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Abstract

Areas under ROC (AUROC) and precision-recall curves (AUPRC) are common
metrics for evaluating classification performance for imbalanced problems. Com-
pared with AUROC, AUPRC is a more appropriate metric for highly imbalanced
datasets. While stochastic optimization of AUROC has been studied extensively,
principled stochastic optimization of AUPRC has been rarely explored. In this
work, we propose a principled technical method to optimize AUPRC for deep
learning. Our approach is based on maximizing the averaged precision (AP), which
is an unbiased point estimator of AUPRC. We cast the objective into a sum of
coupled compositional functions with inner functions dependent on random vari-
ables of the outer level. We propose efficient adaptive and non-adaptive stochastic
algorithms named SOAP with provable convergence guarantee under mild con-
ditions by leveraging recent advances in stochastic compositional optimization.
Extensive experimental results on image and graph datasets demonstrate that our
proposed method outperforms prior methods on imbalanced problems in terms of
AUPRC. To the best of our knowledge, our work represents the first attempt to
optimize AUPRC with provable convergence. The SOAP has been implemented in
the libAUC library at https://libauc.org/.

1 Introduction

Although deep learning (DL) has achieved tremendous success in various domains, the standard DL
methods have reached a plateau as the traditional objective functions in DL are no longer sufficient
to model all requirements in new applications, which slows down the democratization of AI. For
instance, in healthcare applications, data is often highly imbalanced, e.g., patients suffering from rare
diseases are much less than those suffering from common diseases. In these applications, accuracy
(the proportion of correctly predicted examples) is deemed as an inappropriate metric for evaluating
the performance of a classifier. Instead, area under the curve (AUC), including area under ROC
curve (AUROC) and area under the Precision-Recall curve (AUPRC), is widely used for assessing
the performance of a model. However, optimizing accuracy on training data does not necessarily lead
to a satisfactory solution to maximizing AUC [12].

To break the bottleneck for further advancement, DL must be empowered with the capability of
efficiently handling novel objectives such as AUC. Recent studies have demonstrated great success
along this direction by maximizing AUROC [60]. For example, Yuan et al. [60] proposed a robust
deep AUROC maximization method with provable convergence and achieved great success for
classification of medical image data. However, to the best of our knowledge, novel DL by maximizing
AUPRC has not yet been studied thoroughly. Previous studies [14, 20] have found that when dealing

∗Contribute Equally. Correspondence to qi-qi@uiowa.edu, tianbao-yang@uiowa.edu

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.

mailto:qi-qi@uiowa.edu
https://libauc.org/


with highly skewed datasets, Precision-Recall (PR) curves could give a more informative picture
of an algorithm’s performance, which entails the development of efficient stochastic optimization
algorithms for DL by maximizing AUPRC.

Compared with maximizing AUROC, maximizing AUPRC is more challenging. The challenges for
optimization of AUPRC are two-fold. First, the analytical form of AUPRC by definition involves a
complicated integral that is not readily estimated from model predictions of training examples. In
practice, AUPRC is usually computed based on some point estimators, e.g., trapezoidal estimators
and interpolation estimators of empirical curves, non-parametric average precision estimator, and
parametric binomial estimator [3]. Among these estimators, non-parametric average precision
(AP) is an unbiased estimate in the limit and can be directly computed based on the prediction
scores of samples, which lends itself well to the task of model parameters optimization. Second, a
surrogate function for AP is highly complicated and non-convex. In particular, an unbiased stochastic
gradient is not readily computed, which makes existing stochastic algorithms such as SGD provide
no convergence guarantee. Most existing works for maximizing AP-like function focus on how to
compute an (approximate) gradient of the objective function [4, 6, 8, 11, 24, 38, 40, 43, 47, 48],
which leave stochastic optimization of AP with provable convergence as an open question.

Can we design direct stochastic optimization algorithms both in SGD-style and Adam-style for
maximizing AP with provable convergence guarantee?

In this paper, we propose a systematic and principled solution for addressing this question towards
maximizing AUPRC for DL. By using a surrogate loss in lieu of the indicator function in the
definition of AP, we cast the objective into a sum of non-convex compositional functions, which
resembles a two-level stochastic compositional optimization problem studied in the literature [52, 53].
However, different from existing two-level stochastic compositional functions, the inner functions in
our problem are dependent on the random variable of the outer level, which requires us developing a
tailored stochastic update for computing an error-controlled stochastic gradient estimator. Specifically,
a key feature of the proposed method is to maintain and update two scalar quantities associated with
each positive example for estimating the stochastic gradient of the individual precision score at the
threshold specified by its prediction score. By leveraging recent advances in stochastic compositional
optimization, we propose both adaptive (Adam-style) and non-adaptive (SGD-style) algorithms, and
establish their convergence under mild conditions. We conduct comprehensive empirical studies on
class imbalanced graph and image datasets for learning graph neural networks and deep convolutional
neural networks, respectively. We demonstrate that the proposed method can consistently outperform
prior approaches in terms of AUPRC. In addition, we show that our method achieves better results
when the sample distribution is highly imbalanced between classes and is insensitive to mini-batch
size.

2 Related Work
AUROC Optimization. AUROC optimization 2 has attracted significant attention in the literature.
Recent success of DL by optimizing AUROC on large-scale medical image data has demonstrated the
importance of large-scale stochastic optimization algorithms and the necessity of accurate surrogate
function [60]. Earlier papers [25, 28] focus on learning a linear model based on the pairwise surrogate
loss and could suffer from a high computational cost, which could be as high as quadratic of the
size of training data. To address the computational challenge, online and stochastic optimization
algorithms have been proposed [18, 35, 42, 58, 63]. Recently, [21, 22, 36, 57] proposed stochastic
deep AUC maximization algorithms by formulating the problem as non-convex strongly-concave min-
max optimization problem, and derived fast convergence rate under PL condition, and in federated
learning setting as well [21]. More recently, Yuan et al. [60] demonstrated the success of their methods
on medical image classification tasks, e.g., X-ray image classification, melanoma classification based
on skin images. However, an algorithm that maximizes the AUROC might not necessarily maximize
AUPRC, which entails the development of efficient algorithms for DL by maximizing AUPRC.

AUPRC Optimization. AUPRC optimization is much more challenging than AUROC optimization
since the objective is even not decomposable over pairs of examples. Although AUPRC optimization
has been considered in the literature (cf. [15, 47, 41] and references therein), efficient scalable
algorithms for DL with provable convergence guarantee is still lacking. Some earlier works tackled

2In the literature, AUROC optimization is simply referred to as AUC optimization.
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this problem by using traditional optimization techniques, e.g., hill climbing search [37], cutting-
plane method [61], dynamic programming [50], and by developing acceleration techniques in the
framework of SVM [39]. These approaches are not scalable to big data for DL. There is a long list of
studies in information retrieval [5, 11, 38, 47] and computer vision [4, 6, 8, 9, 24, 40, 48, 43], which
have made efforts towards maximizing the AP score. However, most of them focus on how to compute
an approximate gradient of the AP function or its smooth approximation, and provide no convergence
guarantee for stochastic optimization based on mini-batch averaging. Due to lack of principled design,
these previous methods when applied to deep learning are sensitive to the mini-batch size [6, 47, 48]
and usually require a large mini-batch size in order to achieve good performance. In contrast, our
stochastic algorithms are designed in a principled way to guarantee convergence without requiring a
large mini-batch size as confirmed by our studies as well. Recently, [15] formulates the objective
function as a constrained optimization problem using a surrogate function, and then casts it into a
min-max saddle-point problem, which facilitates the use of stochastic min-max algorithms. However,
they do not provide any convergence analysis for AUPRC maximization. In contrast, this is the first
work that directly optimizes a surrogate function of AP (an unbaised estimator of AUPRC in the
limit) and provides theoretical convergence guarantee for the proposed stochastic algorithms.

Stochastic Compositional Optimization. Optimization of a two-level compositional function in
the form of Eξ[f(Eζ [g(w; ζ)]; ξ)] where ξ and ζ are independent random variables, or its finite-sum
variant has been studied extensively in the literature [1, 10, 52, 27, 30, 31, 33, 34, 46, 53, 59, 62, 45].
In this paper, we formulate the surrogate function of AP into a similar but more complicated two-level
compositional function of the form Eξ[f(Eζg(w; ζ, ξ))], where ξ and ζ are independent and ξ has
a finite support. The key difference between our formulated compositional function and the ones
considered in previous work is that the inner function g(w; ζ, ξ) also depends on the random variable
ξ of the outer level. Such subtle difference will complicate the algorithm design and the convergence
analysis as well. Nevertheless, the proposed algorithm and its convergence analysis are built on
previous studies of stochastic two-level compositional optimization.

3 The Proposed Method

Notations. We consider binary classification problem. Denote by (x, y) a data pair, where x ∈ Rd
denotes the input data and y ∈ {1,−1} denotes its class label. Let h(x) = hw(x) denote the
predictive function parameterized by a parameter vector w ∈ RD (e.g., a deep neural network).
Denote by I(·) an indicator function that outputs 1 if the argument is true and zero otherwise.
To facilitate the presentation, denote by X a random data, by Y its label and by F = h(X) its
prediction score. Let D = {(x1, y1), . . . , (xn, yn)} denote the set of all training examples and
D+ = {xi : yi = 1} denote the set of all positive examples. Let n+ = |D+| denote the number of
positive examples. xi ∼ D means that xi is randomly sampled from D.

3.1 Background on AUPRC and its estimator AP

Following the work of Bamber [2], AUPRC is an average of the precision weighted by the probability
of a given threshold, which can be expressed as

A =

∫ ∞
−∞

Pr(Y = 1|F ≥ c)dPr(F ≤ c|Y = 1),

where Pr(Y = 1|F ≥ c) is the precision at the threshold value of c. The above integral is an
importance-sampled Monte Carlo integral, by which we may interpret AUPRC as the fraction of
positive examples among those examples whose output values exceed a randomly selected threshold
c ∼ F (X)|Y = 1.

For a finite set of examples D = {(xi, yi), i = 1, . . . , n} with the prediction score for each example
xi given by hw(xi), we consider to use AP to approximate AUPRC, which is given by

AP =
1

n+

n∑
i=1

I(yi = 1)

n∑
s=1

I(ys = 1)I(hw(xs) ≥ hw(xi))

n∑
s=1

I(hw(xs) ≥ hw(xi))
, (1)

where n+ denotes the number of positive examples. It can be shown that AP is an unbiased estimator
in the limit n→∞ [3].
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However, the non-continuous indicator function I(hw(xs) ≥ hw(xi)) in both numerator and denom-
inator in (1) makes the optimization non-tractable. To tackle this, we use a loss function `(w;xs,xi)
as a surrogate function of I(hw(xs) ≥ hw(xi)). One can consider different surrogate losses, e.g.,
hinge loss, squared hinge loss, and smoothed hinge loss, and exponential loss. In this paper, we will
consider a smooth surrogate loss function to facilitate the development of an optimization algorithm,
e.g., a squared hinge loss `(w;xs;xi) = (max{m− (hw(xi)−hw(xs)), 0})2, where m is a margin
parameter. Note that we do not require ` to be a convex function, hence one can also consider
non-convex surrogate loss such as ramp loss. As a result, our problem becomes

min
w

P (w) =
1

n+

∑
xi∈D+

−
n∑
s=1

I(ys = 1)`(w;xs;xi)

n∑
s=1

`(w;xs;xi)
. (2)

3.2 Stochastic Optimization of AP (SOAP)

We cast the problem into a finite-sum of compositional functions. To this end, let us define a few
notations:

g(w;xj ,xi) = [g1(w;xj ,xi), g2(w;xj ,xi)]
> = [`(w;xj ,xi)I(yj = 1), `(w;xj ,xi)]

>

gxi
(w) = Exj∼D[g(w;xj ,xi)],

(3)

where gxi
(w) : Rd → R2. Let f(s) = − s1s2 : R2 → R. Then, we can write the objective function

for maximizing AP as a sum of compositional functions:

P (w) =
1

n+

∑
xi∈D+

f(gxi
(w)) = Exi∼D+

[f(gxi
(w))]. (4)

We refer to the above problem as an instance of two-level stochastic coupled compositional
functions. It is similar to the two-level stochastic compositional functions considered in litera-
ture [52, 53] but with a subtle difference. The difference is that in our formulation the inner function
gxi

(w) = Exj∼D[g(w;xj ,xi)] depends on the random variable xi of the outer level. This difference
makes the proposed algorithm slightly complicated by estimating gxi

(w) separately for each positive
example. It also complicates the analysis of the proposed algorithms. Nevertheless, we can still
employ the techniques developed for optimizing stochastic compositional functions to design the
algorithms and develop the analysis for optimizing the objective (4).

In order to motivate the proposed method, let us consider how to compute the gradient of P (w). Let
the gradient of gxi

(w) be denoted by∇wgxi
(w)> = (∇w[gxi

(w)]1,∇w[gxi
(w)]2). Then we have

∇wP (w) =
1

n+

∑
xi∈D+

∇wgxi(w)>∇f(gxi(w))

=
1

n+

∑
xi∈D+

∇wgxi(w)>
(

−1

[gxi(w)]2
,

[gxi
(w)]1

([gxi(w)]2)2

)>
.

(5)

The major cost for computing∇wP (w) lies at evaluating gxi(w) and its gradient∇wgxi(w), which
involves passing through all examples in D.

To this end, we will approximate these quantities by stochastic samples. The gradient∇wgxi
(w) can

be simply approximated by the stochastic gradient, i.e.,

∇̂wgxi
(w) =

(
1
B

∑
xj∈B I(yj = 1)∇`(w;xj ,xi)
1
B

∑
xj∈B∇`(w;xj ,xi)

)
, (6)

where B denote a set of B random samples from D. For estimating gxi
(w) = Exj∼Dg(w;xj ,xi),

however, we need to ensure its approximation error is controllable due to the compositional structure
such that the convergence can be guaranteed. We borrow a technique from the literature of stochastic
compositional optimization [52] by using moving average estimator for estimating gxi

(w) for all
positive examples. To this end, we will maintain a matrix u = [u1,u2] with each column indexable
by any positive example, i.e., u1

xi
,u2

xi
correspond to the moving average estimator of [gxi

(w)]1
and [gxi(w)]2, respectively. The matrix u is updated by the subroutine UG in Algorithm 2, where
γ ∈ (0, 1) is a parameter. It is notable that in Step 3 of Algorithm 2, we clip the moving average
update of u2

xi
by a lower bound u0, which is a given parameter. This step can ensure the division in

computing the stochastic gradient estimator in (7) always valid and is also important for convergence
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Algorithm 1: SOAP
1: Input: γ, α, u0, and other parameters for SGD-stype update or Adam-stype update.
2: Initialize w1 ∈ Rd, u ∈ R|n+|×2

3: for t = 1, . . . , T do
4: Draw a batch of B+ positive samples denoted by B+.
5: Draw a batch of B samples denoted by B.
6: u = UG(B,B+,u,wt, γ, u0)
7: Compute (biased) Stochastic Gradient Estimator

G(wt) =
1

B+

∑
xi∈B+

∑
xj∈B

(u1
xi
− u2

xi
I(yj = 1))∇`(w;xj ,xi)

B(u2
xi

)2
(7)

8: Update wt+1 by a SGD-style method or by a Adam-style method

wt+1 = UW(wt, G(wt))

9: end for
10: Return: last solution.

analysis. With these stochastic estimators, we can compute an estimate of∇P (w) by equation (7),
where B+ includes a batch of sampled positive data. With this stochastic gradient estimator, we can
employ SGD-style method and Adam-style shown in Algorithm 3 to update the model parameter w.
The final algorithm named as SOAP is presented in Algorithm 1.

Algorithm 2: UG(B,B+,u,wt, γ, u0)
1: for each positive xi ∈ B+ do
2: Compute

[g̃xi(wt)]1 =
1

|B|
∑
xj∈B
yj=1

`(wt;xj ,xi)

[g̃xi(wt)]2 =
1

|B|
∑
xj∈B

`(wt;xj ,xi)

3: Compute
u1
xi

= (1− γ)u1
xi

+ γ[g̃xi
(wt)]1

u2
xi

= max((1−γ)u2
xi

+γ[g̃xi
(wt)]2, u0)

4: end for
5: Return u

Algorithm 3: UW(wt, G(wt))
1: Option 1: SGD-style update (paras: α)

wt+1 = wt − αG(wt)
2: Option 2: Adam-style update (paras:
α, ε, η1, η2)

ht+1 = η1ht + (1− η1)G(wt)

vt+1 = η2v̂t + (1− η2)(G(wt))
2

wt+1 = wt − α
ht+1√
ε+ v̂t+1

where v̂t = vt (Adam) or
v̂t = max(v̂t−1, vt) (AMSGrad)

3: Return: wt+1

3.3 Convergence Analysis

In this subsection, we present the convergence results of SOAP and also highlight its convergence
analysis. To this end, we first present the following assumption.
Assumption 1. Assume that (a) there exists ∆1 such that P (w1) −minw P (w) ≤ ∆1; (b) there
exist C,M > 0 such that `(w;xi,xi) ≥ C for any xi ∈ D+, `(w;xj ,xi) ≤M , and `(w;xj ,xi) is
Lipscthiz continuous and smooth with respect to w for any xi ∈ D+,xj ∈ D; (c) there exists V > 0
such that Exj∼D[‖g(w;xj ,xi)− gxi(w)‖2] ≤ V , and Exj∼D[‖∇g(w;xj ,xi)−∇gxi(w)‖2] ≤ V
for any xi.
With a bounded score function hw(x) the above assumption can be easily satisfied. Based on the
above assumption, we can prove that the objective function P (w) is smooth.
Lemma 1. Suppose Assumption 1 holds, then there exists L > 0 such that P (·) is L-smooth. In
addition, there exists u0 ≥ C/n such that gxi

(w) ∈ Ω = {u ∈ R2, 0 ≤ [u]1 ≤ M,u0 ≤ [u]2 ≤
M}, ∀xi ∈ D+.

Next, we highlight the convergence analysis of SOAP employing the SGD-stype update and include
that for employing Adam-style update in the supplement. Without loss of generality, we assume
|B+| = 1 and the positive sample in B+ is randomly selected from D+ with replacement. When the
context is clear, we abuse the notations gi(w) and ui to denote gxi

(w) and uxi
below, respectively.

We first establish the following lemma following the analysis of non-convex optimization.
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Lemma 2. With α ≤ 1/2, running T iterations of SOAP (SGD-style) updates, we have

α

2
E[

T∑
t=1

‖∇P (wt)‖2] ≤ E[
∑
t

(P (wt)− P (wt+1))] +
αC1

2
E[

T∑
t=1

‖git(wt)− uit‖2] + α2TC2,

where it denotes the index of the sampled positive data at iteration t, C1 and C2 are proper constants.

Our key contribution is the following lemma that bounds the second term in the above upper bound.
Lemma 3. Suppose Assumption 1 holds, with u initialized by (6) for every xi ∈ D+ we have

E[

T∑
t=1

‖git(wt)− uit‖2] ≤ n+V

γ
+ γV T + 2

n2
+α

2TC3

γ2
, (8)

where C3 is a proper constant.
Remark: The innovation of proving the above lemma is by grouping uit , t = 1, . . . , T into n+

groups corresponding to the n+ positive examples, and then establishing the recursion of the error
‖git(wt)− uit‖2 within each group, and then summing up these recursions together.

Based on the two lemmas above, we establish the following convergence of SOAP with a SGD-style
update.

Theorem 1. Suppose Assumption 1 holds, let the parameters be α = 1

n
2/5
+ T 3/5

,γ =
n
2/5
+

T 2/5 , ∀ t ∈
1, · · · , T , and T > n+. Then after running T iterations, SOAP with a SGD-style update satisfies

E
[

1
T

T∑
t=1
‖∇P (wt)‖2

]
≤ O(

n
2/5
+

T 2/5 ), where O suppresses constant numbers.

Remark: To the best of our knowledge, this is the first time a stochastic algorithm was proved to
converge for AP maximization.

Similarly, we can establish the following convergence of SOAP by employing an Adam-style update,
specifically the AMSGrad update.
Theorem 2. Suppose Assumption 1 holds, let the parameters η1 ≤

√
η2 ≤ 1, α = 1

n
2/5
+ T 3/5

,γ =

n
2/5
+

T 2/5 , ∀ t ∈ 1, · · · , T , and T > n+. Then after running T iterations, SOAP with an AMSGRAD

update satisfies E
[

1
T

T∑
t=1
‖∇P (wt)‖2

]
≤ O(

n
2/5
+

T 2/5 ), where O suppresses constant numbers.

4 Experiments

In this section, we evaluate the proposed method through comprehensive experiments on imbalanced
datasets. We show that the proposed method can outperform prior state-of-the-art methods for
imbalanced classification problems. In addition, we conduct experiments on (i) the effects of
imbalance ratio; (ii) the insensitivity to batch size and (iii) the convergence speed on testing data; and
observe that our method (i) is more advantageous when data is more imbalanced, (ii) is not sensitive
to batch size, and (iii) converges faster than baseline methods.

Our proposed optimization algorithm is independent of specific datasets and tasks. Therefore, we
perform experiments on both graph and image prediction tasks. In particular, the graph prediction
tasks in the contexts of molecular property prediction and drug discovery suffer from very severe
imbalance problems as positive labels are very rare while negative samples are abundantly available.
Thus, we choose to use graph data intensively in our experiments. Additionally, the graph data we
use allow us to vary the imbalance ratio to observe the performance change of different methods.

In all experiments, we compare our method with the following baseline methods. CB-CE refers
to a method using a class-balanced weighed cross entropy loss function, in which the weights for
positive and negative samples are adjusted with the strategy proposed by Cui et al. [13]. Focal is to
up-weight the penalty on hard examples using focal loss [32]. LDAM refers to training with label-
distribution-aware margin loss [7]. AUC-M is an AUROC maximization method using a surrogate
loss [60]. In addition, we compare with three methods for optimizing AUPRC or AP, namely, the
MinMax method [15] - a method for optimizing a discrete approximation of AUPRC, SmoothAP
[4] - a method that optimizes a smoothed approximation of AP, and FastAP - a method that uses
soft histogram binning to approximate the gradient of AP [6]. For all of these methods, we use the
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Table 1: The test AUPRC on the image datasets with two ResNet models. We report the average
AUPRC and standard deviation (within brackets) over 5 runs.

Datasets CIFAR-10 CIFAR-100
Networks ResNet18 ResNet34 ResNet18 ResNet34

CE 0.7155 (± 0.0058) 0.6844(± 0.0031) 0.5946 (± 0.0031) 0.5792 (± 0.0028)
CB-CE 0.7325 (± 0.0039) 0.6936(±0.0021) 0.6165 (± 0.0096) 0.5632(± 0.0129)
Focal 0.7183(± 0.0082) 0.6943(± 0.0007) 0.6107(± 0.0093) 0.5585(± 0.0285)
LDAM 0.7346 (± 0.0125) 0.6745(± 0.0043) 0.6153 (± 0.0100) 0.5662(± 0.0212)
AUC-M 0.7399(± 0.0013) 0.6825(± 0.0089) 0.6103 (± 0.0075) 0.5306(± 0.0230)
SmoothAP 0.7365 (± 0.0088) 0.6909 (± 0.0049) 0.6071(± 0.0143) 0.5208 (± 0.0505)
FastAP 0.7028 (± 0.0341) 0.6798 (± 0.0032) 0.5618(± 0.0351) 0.5151(± 0.0450)
MinMax 0.7228 (± 0.0118) 0.6806(± 0.0027) 0.6071(± 0.0064) 0.5518(± 0.0030)
SOAP 0.7629(± 0.0014) 0.7012(± 0.0056) 0.6251 (± 0.0053) 0.6001(± 0.0060)

SGD-style with momentum optimization for image prediction tasks and the Adam-style optimization
algorithms for graph prediction tasks and unless specified otherwise. We refer to imbalance ratio
as the number of positive samples over the total number of examples of a considered set. The
hyper-parameters of all methods are fine tuned using cross-validation with training/validation splits
mentioned below. For AP maximization methods, we use a sigmoid function to produce the prediction
score. For simplicity, we set u0 = 0 for SOAP and encounter no numerical problems in experiments.
As SOAP requires positive samples for updating u to approximate the gradient of surrogate objective,
we use a data sampler which samples a few positive examples (e.g., 2) and some negative examples
per iteration. The same sampler applies to all methods for fair comparison. The code for reproducing
the results is released here [44].

4.1 Image Classification

Data. We first conduct experiments on three image datasets: CIFAR10, CIFAR100 and Melanoma
dataset [49]. We construct imbalanced version of CIFAR10 and CIFAR100 for binary classification.
In particular, for each dataset we manually take the last half of classes as positive class and first half
of classes as negative class. To construct highly imbalanced data, we remove 98% of the positive
images from the training data and keep the test data unchanged (i.e., the testing data is still balanced).
And we split the training dataset into train/validation set at 80%/20% ratio. The Melanoma dataset is
from a medical image Kaggle competition, which serves as a natural real imbalanced image dataset. It
contains 33,126 labeled medical images, among which 584 images are related to malignant melanoma
and labelled as positive samples. Since the test set used by Kaggle organization is not available, we
manually split the training data into train/validation/test set at 80%/10%/10% ratio and report the
achieved AUPRC on the test set by our method and baselines. The images of Melanoma dataset are
always resized to have a resolution of 384× 384 in our experiments.

Setup. We use two ResNet [23] models, i.e., ResNet18 and ResNet34, as the backbone networks for
image classification. For all methods except for CE, the ResNet models are initialized with a model
pre-trained by CE with a SGD optimizer. We tune the learning rate in a range {1e-5, 1e-4, 1e-3,
1e-2} and the weight decay parameter in a range {1e-6, 1e-5, 1e-4}. Then the last fully connected
layer is randomly re-initialized and the network is trained by different methods with the same weight
decay parameter but other hyper-parameters individually tuned for fair comparison, e.g., we tune γ
of SOAP in a range {0.9, 0.99,0.999}, and tune m in {0.5, 1, 2, 5, 10}. We refer to this scheme as
two-stage training, which is widely used for imbalanced data [60]. We consistently observe that this
strategy can bring the model to a good initialization state and improve the final performance of our
method and baselines.

Results. Table 1 shows the AUPRC on testing sets of CIFAR-10 and CIFAR-100. We report the
results on Melanoma in Table 3. We can observe that the proposed method SOAP outperforms all
baselines. It is also striking to see that on Melanoma dataset, our proposed SOAP can outperform all
baselines by a large margin, and all other methods have very poor performance. The reason is that
the testing set of Melanoma is also imbalanced (imbalanced ratio=1.72%), while the testing sets of
CIFAR-10 and CIFAR-100 are balanced. We also observe that the AUROC maximization (AUC-M)
does not necessarily optimize AUPRC. We also plot the final PR curves in Figure 3 in the supplement.
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Table 2: The test AUPRC values on the HIV and MUV datasets with three graph neural network
models. We report the average AUPRC and standard deviation (within brackets) over 3 runs.

Dataset Method GINE MPNN ML-MPNN

HIV

CE 0.2774 (± 0.0101) 0.3197 (± 0.0050) 0.2988 (± 0.0076)
CB-CE 0.3082 (± 0.0101) 0.3056 (± 0.0018) 0.3291 (± 0.0189)
Focal 0.3179 (± 0.0068) 0.3136 (± 0.0197) 0.3279 (± 0.0173)
LDAM 0.2904 (± 0.0008) 0.2994 (± 0.0128) 0.3044 (± 0.0116)
AUC-M 0.2998 (± 0.0010) 0.2786 (± 0.0456) 0.3305 (± 0.0165)
SmothAP 0.2686 (± 0.0007) 0.3276 (± 0.0063) 0.3235 (± 0.0092)
FastAP 0.0169 (± 0.0031) 0.0826 (± 0.0112) 0.0202 (± 0.0002)
MinMax 0.2874 (± 0.0073) 0.3119 (± 0.0075) 0.3098 (± 0.0167)
SOAP 0.3385 (± 0.0024) 0.3401 (± 0.0045) 0.3547 (± 0.0077)

MUV

CE 0.0017 (±0.0001) 0.0021 (±0.0002) 0.0025 (±0.0004)
CB-CE 0.0055 (±0.0011) 0.0483 (±0.0083) 0.0121 (±0.0016)
Focal 0.0041 (±0.0007) 0.0281 (±0.0141) 0.0122 (±0.0001)
LDAM 0.0044 (±0.0022) 0.0118 (±0.0098) 0.0059 (±0.0021)
AUC-M 0.0026 (±0.0001) 0.0040 (±0.0012) 0.0028 (±0.0012)
SmoothAP 0.0073 (±0.0012) 0.0068 (±0.0038) 0.0029 (±0.0005)
FastAP 0.0016 (±0.0000) 0.0023 (±0.0021) 0.0022 (±0.0012)
MinMax 0.0028 (±0.0008) 0.0027 (±0.0005) 0.0043 (±0.0015)
SOAP 0.0254 (±0.0261) 0.3352 (±0.0008) 0.0236 (±0.0038)

4.2 Graph Classification for Molecular Property Prediction

Data. To further demonstrate the advantages of our method, we conduct experiments on two graph
classification datasets. We use the datasets HIV and MUV from the MoleculeNet [55], which is
a benchmark for molecular property prediction. The HIV dataset has 41,913 molecules from the
Drug Therapeutics Program (DTP), and the positive samples are molecules tested to have inhibition
ability to HIV. The MUV dataset has 93,127 molecules from the PubChem library, and molecules
are labelled by whether a bioassay property exists or not. Note that the MUV dataset provides
labels of 17 properties in total and we only conduct experiments to predict the third property as this
property is more imbalanced. The percentage of positive samples in HIV and MUV datasets are
3.51% and 0.20%, respectively. We use the split of train/validation/test set provided by MoleculeNet.
Molecules are treated as 2D graphs in our experiments, and we use the feature extraction procedure
of MoleculeKit [54] to obtain node features of graphs. The same data preprocessing is used for all of
our experiments on graph data.

Setup. Many recent studies have shown that graph neural networks (GNNs) are powerful models
for graph data analysis [29, 17, 16]. Hence, we use three different GNNs as the backbone network
for graph classification, including the message passing neural network (MPNN) [19], an invariant of
graph isomorphism network [56] named by GINE [26], and the multi-level message passing neural
network (ML-MPNN) proposed by Wang et al. [54]. We use the same two-stage training scheme
with a similar hyper-parameter tuning. We pre-train the networks by Adam with 100 epochs and a
tuned initial learning rate 0.0005, which is decayed by half after 50 epochs.

Results. The achieved AUPRC on the test set by all methods are presented in Table 2. Results show
that our method can outperform all baselines by a large margin in terms of AUPRC, regardless of
which model structure is used. These results clearly demonstrate that our method is effective for
classification problems in which the sample distribution is highly imbalanced between classes.

4.3 Graph Classification for Drug Discovery
Data. In addition to molecular property prediction, we explore applying our method to drug discovery.
Recent studies have shown that GNNs are effective in drug discovery through predicting the antibac-
terial property of chemical compounds [51]. Such application scenarios involves training a GNN
model on labeled datasets and making predictions on a large library of chemical compounds so as to
discover new antibiotic. However, because the positive samples in the training data, i.e., compounds
known to have antibacterial property, are very rare, there exists very severe class imbalance.

We show that our method can serve as a useful solution to the above problem. We conduct experiments
on the MIT AICURES dataset from an open challenge (https://www.aicures.mit.edu/tasks)
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Table 3: The test AUPRC values on the MIT AICURES dataset with two graph neural networks, and
on the Kaggle Melanoma dataset with two CNN models. We report the average AUPRC and standard
deviation (within brackets) from 3 independent runs over 3 different train/validation/test splits.

Data MIT AICURES Kaggle Melanoma

Networks GINE MPNN ResNet18 ResNet34

CE 0.5037 (± 0.0718) 0.6282 (± 0.0634) 0.0701 (± 0.0031) 0.0582 (± 0.0016)
CB-CE 0.5655 (± 0.0453) 0.6308 (± 0.0263) 0.0631 (± 0.0065) 0.0721 (± 0.0054)
Focal 0.5143 (± 0.1062) 0.5875 (± 0.0774) 0.0549 (± 0.0083) 0.0663 (± 0.0034)
LDAM 0.5236 (± 0.0551) 0.6489 (± 0.0556) 0.0547 (± 0.0046) 0.0539 (± 0.0069)
AUC-M 0.5149 (± 0.0748) 0.5542 (± 0.0474) 0.1013 (± 0.0071) 0.0972 (± 0.0035)
SmothAP 0.2899 (± 0.0220) 0.4081 (± 0.0352) 0.1981 (± 0.0527) 0.2787 (± 0.0232)
FastAP 0.4777 (± 0.0896) 0.4518 (± 0.1495) 0.0324 (± 0.0087) 0.0359 (± 0.0062)
MinMax 0.5292 (± 0.0330) 0.5774 (± 0.0468) 0.0593 (± 0.0037) 0.0663 (± 0.0084)
SOAP 0.6639 (± 0.0515) 0.6547 (± 0.0616) 0.2624 (± 0.0410) 0.3152 (± 0.0337)
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Figure 1: Comparison of convergence of different methods in terms of test AUPRC scores on
CIFAR-10, CIFAR100 and MIT AICURES data.

in drug discovery. The dataset consists of 2097 molecules. There are 48 positive samples that have
antibacterial activity to Pseudomonas aeruginosa, which is the pathogen leading to secondary lungs
infections of COVID-19 patients. We conduct experiments on three random train/validation/test splits
at 80%/10%/10% ratio, and report the average AUPRC on the test set over three splits.

Setup. Following the setup in Sec. 4.2, we use three GNNs: MPNN, GINE and ML-MPNN. We use
the same two-stage training scheme with a similar hyper-parameter tuning. We pre-train GNNs by
the Adam method for 100 epochs with a batch size of 64 and a tuned learning rate of 0.0005, which is
decayed by half at the 50th epoch. Due to the limit of space, Table 3 only reports GINE and MPNN
results. Please refer to Table 6 in the supplement for the full results of all three GNNs.

Results. The average test AUPRC from three independent runs over three splits are summarized in
Table 3, Table 6. We can see that our SOAP can consistently outperform all baselines on all three
GNN models. Our proposed optimization method can significantly improve the achieved AUPRC
of GNN models, indicating that models tend to assign higher confidence scores to molecules with
antibacterial activity. This can help identify a larger number of candidate drugs.

We have employed the proposed AUPRC maximization method for improving the testing performance
on MIT AICures Challenge and achieved the 1st place. For details, please refer to [54].

4.4 Ablation Studies

Effects of Imbalance Ratio. We now study the effects of imbalance ratio on the performance
improvements of our method. We use two datasets Tox21 and ToxCast from the MoleculeNet [55].
The Tox21 and ToxCast contain 8014 and 8589 molecules, respectively. There are 12 property
prediction tasks in Tox21, and we conduct experiments on Task 0 and Task 2. Similarly, we select
Task 12 and Task 8 of ToxCast for experiments. We use the split of train/validation/test set provided
by MoleculeNet. The imbalanced ratios on the training sets are 4.14% for Task 0 of Tox21, 12.00%
for Task 2 of Tox21, 2.97% for Task 12 of ToxCast, 8.67% for Task 8 of ToxCast.

Following Sec. 4.2, we test three neural network models MPNN, GINE and ML-MPNN. The hyper-
parameters for training models are also the same as those in Sec. 4.2. We present the results of Tox21
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Figure 2: Left most: insensitivity to batch size of SOAP. Right two: consistency between AP and
Surrogate Objective -P (w) vs Iterations on CIFAR10 and CIFAR100.

Table 4: The test AUPRC over 3 independent runs by SOAP with different surrogate functions.
Data CIFAR10 CIFAR100
Networks ResNet18 ResNet34 ResNet18 ResNet34
Squared Hinge 0.7629 (±0.0014) 0.7012 (±0.0056) 0.6251 (±0.0053) 0.6001 (±0.0060)
Logistic 0.7542 (±0.0024) 0.6968 (±0.0121) 0.6378 (±0.0031) 0.5923 (±0.0101)
Sigmoid 0.7652 (±0.0035) 0.6983 (±0.0084) 0.6271 (±0.0043) 0.5832 (±0.0054)

Data HIV MUV
Networks GINE MPNN GINE MPNN
Squared Hinge 0.3485 (±0.0083) 0.3401 (±0.0045) 0.0354 (±0.0025) 0.3365 (±0.0008)
Logistic 0.3436 (±0.0043) 0.3617 (±0.0031) 0.0493 (±0.0261) 0.3352 (±0.0008)
Sigmoid 0.3387 (±0.0051) 0.3629 (±0.0063) 0.0298 (±0.0043) 0.3362 (±0.0009)

and ToxCast in Table 5 in the supplement. Our SOAP can consistently achieve improved performance
when the data is extremely imbalanced. However, it sometimes fails to do so if the imbalance ratio is
not too low. Clearly, the improvements from our method are higher when the imbalance ratio of labels
is lower. In other words, our method is more advantageous for data with extreme class imbalance.

Insensitivity to Batch Size. We conduct experiments on CIFAR-10 and CIFAR-100 data by varying
the mini-batch size for the SOAP algorithm and report results in Figure 2 (Left most). We can see
that SOAP is not sensitive to the mini-batch size. This is consistent with our theory. In contrast, many
previous methods for AP maximization are sensitive to the mini-batch size [47, 48, 6].

Convergence Speed. We report the convergence curves of different methods for maximizing AUPRC
or AP in Figure 1 on different datasets. We can see that the proposed SOAP algorithms converge
much faster than other baseline methods.

More Surrogate Losses. To verify the generality of SOAP, we evaluate the performance of SOAP
with two more different surrogate loss functions `(w;xs,xi) as a surrogate function of the indicator
I(hw(xs) ≥ hw(xi)), namely, the logistic loss, `(w;xs,xi) = − log 1

1+exp(−c(`(hw(xi)−hw(xs))) ,
and the sigmoid loss, `(w;xs,xi) = 1

1+exp(c(`(hw(xi)−hw(xs))) where c is a hyperparameter. We
tune c ∈ {1, 2} in our experiments. We conduct experiments on CIFAR10, CIFAR100 following the
experimental setting in Section 4.1 for the image data. For the graph data, we conduct experiments
on HIV, MUV data following the experimental setting in Section 4.2. We report the results in Table 4.
We can observe that SOAP has similar results with different surrogate loss functions.

Consistency. Finally, we show the consistency between the Surrogate Objective -P (w) and AP by
plotting the convergence curves on different datasets in Figure 2 (Right two). It is obvious two see
the consistency between our surrogate objective and the true AP.

5 Conclusions and Outlook
In this work, we have proposed a stochastic method to optimize AUPRC that can be used in deep
learning for tackling highly imbalanced data. Our approach is based on maximizing the averaged
precision, and we cast the objective into a sum of coupled compositional functions. We proposed
efficient adaptive and non-adaptive stochastic algorithms with provable convergence guarantee to
compute the solutions. Extensive experimental results on graph and image datasets demonstrate
that our proposed method can achieve promising results, especially when the class distribution is
highly imbalanced. One limitation of SOAP is its convergence rate is still slow. In the future, we will
consider to improve the convergence rate to address the limitation of the present work.
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A Additional Experimental Results

We include the results about effect of imbalance ratio in Table 5, and the full results using three
networks on MIT AICURES data in Table 6, and PR curves of final models on CIFAR10, CIFAR100
data in Figure 3.

Table 5: Test AUPRC on task 0 and task 2 of the Tox21 dataset and task 12 and task 8 of the ToxCast
dataset with three graph neural network models.

Tox21 Task 0 (Imbalance Ratio = 4.14%)

Method GINE MPNN ML-MPNN

CE 0.4829 (± 0.0123) 0.5002 (± 0.0054) 0.4868 (± 0.0048)
CB-CE 0.4861 (± 0.0113) 0.4931 (± 0.0068) 0.4772 (± 0.0033)
Focal 0.4874 (± 0.0148) 0.4865 (± 0.0067) 0.4769 (± 0.0134)
LDAM 0.5093 (± 0.0096) 0.4823 (± 0.0084) 0.4709 (± 0.0084)
AUC-M 0.4356 (± 0.0127) 0.4428 (± 0.0121) 0.4632 (± 0.0121)
SmoothAP 0.3764 (± 0.0053) 0.4504 (± 0.0089) 0.4634 (± 0.0064)
FastsAP 0.0668 (± 0.0061) 0.2358 (± 0.0093) 0.0341 (0.0065)
MinMax (Adam) 0.5066 (± 0.0111) 0.4940 (± 0.0134) 0.4947 (± 0.0053)
SOAP (Adam) 0.5276 (± 0.0099) 0.5211 (± 0.0089) 0.5093 (± 0.0067)

Tox21 Task 2 (Imbalance Ratio = 12.00%)

Method GINE MPNN ML-MPNN
CE 0.5918 (± 0.0063) 0.6023 (± 0.0087) 0.5796 (± 0.0071)
CB-CE 0.5538 (± 0.0087) 0.5811 (± 0.0095) 0.5855 (± 0.0069)
Focal 0.5594 (± 0.0069) 0.6018 (± 0.0083) 0.5555 (± 0.0025)
LDAM 0.5369 (± 0.0065) 0.5991 (± 0.0067) 0.6014 (± 0.0051)
AUC-M 0.5832 (± 0.0067) 0.6117 (± 0.0085) 0.5987 (± 0.0060)
SmoothAP 0.5852 (± 0.0045) 0.6210 (± 0.0069) 0.4858 (± 0.0061)
FastAP 0.5605 (± 0.0000) 0.5605 (± 0.0000) 0.5605 (± 0.0000)
MinMax (Adam) 0.5623 (± 0.0041) 0.5977 (± 0.0045) 0.5079 (± 0.0083)
SOAP (Adam) 0.6172 (± 0.0051) 0.6333 (± 0.0160) 0.6196 (± 0.0165)

ToxCast Task 12 (Imbalance Ratio = 2.97%)

Method GINE MPNN ML-MPNN

CE 0.0201 (± 0.0031) 0.0268 (± 0.0031) 0.0124 (± 0.0031)
CB-CE 0.0385 (± 0.0042) 0.0278 (± 0.0073) 0.0104 (± 0.0029)
Focal 0.0333 (± 0.0052) 0.0294 (± 0.0043) 0.0122 (± 0.0024)
LDAM 0.0217 (± 0.0042) 0.0298 (± 0.0059) 0.0179 (± 0.0019)
AUC-M 0.0333 (± 0.0024) 0.0454 (± 0.0047) 0.0089 (± 0.0023)
SmoothAP 0.227 (± 0.0023) 0.0208 (± 0.0041) 0.0079 (± 0.0034)
FastAP 0.0052 (± 0.0048) 0.0052 (± 0.0038) 0.0153 (± 0.0013)
MinMax (Adam) 0.0223 (± 0.0033) 0.0313 (± 0.0061) 0.0151 (± 0.0023)
SOAP (Adam) 0.0374 (± 0.0025) 0.0601 (± 0.0059) 0.0181 (± 0.0023)

ToxCast Task 8 (Imbalance Ratio = 8.67%)

Method GINE MPNN ML-MPNN

CE 0.2071 (± 0.0121) 0.1101 (± 0.0049) 0.0923 (± 0.0027)
CB-CE 0.2089 (± 0.0051) 0.1349 (± 0.0109) 0.0734 (± 0.0078)
Focal 0.2011 (± 0.0034) 0.1223 (± 0.0113) 0.0792 (± 0.0082)
LDAM 0.1071 (± 0.0101) 0.1062 (± 0.0104) 0.0934 (± 0.0125)
AUC-M 0.0662 (± 0.098) 0.1258 (± 0.0132) 0.0979 (± 0.0096)
SmoothAP 0.0911 (± 0.0123) 0.1073 (± 0.0011) 0.0987 (± 0.0049)
FastAP 0.0999 (± 0.0211) 0.1037 (± 0.0071) 0.0932 (± 0.0028)
MinMax (Adam) 0.1381(± 0.0076) 0.1173 (± 0.0092) 0.0903 (± 0.0031)
SOAP (Adam) 0.2561 (± 0.0196) 0.1875 (± 0.0124) 0.1107 (± 0.0807)
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Table 6: The test AUPRC values on the MIT AICURES dataset with three graph neural network
models. We report the average AUPRC and standard deviation (within brackets) from 3 independent
runs over 3 different train/validation/test splits.

Method GINE MPNN ML-MPNN

CE 0.5037 (± 0.0718) 0.6282 (± 0.0634) 0.6101 (± 0.1276)
CB-CE 0.5655 (± 0.0453) 0.6308 (± 0.0263) 0.4903 (± 0.1507)
Focal 0.5143 (± 0.1062) 0.5875 (± 0.0774) 0.4718 (± 0.0691)
LDAM 0.5236 (± 0.0551) 0.6489 (± 0.0556) 0.6725 (± 0.0594)
AUC-M 0.5149 (± 0.0748) 0.5542 (± 0.0474) 0.4429 (± 0.0486)
SmothAP 0.2899 (± 0.0220) 0.4081 (± 0.0352) 0.4212 (± 0.0507)
FastAP 0.4777 (± 0.0896) 0.4518 (± 0.1495) 0.5174 (± 0.0150)
MinMax 0.5292 (± 0.0330) 0.5774 (± 0.0468) 0.5832 (± 0.1080)
SOAP 0.6639 (± 0.0515) 0.6547 (± 0.0616) 0.6503 (± 0.0532)

Figure 3: Precision-Recall curves of different methods on test dataset of CIFAR10, CIFAR100 and
Melanoma datasets. The gray dashed lines are the random classifiers on test data sets whose AUPRC
equals to the ratio between positive samples and all samples n+/n on every data set, respectively.

B Analysis of SOAP (SGD-style)

In the following, we abuse the notations gi(w) = gxi
(w) ∈ R2 and ui = uxi

= ([uxi
]1, [uxi

]2).
We use uit to denote the updated vector at the t-th iteration for the sampled it-th positive data.

B.1 Proof of Theorem 1

Proof. By combining Lemma 3 and Lemma 2, we have:

α

2
E[

T∑
t=1

‖∇P (wt)‖2] ≤ E[
∑
t

(P (wt)− P (wt+1))] +
αC1

2
E[

T∑
t=1

‖git(wt)− uit‖2] + α2TC2

≤ E[
∑
t

(P (wt)− P (wt+1))] +
αC1

2

{n+V

γ
+ 2γV T + 2

n2
+α

2TC3

γ2

}
+ α2TC2

≤ Et[P (w1)]− Et[P (wt+1)] +
αC1

2

{n+V

γ
+ 2γV T + 2

n2
+α

2TC3

γ2

}
+ α2TC2

Then by set α = 1

n
2/5
+ T 3/5

, γ =
n
2/5
+

T 2/5 , and multiply 2
αT on both sides of above equation,

1

T
E[

T∑
t=1

‖∇P (wt)‖2] ≤ 2∆1

Tα
+ C1

{n+V

γT
+ 2γV + 2

n2
+α

2C3

γ2

}
+ αC2

≤
2∆1n

2/5
+

T 2/5
+ C1

{n3/5
+ V

T 3/5
+ 2

n
2/5
+

T 2/5
+ 2

n
2/5
+ C3

T 2/5

}
+

C2

n
2/5
+ T 3/5

≤ O(
n

2/5
+

T 2/5
)

where the last inequality is due to T ≥ n+ and O compresses constant numbers. We finish the
proof.

16



B.2 Proof of Lemma 1

Proof of Lemma 1. We first prove the second part that gi(w) ∈ Ω. Due to the definition of gi(w) =
Exj∼D[g(w;xj ,xi)] = Exj∼D[`(w;xj ,xi)I(yj = 1), `(w;xi,xj)], and the Assumption 1, it is
obvious to see that 0 ≤ [gi(w)]1 ≤ M and M ≥ [gi(w)]2 ≥ C/n for all i, i.e., gi(w) ∈ Ω. Next,
we prove the smoothness of P (w). To this end, we need to use the following Lemma 4 and the proof
will be presented after Lemma 1.

Lemma 4. Let Lf = 4(u0 +M)/u3
0, Cf = (u0 +M)/u2

0, Lg =
√

2Ll, Cg =
√

2Cl, then f(u) is a
Lf -smooth, Cf -Lipschitz continuous function for any u ∈ Ω, and ∀ i ∈ [1, · · ·n], gi is a Lg-smooth,
Cg-Lipschitz continuous function.

Since P (w) = 1
n+

∑
xi∈D+

f(gi(w)). We first show Pi(w) = f(gi(w)) is smooth. To see this,

‖∇Pi(w)−∇Pi(w′)‖ = ‖∇gi(w)>∇f(gi(w))−∇gi(w′)>∇f(gi(w
′))‖

≤ ‖∇gi(w)>∇f(gi(w))−∇gi(w′)>∇f(gi(w))‖
+ ‖∇gi(w′)>∇f(gi(w))−∇gi(w′)>∇f(gi(w

′))‖
≤ CfLg‖w −w′‖+ CgLfCg‖w −w′‖ = (CfLg + LfC

2
g )‖w −w′‖.

Hence P (w) is also L = (CfLg + LfC
2
g )-smooth.

B.3 Proof of Lemma 4

Proof of Lemma 4. According to the definition, we have

f(u) =
−[u]1
[u]2

,∇uf(u) =

(
−1

[u]2
,

[u]1
([u]2)2

)>
, ∇2

uf(u) =

(
0, 1

([u]2)2

1
([u]2)2 ,−

2[u]1
([u]2)3

)
(9)

Due to the assumption that `(w;xj ,xi) is a Ll-smooth, Cl-Lipschitz continuous function, we have

‖∇wgi(w)‖2 ≤ 2‖ 1

n

n∑
j=1

∇`w(w;xj ,xi)‖2 ≤ 2C2
l = C2

g

‖∇wgi(w)−∇wg(w′)‖2 ≤ ‖ 1

n

n∑
j=1

∇w`(w;xj ,xi)−
1

n

n∑
j=1

∇w`(w;xj ,xi)‖2

+ ‖ 1

n

n∑
j=1

∇w`(w;xj ,xi)I(yj = 1)− 1

n

n∑
j=1

∇w`(w;xj ,xi)I(yj = 1)‖2 ≤ 2L2
l = L2

g

‖∇f(u)‖ ≤

√
1

[u]22
+

[u]21
[u]42

≤ u0 +M

u2
0

= Cf

‖∇2f(u)‖ ≤

√
2

[u]42
+ 4

[u]21
[u]62

≤ 4(u0 +M)

u3
0

= Lf

(10)

We finish the proof of Lemma 4.

B.4 Proof of Lemma 2

Proof of Lemma 2. To make the proof clear, we write ∇git(w; ξ) = ∇g(wt; ξ,xit), ξ ∼ D. Let uit
denote the updated u vector at the t-th iteration for the selected positive data it.

P (wt+1)− P (wt) ≤ ∇P (wt)
>(wt+1 −wt) +

L

2
‖wt+1 −wt‖2

= −α‖∇P (wt)‖2 + α∇P (wt)
>(∇P (wt)−∇g>it (wt; ξ)∇f(uit)) +

α2‖G(wt)‖2L
2

≤ −α‖∇P (wt)‖2 + α∇P (wt)
>(∇P (wt)−∇g>it (wt; ξ)∇f(uit)) + α2C2

where C2 = ‖G(wt)‖2L/2 ≤ C2
gC

2
fL/2.
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Taking expectation on both sides, we have

Et[P (wt+1)] ≤ Et[P (wt) +∇P (wt)
>(wt+1 −wt) +

L

2
‖wt+1 −wt‖2]

= Et[P (wt)− α‖∇P (wt)‖2 + α∇P (wt)
>(∇P (wt)−∇git(wt; ξ)

>∇f(uit))] + α2C2

= P (wt)− α‖∇P (wt)‖2 + α∇P (wt)
>(Et[∇P (wt)−∇git(wt; ξ)

>∇f(uit)]) + α2C2

where Et means taking expectation over it, ξ given wt.
Noting that∇P (wt) = Eit,ξ[∇git(wt; ξ)

>∇f(git(wt))], where it and ξ are independent.
Et[P (wt+1)]− P (wt)

≤ −α‖∇P (wt)‖2 + α∇P (wt)
>(Et[∇git(wt; ξ)

>∇f(git(wt))]− Et[∇git(wt; ξ)
>∇f(uit)]) + α2C2

= −α‖∇P (wt)‖2 + Et[α∇P (wt)
>(∇git(wt; ξ)

>∇f(git(wt))−∇git(wt; ξ)
>∇f(uit))] + α2C2

(a)

≤ −α‖∇P (wt)‖2 + Et[
α

2
‖∇P (wt)‖2 +

α

2
‖∇git(wt; ξ)

>∇f(git(wt))−∇git(wt; ξ)
>∇f(uit))‖2 + α2C2

(b)

≤ −α‖∇P (wt)‖2 + Et[
α

2
‖∇P (wt)‖2 +

αC1

2
‖git(wt)− uit‖2 + α2C2

= −(α− α

2
)‖∇P (wt)‖2 +

αC1

2
Et[‖git(wt)− uit‖2] + α2C2

where the equality (a) is due to ab ≤ a2/2 + b2/2 and the inequality (b) uses the factor
‖∇git(wt; ξ)‖ ≤ Cl and ∇f is Lf -Lipschitz continuous for u,gi(w) ∈ Ω and C1 = C2

l C
2
f .

Hence we have,
α

2
‖∇P (wt)‖2 ≤ P (wt)− Et[P (wt+1)] +

αC1

2
Et[‖git(wt)− uit‖2] + α2C2

Taking summation and expectation over all randomness, we have
α

2
E[

T∑
t=1

‖∇P (wt)‖2] ≤ E[
∑
t

(P (wt)− P (wt+1))] +
αC1

2
E[

T∑
t=1

‖git(wt)− uit‖2] + α2C2T

B.5 Proof of Lemma 3

Let it denote the selected positive data it at t-th iteration. We will divide {1, . . . , T} into n+ groups
with the i-th group given by Ti = {ti1, . . . , tik . . . , }, where tik denotes the iteration that the i-th
positive data is selected at the k-th time for updating u. Let us define φ(t) : [T ] → [n+] × [T ]
that maps the selected data into its group index and within group index, i.e, there is an one-to-one
correspondence between index t and selected data i and its index within Ti. Below, we use notations
aki to denote atik . Let Ti = |Ti|. Hence,

∑n+

i=1 Ti = T .

Proof of Lemma 3. To prove Lemma 3, we first introduce another lemma that establishes a recursion
for ‖uit − git(wt)‖2, whose proof is presented later.

Lemma 5. By the updates of SOAP Adam-style or SGD-style with B+ = 1, the following equation
holds for ∀ t ∈ 1, · · · , T

Et[‖uit − git(wt)‖2]
φ(t)
= Et[‖uki − gi(wk

i )‖2]

≤ (1− γ)‖uk−1
i − gi(wk−1

i )‖2 + γ2V + γ−1α2n2
+C3

(11)

where Et denotes the conditional expectation conditioned on history before tik−1.

Then, by mapping every it to its own group and make use of Lemma 5, we have

E[

Ki∑
k=0

‖uki − gki (wk
i )‖2] ≤ E

[
[‖u0

i − gi(w0
i )‖2]

γ
+ γV Ti + γ−2n2

+C3α
2Ti

]
(12)
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where u0
i is the initial vector for ui, which can be computed by a mini-batch averaging estimator of

gi(w0). Thus

E[

T∑
t=1

‖git(wt)− uit‖2]
φ(t)
= E[

n+∑
i=1

Ki∑
k=0

‖uki − gki (wk
i )‖2]

≤
n+∑
i=1

{ [‖u0
i − g0

i (w0
i )‖2]

γ
+ γV E[Ti] + γ−2n2

+C3α
2E[Ti]

}
≤ n+V

γ
+ γV T +

n2
+α

2TC3

γ2

B.6 Proof of Lemma 5

Proof. We first introduce the following lemma, whose proof is presented later.

Lemma 6. Suppose the sequence generated in the training process using the positive sample
i is {wi

i1
,wi

i2
, .. ..,wi

iTi
}, where 0 < i1 < i2 < · · · < iTi

≤ T , then E|ik [ik+1 − ik] ≤
n+, and,E|ik [(ik+1 − ik)2] ≤ 2n2

+,∀k.

Define g̃it(wt) = g(wt, ξ,xit). Let
∏

Ω(·) : R2 → Ω denotes the projection operator. By the
updates of uit , we have uit = uki =

∏
Ω[(1− γ)uk−1

i + γg̃it(wt)].

Et[‖uit − git(wt)‖2]
φ(t)
= E[‖uki − gi(wk

i )‖2]

= Et[‖
∏
Ω

((1− γ)uk−1
i + γg̃i(w

k
i ))−

∏
Ω

(gi(wt))‖2]

≤ Et[‖((1− γ)uk−1
i + γg̃i(w

k
i )− gi(wt)‖2]

≤ Et[‖((1− γ)(uk−1
i − gi(wk−1

i )) + γ(g̃i(w
k
i )− gi(wk

i )) + (1− γ)(gi(w
k−1
i )− gi(wk

i ))‖2]

≤ Et[‖((1− γ)(uk−1
i − gi(wk−1

i )) + (1− γ)(gi(w
k−1
i )− gi(wk

i ))‖2] + γ2V

≤ [(1− γ)2(1 + γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V +
(1 + γ)(1− γ)2

γ
CgE[‖wk

i −wk−1
i ‖2]

≤ [(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + γ−1α2CgEt[‖
tik−1∑
t=tik−1

∇git(wt; ξ)∇f(uit)‖2]

≤ [(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + γ−1α2CgEt[(tik − tik−1)2]C2
gC

2
f )]

(a)

≤ E[(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + 2γ−1α2n2
+C

3
gC

2
f

≤ [(1− γ)‖uk−1
i − gi(wk−1

i )‖2] + γ2V + γ−1α2n2
+C3

where the inequality (a) is due to that tik − tik−1 is a geometric distribution random variable with
p = 1/n+, i.e., E|tik−1

[(tik− tik−1)2] ≤ 2/p2 = 2n2
+, by Lemma 6. The last equality hold by defining

C3 = 2C3
gC

2
f .

B.7 Proof of Lemma 6

Proof. Proof of Lemma 6. Denote the random variable ∆k = ik+1 − ik that represents the iterations
that the ith positive sample has been randomly selected for the k + 1-th time conditioned on ik.
Then ∆k follows a Geometric distribution such that Pr(∆k = j) = (1 − p)j−1p, where p = 1

n+
,

j = 1, 2, 3, · · · . As a result, E[∆k|ik] = 1/p = n+. E[∆2
k|ik] = Var(∆k) + E[∆k|ik]2 =

1−p
p2 + 1

p2 ≤
2
p2 = 2n2

+.
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C Proof of Theorem 2 (SOAP with Adam-Style Update)

Proof. We first provide two useful lemmas, whose proof are presented later.

Lemma 7. Assume assumption 1 holds
‖wt+1 −wt‖2 ≤ α2d(1− η2)−1(1− τ)−1 (13)

where d is the dimension of w, η1 <
√
η2 < 1, and τ := η2

1/η2.

Lemma 8. With c = (1+(1−η1)−1)ε−
1
2C2

gL
2
f , running T iterations of SOAP (Adam-style) updates,

we have
T∑
t=1

α(1− η1)(ε+ C2
gC

2
f )−1/2

2
‖∇P (wt)‖2 ≤ E[L1]− E[LT+1]

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + Lα2Td(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

0 )−1/2) + cα

T∑
t=1

Et[‖git(wt)− uit‖2]

(14)

where Lt+1 = P (wt+1)− ct+1〈∇P (wt), Dt+1ht+1〉.

According to Lemma 8 and plugging Lemma 3 into equation (14), we have
T∑
t=1

α(1− η1)(ε+ C2
gC

2
f )−1/2

2
‖∇P (wt)‖2

≤ E[L1]− E[LT+1] + 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + Lα2dT (1− η2)−1(1− τ)−1

+ 2cαC2
gC

2
f

d∑
i′=1

(ε+ v̂i
′

0 )−1/2 + cα(
n+V

γ
+ 2γV T +

2Cgn
2
+C3α

2T

γ2
)

(15)

Let η′ = (1 − η2)−1(1 − τ)−1, η
′′

= (1 − η1)−1(1 − η2)−1(1 − τ)−1, and η̃ = (1 − η1)−2(1 −
η2)−1(1− τ)−1. As (1− η1)−1 ≥ 1, (1− η2)−1 ≥ 1, then η̃ ≥ η′′ ≥ η′ ≥ 1.

Then by rearranging terms in Equation (15), dividing αT (1 + η1)(ε+ C2
gC

2
f )−1/2 on both sides and

suppress constants, Cg, Lg, C3, L, Cf , Lf , V, ε into big O, we get

1

T

T∑
t=1

‖∇P (wt)‖2 ≤
1

αT (1− η1)
O
(
E[L1]− E[LT+1] + η

′′
η1α

2Td+ η
′
α2Td+ α

d∑
i′=1

(ε+ v̂i
′

0 )−1/2

+
cαn+

γ
+ cαγT +

cα3n2
+T

γ2

)
(a)

≤ 1

αT (1− η1)
O
(
E[L1]− E[LT+1] + η

′′
η1α

2Td+ η
′
α2Td+ αd(ε+ CfCg)

−1/2

+
cαn+

γ
+ cαγT +

cα3n2
+T

γ2

)
(b)

≤ η̃

αT
O
(
E[L1]− [LT+1] + (1 + η1)α2Td+ αd+

cαn+

γ
+ cαγT +

cα3n2
+T

γ2

)
(16)

where the inequality (a) is due to v̂i
′

0 = Gi
′
(w0)2 ≤ ‖G(w0)‖2 ≤ C2

fC
2
g . The last inequality (b) is

due to η̃ ≥ η′′ ≥ η′ ≥ 1.
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Moreover, by the definition of L and w0 = w1, we have

E[L1] = P (w1)− c1〈∇P (w0), D1h1〉 ≤ P (w1) + c1‖∇P (w0)‖‖w1 −w0‖
1

α
= P (w1)

−E[LT+1] ≤ −P (wT+1) + cT+1〈∇P (wT ), DThT 〉

≤ −min
w

P (w) + cT+1‖∇P (wt−1)‖‖wt+1 −wt‖
1

α
(a)

≤ −min
w

P (w) + (1− η1)−1α
√
d(1− η2)−1/2(1− τ)−1/2

(b)

≤ −min
w

P (w) + η̃
√
dα

(17)
where the inequality (a) is due to Lemma 7 and cT+1 ≤ (1−η1)−1α in equation (30). The inequality
(b) is due to (1− η1)−1(1− η2)−1/2(1− τ)−1/2 ≤ (1− η1)−1(1− η2)−1(1− τ)−1 ≤ η′′ ≤ η̃.
Thus E[L1]−E[LT+1] ≤ P (w1)−minw P (w)+ η̃

√
dα ≤ ∆1 + η̃

√
dα by combining equation (16)

and (17).
Then we have

1

T

T∑
t=1

‖∇P (wt)‖2 ≤ η̃O
(∆1 + η̃

√
dα

αT
+ (1 + η1)αd+

d

T
+
n+c

Tγ
+ cγ +

α2n2
+

γ2

)
(a)

≤ η̃O
(∆1n

2/5
+

T 2/5
+
η̃
√
d

T
+

(1 + η1)d

n
2/5
+ T 3/5

+
d

T
+
cn

3/5
+

T 3/5
+ 2

cn
2/5
+

T 2/5

)
(b)

≤ O(
n

2/5
+

T 2/5
)

(18)

The inequality (a) is due to γ =
n
2/5
+

T 2/5 , α = 1

n
2/5
+ T 3/5

. In inequality (b), we further compress the ∆1,

η1, η̃, c into big O and γ ≤ 1→ n
2/5
+ ≤ T 2/5.

C.1 Proof of Lemma 7

Proof. This proof is following the proof of Lemma 4 in [10].

Choosing η1 < 1 and defining τ =
η21
η2

, with the Adam-style (Algorithm 3) updates of SOAP that
ht+1 = η1ht + (1− η1)G(wt), we can verify for every dimension l,

|hlt+1| = |η1h
l
t + (1− η1)Gl(wt)| ≤ η1|hlt|+ |Gl(wt)|

≤ η1(η1|hlt−1|+ |Gl(wt−1)|) + |Gl(wt)|

≤
t∑

p=0

ηt−p1 |Gl(wp)| =
t∑

p=0

√
τ
t−p√

η2
t−p|Gl(wp)|

≤
( t∑
p=0

τ t−p
) 1

2
( t∑
p=0

ηt−p2 (Gl(wp))
2
) 1

2

≤ (1− τ)−
1
2

( t∑
p=0

ηt−p2 (Gl(wt))
2
) 1

2

(19)

where wl is the lth dimension of w, the third inequality follows the Cauchy-Schwartz inequality. For
the lth dimension of v̂, v̂lt, first we have v̂l1 ≥ (1− η2)(Gl(w1)2). Then since

v̂lt+1 ≥ ηtv̂lt + (1− η2)(Gl(wt))
2

by induction we have

v̂lt+1 ≥ (1− η2)

t∑
p=0

ηt−p2 (Gl(wt))
2 (20)

21



Using equation (19) and equation (20), we have

|hlt+1|2 ≤ (1− τ)−1
( t∑
p=0

ηt−p2 (Gl(wt))
2
)

≤ (1− η2)−1(1− τ)−1v̂lt+1

(21)

Then follow the Adam-style update in Algorithm 3, we have

‖wt+1 −wt‖2 = α2
d∑
l=1

(ε+ v̂lt+1)−1|hlt+1|2 ≤ α2d(1− η2)−1(1− τ)−1 (22)

which completes the proof.

C.2 Proof of Lemma 8

Proof. To make the proof clear, we make some definitions the same as the proof of Lemma 2. Denote
by ∇git(wt; ξ) = ∇g(wt; ξ,xit), ξ ∼ D, where it is a positive sample randomly generated from
D+ at t-th iteration, and ξ is a random sample that generated from D at t-th iteration. It is worth
to notice that it and ξ are independent. uit denote the updated u vector at the t-th iteration for the
selected positive data it.

P (wt+1) ≤ P (wt) +∇P (wt)
>(wt+1 −wt) +

L

2
‖wt+1 −wt‖2

≤ P (wt)− α∇P (wt)
>(Dt+1ht+1) + α2d(1− η2)−1(1− τ)−1L/2

where Dt+1 = 1√
εI+v̂t+1

, ht+1 = η1ht + (1− η1)∇g>it (wt; ξ)∇f(uit) and the second inequality

is due to Lemma 7. Taking expectation on both sides, we have
Et[P (wt+1)] ≤ P (wt)−Et[∇P (wt)

>(Dt+1ht+1)]︸ ︷︷ ︸
Υ

α+ α2d(1− η2)−1(1− τ)−1L

where Et[·] = E[·|Ft] implies taking expectation over it, ξ given wt. In the following analysis, we
decompose Υ into three parts and bound them one by one:

Υ = −〈∇P (wt), Dt+1ht+1〉 = −〈∇P (wt), Dtht+1〉 − 〈∇P (wt), (Dt+1 −Dt)ht+1〉
= −(1− η1)〈∇P (wt), Dt∇git(wt; ξ)

>∇f(uit)〉 − η1〈∇P (wt), Dtht〉
− 〈∇P (wt), (Dt+1 −Dt)ht+1〉
= It1 + It2 + It3

Let us first bound It1,

Et[It1]
(a)
= −(1− η1)〈∇P (wt),Et[Dt∇git(wt; ξ)

>∇f(uit)]〉
= −(1− η1)〈∇P (wt),Et[Dt∇git(wt; ξ)

>∇f(git(wt))]〉
+ (1− η1)〈∇P (wt),Et[Dt∇git(wt; ξ)

>(∇f(uit)−∇f(git(wt))]〉
≤ −(1− η1)‖∇P (wt)‖2Dt

+ (1− η1)‖D−1/2
t ∇P (wt)‖Et[‖D−1/2

t ∇git(wt; ξ)
>(∇f(uit)−∇f(git(wt)))‖]

(b)

≤ −(1− η1)‖∇P (wt)‖2Dt
+

(1− η1)‖∇P (wt)‖2Dt

2

+
(1− η1)Et[‖D−1/2

t ∇git(wt; ξ)
>(∇f(uit)−∇f(git(wt)))‖2]

2

≤ − (1− η1)

2
‖∇P (wt)‖2Dt

+
(1− η1)

2
Et[‖∇git(wt; ξ)

>(∇f(uit)−∇f(git(wt))‖2Dt
]

(c)

≤ − (1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇P (wt)‖2 +

1

2
ε−1/2C2

gL
2
fE[‖git(wt)− uit‖2]

(23)

22



where equality (a) is due to ∇P (wt) = Eit,ξ[∇git(wt; ξ)
>∇f(git(wt))], where it and ξ are

independent. The inequality (b) is according to ab ≤ a2/2 + b2/2. The last inequality (c) is due to
ε−1/2I ≥ ‖DtI‖ = ‖ 1√

εI+v̂t+1

‖ ≥ ‖(εI + C2
gC

2
f )−1/2‖ = (ε+ C2

gC
2
f )−1/2I, (1− η1) ≤ 1 and

Et[‖∇git(wt; ξ)
>(∇f(uit)−∇f(git(wt)))‖2Dt

]

≤ ε−1/2C2
gEt[‖∇f(uit)−∇f(git(wt))‖2I ]

≤ ε−1/2C2
gL

2
fEt[‖git(wt)− uit‖2]

(24)

For It2 and It3, we have
Et[It2] = −η1〈∇P (wt)−∇P (wt−1), Dtht〉 − η1〈∇P (wt−1), Dtht〉

≤ η1Lα
−1‖wt −wt−1‖2 − η1〈∇P (wt−1), Dtht〉

= η1Lα
−1‖wt −wt−1‖2 + η1(It−1

1 + It−1
2 + It−1

3 )

≤ η1Lαd(1− η2)−1(1− τ)−1 + η1(It−1
1 + It−1

2 + It−1
3 )

(25)

where the last equation applies Lemma 7.

Et[It3] = −〈∇P (wt), (Dt+1 −Dt)ht+1〉 = −
d∑

i′=1

∇i′P (wt)((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)hi
′

t+1

≤ ‖∇P (wt)‖‖ht+1‖
d∑

i′=1

((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)

≤ C2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)

(26)
By combining Equation (24), (25) and (26) together,

Et[It1 + It2 + It3] ≤ − (1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇P (wt)‖2 +

1

2
ε−1/2C2

gL
2
fEt[‖git(wt)− uit‖2]

+ η1Lαd(1− η2)−1(1− τ)−1 + η1(It−1
1 + It−1

2 + It−1
3 )

+ C2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

t )−1/2 − (ε+ v̂i
′

t+1)−1/2)

(27)

Define the Lyapunov function
Lt = P (wt)− ct〈∇P (wt−1), Dtht〉 (28)

where ct and c will be defined later.

Et[Lt+1 − Lt]
= P (wt+1)− P (wt)− ct+1〈∇P (wt), Dt+1ht+1〉+ ct〈∇P (wt−1), Dtht〉

≤ −(ct+1 + α)〈∇P (wt), Dt+1ht+1〉+
L

2
‖wt+1 −wt‖2 + ct〈∇P (wt−1), Dtht〉

= (ct+1 + α)(It1 + It2 + It3) +
L

2
‖wt+1 −wt‖2 − ct(It−1

1 + It−1
2 + It−1

3 )

Eqn (27) and Lemma 7

≤ −(α+ ct+1)
(1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇P (wt)‖2

+ (α+ ct+1)η1Lαd(1− η2)−1(1− τ)−1 + η1(α+ ct+1)(It−1
1 + It−1

2 + It−1
3 )

+ (α+ ct+1)C2
gC

2
f

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2)

+
L

2
α2d(1− η2)−1(1− τ)−1 − ct(It−1

1 + It−1
2 + It−1

3 ) +
ε−1/2C2

gL
2
f (α+ ct+1)

2
‖git(wt)− uit‖2

(29)
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By setting αt+1 ≤ αt = α, ct =
∞∑
p=t

(
p∏
j=t

η1)αj , and c = (1 + (1− η1)−1)ε−
1
2C2

gL
2
f , we have

ct ≤ (1− η1)−1αt,
2(α+ ct+1)

α
βε−1/2C2

gL
2
f ≤ cβ, η1(α+ ct+1) = ct (30)

As a result, η1(α+ ct+1)(It−1
1 + It−1

2 + It−1
3 )− ct(It−1

1 + It−1
2 + It−1

3 ) = 0

Et[Lt+1 − Lt] ≤ −(α+ ct+1)
(1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇P (wt)‖2

+ (α+ ct+1)η1Lαd(1− η2)−1(1− τ)−1 +
L

2
α2d(1− η2)−1(1− τ)−1

+ (α+ ct+1)C2
gC

2
f

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2)

+
(α+ ct+1)

2
ε−1/2C2

gL
2
f‖git(wt)− uit‖2

≤ −α (1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇P (wt)‖2

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 +

L

2
Tα2d(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2) +
cα

4

T∑
t=1

Et[‖git(wt)− uit‖2]

(31)
where the last inequality is due to equation (30) such that we have 2(α + ct+1)ε−1/2C2

gL
2
f ≤ cα,

and α+ ct+1 ≤ 2(1− η1)−1α.
Then by rearranging terms, and taking summation from 1, · · · , T of equation (31), we have
T∑
t=1

α
(1− η1)

2
(ε+ C2

gC
2
f )−1/2‖∇P (wt)‖2 ≤

T∑
t=1

Et[Lt − Lt+1]

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + LTα2d(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

T∑
t=1

d∑
i′=1

((ε+ v̂ti′)
−1/2 − (ε+ v̂t+1

i′ )−1/2) + cα

T∑
t=1

Et[‖git(wt)− uit‖2]

≤ E[L1]− E[LT+1]

+ 2η1Lα
2Td(1− η1)−1(1− η2)−1(1− τ)−1 + LTα2d(1− η2)−1(1− τ)−1

+ 2(1− η1)−1αC2
gC

2
f

d∑
i′=1

((ε+ v̂i
′

0 )−1/2) + cα

T∑
t=1

Et[‖git(wt)− uit‖2]

(32)

By combing with Lemma 3, We finish the proof.

24


	Introduction
	Related Work
	The Proposed Method
	Background on AUPRC and its estimator AP
	Stochastic Optimization of AP (SOAP)
	Convergence Analysis

	Experiments
	Image Classification
	Graph Classification for Molecular Property Prediction
	Graph Classification for Drug Discovery
	Ablation Studies

	Conclusions and Outlook
	Additional Experimental Results
	Analysis of SOAP (SGD-style)
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 4
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 5
	Proof of Lemma 6

	Proof of Theorem 2 (SOAP with Adam-Style Update)
	Proof of Lemma 7
	Proof of Lemma 8


