation
	Proof of Theorem 1
	Building and Updating of Feature Space

	Review of Existing PCL
	Implementation Details
	Training Regime and Hyperparameters
	Evaluation Metrics

	Reproduction of Baselines
	An implementation issue about prompt retrieval
	How the implementation issue affect the performance
	Hyperparameter Search Results

	Further Results
	Ablation studies on four hyperparameters in LW2G
	Ablation studies on three modules in LW2G
	Overhead about calculation burden and time cost
	Comparison with Two Concurrent Works
	Visualization of Dynamic Process of LW2G with PCL
	Performance Under Other PTMs

