
Published as a conference paper at ICLR 2024

OPENTAB: ADVANCING LARGE LANGUAGE MODELS
AS OPEN-DOMAIN TABLE REASONERS

Kezhi Kong1∗ Jiani Zhang2† Zhengyuan Shen2 Balasubramaniam Srinivasan2

Chuan Lei2 Christos Faloutsos2 Huzefa Rangwala2‡ George Karypis2

1University of Maryland, College Park 2Amazon Web Services
kong@cs.umd.edu {zhajiani,donshen,srbalasu}@amazon.com
{chuanlei,faloutso,rhuzefa,gkarypis}@amazon.com

ABSTRACT

Large Language Models (LLMs) trained on large volumes of data excel at var-
ious natural language tasks, but they cannot handle tasks requiring knowledge
that has not been trained on previously. One solution is to use a retriever that
fetches relevant information to expand LLM’s knowledge scope. However, ex-
isting textual-oriented retrieval-based LLMs are not ideal on structured table data
due to diversified data modalities and large table sizes. In this work, we propose
OPENTAB, an open-domain table reasoning framework powered by LLMs. Over-
all, OPENTAB leverages table retriever to fetch relevant tables and then generates
SQL programs to parse the retrieved tables efficiently. Utilizing the intermediate
data derived from the SQL executions, it conducts grounded inference to produce
accurate response. Extensive experimental evaluation shows that OPENTAB sig-
nificantly outperforms baselines in both open- and closed-domain settings, achiev-
ing up to 21.5% higher accuracy. We further run ablation studies to validate the
efficacy of our proposed designs of the system.

1 INTRODUCTION

The field of natural language processing has rapidly advanced in tasks of text generation (Brown
et al., 2020) and knowledge reasoning (Huang & Chang, 2023), driven by general-purpose large-
scale generative models like GPT4 (OpenAI, 2023). However, these generative models have inher-
ent drawbacks, like hallucinations (Ye & Durrett, 2022) and limited specialized knowledge. They
cannot be used to perform tasks involving data that has not been trained on, like answering questions
about recent events or about proprietary enterprise data. Recent advancements in retrieval-based
methods (Asai et al., 2023) that aim to equip generative models with expanded information, allows
for grounded responses based on real-time or proprietary data.

Many retrieval-based LLMs primarily target textual data from the web or text corpora, overlooking
the wealth of information stored in structured tables. When applied to the tables, retrieval-based
LLMs encounter the following challenges: (1) Structured tables have diverse data types, notably
numerical data presented in large or precise numbers, which results in a high token usage and po-
tentially leads to memory and computational constraints for the model. (2) LLMs, mainly those
optimized for natural language understanding, fail to comprehend the complex relationships within
tabular data for effective data transformation and answer extraction. (3) The restricted maximum
context length of LLMs poses difficulties in managing a multitude of retrieved tables of varying
sizes, particularly when dealing with tables containing millions of rows.

This work aims to develop an LLM-based framework for the open-domain table reasoning
task (Herzig et al., 2021; Kweon et al., 2023). Here, we concentrate on two specific tasks: table-
based question answering (QA) and fact verification. For both tasks, the framework is presented

∗Work conducted during an internship at Amazon
†Corresponding author
‡Huzefa Rangwala is on LOA as a Professor of Computer Science at George Mason University. This paper

describes work performed at Amazon.

1

Published as a conference paper at ICLR 2024

Did Fabrice Santoro win more at the
Australian open or Wimbledon?

Query

Table corpus

RETRIEVER

CODER

SQL
READER

ROWSELECTOR

SQL
Execution

Fabrice Santoro won
more at Australian open.

Response

REASONER

SQL exe results

Figure 1: An overview of OPENTAB pipeline. OPENTAB uses
a RETRIEVER to retrieve relevant sampled tables from a corpus
of tables for a given natural language query, and then use a
REASONER to output a natural language response.

top-1 top-2 top-5 top-10
Number of retrieved tables

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

LLM-Answer
LLM-SQL

BINDER
OpenTab

Figure 2: The accuracy with an in-
creasing numbers of retrieved ta-
bles. OPENTAB has a consistent in-
crease in accuracy with more tables.

with natural language queries and a corpus of tables. In the open-domain setting, the gold tables,
which serve as the evidence for queries to generate responses, are not provided. Therefore, the chal-
lenge lies in automatically identifying and retrieving pertinent knowledge from the table corpus and
also formulating a coherent natural language response. A task example of table QA is in Figure 1.

Existing LLM-based table reasoning methods, like BINDER (Cheng et al., 2023) and DATER (Ye
et al., 2023), operate in the closed-domain setting, in which table retrieval is not required and a
pre-defined gold table is available for each query during test time. While this assumption simplifies
the reasoning process, it does not hold in most real-world scenarios as manually providing gold
grounding information is costly and impractical. In the open-domain context, predictions must be
grounded in a selection of relevant tables, and the system should possess the reasoning capabilities
to sift through incorrect tables (Liu et al., 2023b) to derive the correct output. Meanwhile, existing
open-domain table reasoning systems (Chen et al., 2021b; Karpukhin et al., 2020; Chen et al., 2022)
have a fine-tuned encoder for retrieval and a fine-tuned table reasoner (Herzig et al., 2020) for QA
as well, which necessitates specialized training for specific tasks and is less flexible. Moreover,
although they perform well on observed data after fine-tuning, the performance drops on new tables
due to constrained transferability.

We propose OPENTAB, an open-domain & end-to-end table reasoning framework. As illustrated
in Figure 1, OPENTAB leverages a RETRIEVER to fetch relevant tables, generates programs from a
CODER as intermediary reasoning steps, and delegates the final solution to a READER. Following
thorough empirical assessment, we opt to implement the BM25 (Robertson et al., 2009a) algo-
rithm as the table RETRIEVER because of its scalability and effectiveness. To mitigate challenges of
LLMs in processing and understanding structured tables, we utilize an LLM as a CODER to generate
high-quality SQL programs for efficient table parsing. Moreover, an LLM-based READER works to
formulate the final response based on the SQL execution results. By breaking down the complex rea-
soning job into programmatic steps, we achieve enhanced accuracy and reliability in open-domain
table reasoning. Notably, the CODER and the READER modules are guided by few-shot prompting,
without relying on training or fine-tuning. Our approach has several key advantages:

High Accuracy. Open-domain table reasoning presents a challenge due to the trade-off between
retrieval recall and precision. Higher recall/coverage requires retrieving more tables, but this might
introduce noise from less pertinent tables and therefore reduces precision and prediction accuracy.
Specifically, we propose a reranking strategy called Generative Reranking & Sequential Reason-
ing to prioritize the tables with higher similarity between the natural language query and the corre-
sponding generated SQL programs to address the trade-off, which enhances prediction accuracy as
shown in Figure 2.

Scalability. Our approach can efficiently handle large quantities and sizes of tables. The framework
is capable of generating accurate responses with access to only a limited number of rows from each
table effectively extracted by ROWSELECTOR.

Robustness. We propose simple-to-complex prompting, a flexible and robust progressive program
generation and execution strategy. By sequentially generating SQL programs with increasing levels
of complexity, starting from basic column selection to advanced operations like aggregation and

2

Published as a conference paper at ICLR 2024

text operations, the model explores a wider range of possible solutions. This approach offers more
adaptability in finding the optimal SQL query for a given task, and it also serves as a structured
reasoning process for generating effective SQL code. Additionally, it allows for easy fallback to
simpler queries if the more complex ones fail, enhancing the overall robustness of the system.

Effectiveness. We provide extensive experimental results showing that our method registers com-
petitive performances without any fine-tuning on the target dataset. We show that OPENTAB sig-
nificantly outperforms baselines in both open- and close-domain settings. For example OPENTAB
outperforms the best baseline with a remarkable 21.5% higher accuracy under the open-domain
scenario. We further run detailed ablation studies to validate the efficacy of our proposed designs.

2 DEFINITION OF OPEN-DOMAIN TABLE REASONING

We formally define the open-domain table reasoning task as follows: Given a natural language input
query q and a database with tables T , the task is to generate a response a based on multiple retrieved
tables, denoting as T̂q ⊂ T , while the gold table set for query q is denoted as Tq . The form of
the (q, a) pair is determined by the corresponding downstream task. In this work, we focus on the
following two tasks:

• Question answering, where q is a natural language question and a is a natural language answer.
E.g., q: “Which team won the NBA championship in 2022?”, a: “Golden State Warriors.”

• Fact verification, where q is a statement and a is a judgement given T , like entailment or contra-
diction. E.g., q: “In àlex corretja career there be no game in may 1998”, a: “Entailed”.

We approach the task as modeling P (a|q, T). Technically, as T can be a large collection of tables,
it is intractable to directly solve P (a|q, T). Thus, we follow the two-step approach that is often
adopted in natural language retrieval augmented models (Borgeaud et al., 2022). Namely, given a
query q, we firstly retrieve a set of evidence tables T̂q ⊂ T , and subsequently model P (a|q, T̂q) in
place of P (a|q, T). In this work, we expect to leverage LLMs as the backbone for modeling given
their capability in few-shot inference and reasoning (Chen, 2023).

Note that the key difference between open-domain and closed-domain table reasoning task is that in
the closed-domain setting the tables Tq are explicitly provided for each query q. In contrast, in the
open-domain setting, there is possibility that Tq ∩ T̂q = ∅ depending on the ability of the retriever.

3 METHOD

Overview. We present an overview of OPENTAB in Figure 1. To enable our pipeline to automatically
handle large-scale tabular data in terms of both table size (number of rows and columns) and table
quantity, we divide the overall system into two components: a RETRIEVER (in Section 3.1) and
a REASONER (in Section 3.2). For RETRIEVER, we advocate the BM25 for table retrieval tasks
as it provides scalable and competitive retrieval performance. For the REASONER, we leverage
the CODER powered by LLM to generate SQL queries based on retrieved tables Tq . The final
response a is then extracted by an LLM-based READER module to ensure the accuracy, efficiency,
and robustness of the REASONER against generation stochasticity. In Section 3.3, we introduce a
Generative Reranking & Sequential Reasoning (GRSR) strategy for open-domain reasoning, which
sequentially generates SQLs for a set of retrieved tables and then reranks them based on query
similarity, effectively addressing the hallucination issues.

3.1 TABLE RETRIEVER

Effective table retrieval in the open-domain setting (Wang et al., 2022; Kweon et al., 2023) remains
an open question (Ren et al., 2022). We select BM25 1 (Robertson et al., 2009b) as the table retriever
in our framework for the following considerations. First, BM25, a probabilistic-based ranking func-
tion used in information retrieval systems to rank documents, is a standard sparse retrieval method
that works efficiently on large corpora, considering term frequency and inverse document frequency

1Implementation based on https://github.com/dorianbrown/rank bm25

3

https://github.com/dorianbrown/rank_bm25

Published as a conference paper at ICLR 2024

Assets

name ... caree_nsr career_nwin_loss
australian

open ... 0/18 22-18

wimbledon ... 0/14 11-14

us open ... 0/18 13-18

indian wells ... 0/13 16-13

...

Basic

text transformation
ranking, etc

Assets

name ... caree_nsr career_nwin_loss
australian

open ... 0/18 22-18

wimbledon ... 0/14 11-14

us open ... 0/18 13-18

indian wells ... 0/13 16-13

...

Intermediate

Assets

name ... caree_nsr career_nwin_loss total_wins
australian

open ... 0/18 22-18 22

wimbledon ... 0/14 11-14 11

us open ... 0/18 13-18

indian wells ... 0/13 16-13

...

Advanced

Figure 3: Examples illustrating the progressive Simple-to-complex SQL proficiency. The basic SQL
queries mainly select specific columns. The intermediate incorporates both column and row selec-
tion. The advanced SQL employs additional operations like aggregation and text operations that can
manipulate and transform the tabular data. The cells in blue are outputs of the SQL programs.

with saturation. Second, it is easy to use without the necessary fine-tuning process of Dense Passage
Retrieval (DPR) (Karpukhin et al., 2020). Third, empirically, we show that BM25 achieves compet-
itive retrieval performance compared with dense methods such as DPR in Section 4.3. Given these,
BM25 as RETRIEVER together with REASONER powered by LLMs make the OPENTAB system
off-the-shelf usable without the necessity of fine-tuning on target databases, which is a significant
advantage for industrial applications.

3.2 TABLE REASONER

The REASONER processes natural language queries along with table schema and sampled rows, fa-
cilitated by a CODER and a ROWSELECTOR. The ROWSELECTOR ensures that the pertinent rows
are provided to the LLM for effective processing. The CODER generates SQL programs of increas-
ing complexity. Finally, the READER leverages an LLM to parse and extract the final response.

3.2.1 CODER

On the table reasoning task, LLMs (e.g., ChatGPT and Falcon) are capable of generating SQL
queries that can be executed on databases to extract the final answer (Chen et al., 2021a; Liu et al.,
2023a; Sun et al., 2023). This approach is referred to as the LLM-SQL baseline. However, the
generated SQLs towards direct question answering can be less robust with both syntax and semantic
errors during execution when facing complex reasoning tasks (Cheng et al., 2023), which might
require multiple operations such as aggregation, comparison, and sorting (Kweon et al., 2023).

In CODER, we propose a new simple-to-complex prompting strategy for effective SQL generation.
Specifically, for each input query, we prompt the LLM to sequentially generate three SQL programs
with ascending complexities and functionalities, which are:

• SQL-basic: focusing on column selection, which sets the groundwork for understanding how to
fetch specific data from a database.

• SQL-intermediate: incorporating both column and row selection. This means extracting particular
columns and filtering rows based on specified criteria, enhancing precision in data gathering.

• SQL-advanced: empowering additional operations including but not limited to aggregation func-
tions and text operations. Aggregation empowers data summarization, while text operations facil-
itate the manipulation and transformation of string data.

Figure 3 shows the high-level idea of this simple-to-complex prompting strategy. The reason for such
a design is that generating solid SQLs can be challenging for complex input queries, so we incre-
mentally generate SQLs in reasoning steps from simple to complex. Moreover, with the READER
module (explained later), the generated SQL programs do not necessarily need to produce the fi-
nal answer directly. This is infeasible when the input query is not solvable by pure SQL programs
(Cheng et al., 2023). Therefore, SQL-basic and SQL-intermediate can not only function as reason-
ing steps towards the ultimate solid SQL-advanced but can also lead to a final correct response.

4

Published as a conference paper at ICLR 2024

This provides more flexibility and robustness than generating a single SQL. After the generations
of three SQL programs, we first test SQL-advanced by execution as verification. We proceed to the
READER module for final response extraction if it returns valid non-empty results. If the SQL fails
the verification, we turn to verify simpler ones until all SQLs are exhausted. Figure 5 displays the
prompt and generation structure of CODER. For concrete problem solving example, see Figure 6.

3.2.2 READER

To expand the limited capability of SQL in solving natural input queries, we use a READER mod-
ule that leverages LLM to digest the intermediate SQL execution results and formulate the final
response. Rather than providing only the execution results, we further supply the READER with
broader context from CODER, including table schema, sampled rows, and generated SQL query.
This enables the READER to better understand the contextual background and semantics needed for
accurate predictions. We opt to provide READER with these additional contexts based on analysis
showing poor performance when only giving the execution results without exposure to the richer
contextual information from CODER (see ablation studies). As shown in Figure 5, our framework
prompts the READER with this broader context encapsulating the entire SQL generation process.

3.2.3 ROWSELECTOR

Besides table schema, table contents are also critical for effective SQL generation. Ideally, the entire
table should be input to the LLM for the complete view. However, LLMs can only handle tables with
large sizes within their token capacity limits. In order to balance scalability and reasoning ability,
we propose to use the ROWSELECTOR to harness a few rows that are most relevant to the input q to
be placed into the prompt of LLMs. Technically, we leverage BM25 to rerank and choose the top-k
rows based on relevance to q.

3.3 OPEN-DOMAIN TABLE REASONING

In contrast to a closed-domain setting where the table used for reasoning is provided, open-domain
reasoning operates over a much larger and unconstrained table store, causing an inherent trade-off
between precision and recall of the retrieved tables. More tables need to be retrieved to achieve
higher coverage (i.e., recall values), which inevitably brings irrelevant information and, thus, lower
precision. Therefore, precisely identifying the correct table from the retrieved set is crucial for the
pipeline to achieve accurate reasoning performance over the end-to-end open-domain task.

We propose a novel Generative Reranking & Sequential Reasoning (GRSR) strategy to address
this pain point. Specifically, given a query q and T̂q of k tables fetched by RETRIEVER, SQLs
are sequentially generated for each table using CODER. We then rerank the tables based on the
similarity between q and the generated SQL computed using pretrained Cross Encoder transformers
(Reimers & Gurevych, 2019). 2 The tables with the highest resultant similarity scores computed
by corresponding SQLs are then selected for downstream predictions. GRSR is effective because
of its ability to combat the hallucination tendency of LLMs. Ideally, CODER should only be able to
generate valid SQL programs if gold set Tq is retrieved, such that the execution result of the SQL can
be used to locate the gold tables. However, in practice, we find that CODER is likely to generate valid
SQL that can pass the execution verification even though the retrieved table is irrelevant from the
query q. This hallucination problem greatly limits the expected effectiveness of generative feedback
from LLMs toward retrieved tables. Given these, GRSR evades noisy retrieved tables by detecting
hallucinated SQLs using a pretrained Cross Encoder. With more tables retrieved, we expect to
see higher recall value but also likely with precision degradation. GRSR effectively counters such
negativity introduced by more tables retrieved while leveraging the advantage of higher recall by
more precisely locating the gold table and ignoring the noisy ones.

To better reveal the efficacy of the GRSR strategy, we introduce two baseline algorithms for com-
parison. Joint Reasoning approach, where all k retrieved tables are aggregated into the prompt of
CODER for SQL generation and prediction simultaneously. Sequential Reasoning only, which is
a basic sequential approach that verifies the validity of SQLs in the order defined by the retriever.
If we reach a valid SQL without an execution error, we select the corresponding SQL. By default,

2Huggingface checkpoint with model name cross-encoder/ms-marco-MiniLM-L-12-v2

5

Published as a conference paper at ICLR 2024

Table 1: The accuracy on two open-domain table reasoning tasks using two different backbone
LLMs. The results are presented at the top-1/2/5/10 retrieved tables.

gpt-3.5-turbo falcon-180B
Method Top-1 Top-2 Top-5 Top-10 Top-1 Top-2 Top-5 Top-10

Open-WikiTables Open-WikiTables

LLM-Answer 0.273 0.102 0.047 0.008 0.203 0.047 0.016 0.008
LLM-SQL 0.336 0.313 0.250 0.109 0.195 0.094 0.023 0.008
BINDER 0.234 0.305 0.375 0.375 0.164 0.188 0.227 0.227

OPENTAB 0.491 0.523 0.556 0.565 0.375 0.391 0.437 0.437

FEVEROUS FEVEROUS

LLM-Answer 0.672 0.508 0.492 0.453 0.680 0.476 0.375 0.289
LLM-SQL 0.609 0.460 0.515 0.422 0.328 0.242 0.195 0.094
BINDER 0.375 0.383 0.391 0.391 0.219 0.266 0.305 0.281

OPENTAB 0.695 0.508 0.563 0.508 0.742 0.515 0.555 0.484

we leverage GRSR in OPENTAB. In the ablation section, we show the performance gain of GRSR
over Sequential Reasoning and Joint Reasoning, justifying the efficacy of GRSR in mitigating the
hallucination problem and locating the gold table.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. To evaluate the proposed approach, we use Open-WikiTable (Kweon et al., 2023), Wik-
iTableQuestions (Pasupat & Liang, 2015), and FEVEROUS (Aly et al., 2021) datasets. Open-
WikiTable is an open-domain table question-answering dataset, where the specific table related to a
given question is not provided and must be retrieved. Experiments were limited by budget to 2,000
random samples from the validation set. The corpus contains 24,680 candidate tables. In contrast,
WikiTableQuestions, also a table-based QA dataset, provides the relevant table containing the nec-
essary information, making it closed-domain. FEVEROUS, on the other hand, is a fact-verification
dataset that requires the identification of multiple relevant tables for reasoning and verifying factual
questions. We adapted the dataset for open-domain table reasoning by filtering 323 examples from
the validation set that rely solely on table data, using a corpus of 26,177 candidate tables from the
FEVEROUS dataset. In line with BINDER (Cheng et al., 2023), we use execution accuracy (EA)
as our primary metric for evaluating performance on the Open-WikiTable and WikiTableQuestions
datasets. For FEVEROUS we adopt a metric that demands the pipeline not only to make the correct
predictions but also to correctly identify the gold evidence table(s) for making those predictions. We
report both metrics as the accuracy term in the following descriptions. See details in Appendix A.3.

Baselines. For table retrieval experiments, we conduct experiments to compare the performances
of BM25 and DPR, where DPR uses BERT models3 both with and without being fine-tuned on the
target dataset. In the context of the table reasoning task, we compare with BINDER (Cheng et al.,
2023), an end-to-end table QA model that generates specialized symbolic languages to be executed
on the table database. As the original LLM model used in BINDER (OpenAI Codex) is no longer
available, we reproduce BINDER’s results using gpt-3.5-turbo with BINDER’s official im-
plementation. The official implementation of BINDER does not support the open-domain scenario;
and the database interface cannot support identification of multiple relevant tables. We leverage the
straightforward Sequential Reasoning (SR) strategy to reduce the multi-table scenario to single-table
to make BINDER applicable in the open-domain setting. Furthermore, we implement two additional
baselines: (1) LLM-Answer, to prompt LLM to directly output the text-format answer based on the
table and question; (2) LLM-SQL, to let LLM respond with SQL programs whose execution result
will be the output. If not specified, the LLM backbone used in this work is gpt-3.5-turbo
(default 4k-token version), and the in-context learning examples are 2-shot.

3Huggingface checkpoint with model name bert-base-uncased

6

Published as a conference paper at ICLR 2024

Table 2: The accuracy on the closed-domain table QA
task (WikiTableQuestions).

Method Acc

Fine-tuned

T5-3B (Xie et al., 2022) 0.519
Tapex (Liu et al., 2022) 0.604
TaCube (Zhou et al., 2022) 0.611
OmniTab (Jiang et al., 2022) 0.633

w/o Fine-tuning

LLM-Ans 0.375
LLM-SQL 0.414
BINDER (Cheng et al., 2023) 0.428
DATER (Ye et al., 2023) 0.453

OPENTAB 0.641

Table 3: The accuracy results on the
closed-domain table QA task (Open-
WikiTable).

Method Acc

LLM-Answer 0.378
LLM-SQL 0.579
BINDER (Cheng et al., 2023) 0.421

OPENTAB 0.710

4.2 MAIN RESULTS

Open Domain. For this setting, we first retrieve top-k relevant tables T̂q from the database us-
ing the same BM25 algorithm. We run extensive experiments with 2 different LLM backbones
(gpt-3.5-turbo & falcon-180b) on two datasets (Open-WikiTables & FEVEROUS). Ta-
ble 1 summarizes the experimental results. From Table 1, we can see that OPENTAB signifi-
cantly outperforms baselines on the Open-WikiTables dataset. For example with gpt-3.5-turbo
OPENTAB outperforms the best baseline with a remarkable 21.5% higher accuracy under the top-10
scenario. Meanwhile on the FEVEROUS dataset, OPENTAB can mostly win over the baselines with
non-trivial improvements. Note that the baseline methods require full tables to be fed into LLM for
reasoning, which may exceed the upper bound of the input token limit, rendering an invalid predic-
tion. While OPENTAB does not suffer from scalability issues as CODER is capable of generating
high-quality SQLs with three selected representative rows. Moreover, to reproduce BINDER’s per-
formance, we follow Cheng et al. (2023) to use 14-shot examples when doing in-context learning.
For BINDER, we also deploy gpt-3.5-turbo-16k to fit the long input sequences. This group
of experiments shows that OPENTAB is the more capable system at dealing with the challenging
open-domain table reasoning tasks.

Closed Domain. To complement the empirical investigation, we further conduct experiments under
the closed-domain scenario, where the golden evidence table is directly given without the retrieval
requirements. We show the performances in Table 3 on the Open-WikiQuestion dataset. Similarly, to
make BINDER applicable, we use gpt-3.5-turbo-16k with its official 14-shot examples. We
can see that OPENTAB has a non-marginal 13% improvements over the baselines, further validating
the efficacy of OPENTAB designs. We further evaluated the WikiTableQuestions dataset (Pasupat &
Liang, 2015), which is intrinsically a closed-domain table QA dataset. Results are shown in Table
2. It reveals the competitiveness of OPENTAB of even outperforming fine-tuned methods.

4.3 TABLE RETRIEVAL RESULTS

We report the table retrieval performance in Table 4. Results on the Open-WikiTable dataset are from
both Kweon et al. (2023) and our implementations. BM25 has competitive performances compared
to the DPR, which has been fine-tuned on the labeled training dataset. On the FEVEROUS dataset,
BM25 even outperforms fine-tuned BERT, which supports our intuition that sparse retrievers are
simple but powerful table retrievers.

5 ABLATION STUDIES & ANALYSIS

Ablation studies on the proposed modules of OPENTAB. In Table 5, we show the effects of de-
signed components our OPENTAB. The evaluations happen under the closed-domain scenario. We
can see that, the performance drops drastically from 0.71 to 0.54 due to the removal of the STC mod-
ule, highlighting its significance. Moreover with the ablation of ROWSELECTOR, the performance
continues to drop. Lastly, by disabling the longer-context functionality of READER, the performance
reaches the lowest, showing the significance of incorporating detailed context information including

7

Published as a conference paper at ICLR 2024

Table 4: Recall@k scores for table retrieval on the open-domain Open-WikiTables and FEVEROUS
datasets. BM25 wins among the non fine-tuned methods.

Setting Method Recall@5 Recall@10 Recall@20 Recall@50

Open-WikiTables

w/o Fine-tuning
BM25 0.832 0.893 0.940 0.972

BM25* 0.422 0.489 0.561 -
DPR-BERT 0 0 0 0

Fine-tuned DPR-BERT* 0.895 0.950 0.973 -
DPR-BERT 0.870 0.933 0.975 0.990

FEVEROUS

w/o Fine-tuning BM25 0.919 0.942 0.956 0.973
DPR-BERT 0 0 0.001 0.003

Fine-tuned DPR-BERT 0.698 0.767 0.831 0.902
1 Results of *methods are from Kweon et al. (2023). Others are implemented in this work.
2 The non fine-tuned DPR scores are approximate to 0 on both datasets due to poor trans-
ferability.

Table 5: Ablation studies on different proposed modules in OPENTAB. On the closed-domain Open-
WikiTables dataset. STC stands for the Simple-to-Complex prompting SQL generation strategy.

Method Accurate

OPENTAB 0.710
OPENTAB w/o STC 0.539
OPENTAB w/o STC+ROWSELECTOR 0.515
OPENTAB w/o STC+ROWSELECTOR +broad-context READER 0.421

that of the SQL generation process. For clarification, by disabling the longer-context functionality,
we do not forward the table schemas and generated SQLs into READER.

Ablation studies on Simple-to-Complex SQLs. We test the individual efficacy of SQL-basic, SQL-
intermediate, and SQL-advanced. Instead of moving onto the next in order if one program fails to
provide valid result, we focus on one SQL program at a time for evaluation individually. Table 6
show the results. We can see that our design of synergizing all three kinds of design has the best
performance compared with merely using solo SQLs. This is because in our Simple-to-Complex
strategy, the solidness of the generated SQL programs will be verified on the fly, thus we can try to
evade invalid SQLs that will either have syntax errors or empty execution results, which is common
for a solo SQL generation.

Open-domain strategy. We verify the efficacy of the Joint Reasoning, Sequential Reasoning, and
GRSR strategies. Results are summarized in Figure 4. From the plot we can see that the best per-
forming model is OPENTAB with GRSR strategy, which is intuitive because such strategy implicitly
leverages the generative power of the LLM towards identifying the correct table to build reasoning
on. From the figure we can see that the accuracy of OPENTAB-GRSR constantly increases with
more tables retrieved (higher recall value) despite the negative impact of more incorrect tables pre-
sented. The novel generative reranking design leads to more precisely grabbing the core information
by mitigating the hallucination issue.

6 RELATED WORKS

LLMs for Table Reasoning. Recent work has explored leveraging LLMs for table reasoning tasks
without task-specific fine-tuning. Chen (2023) showed that LLMs like GPT-3 can perform substan-
tially on table QA and fact verification datasets like WikiTableQuestions and TabFact with few-shot
prompting. However, their capability degrades on large tables with 30+ rows. To address this limi-
tation, Ye et al. (2023) proposed using LLMs to extract relevant sub-tables and decompose complex
questions into simpler sub-questions. Their DATER method improves LLM performance on large

8

Published as a conference paper at ICLR 2024

top2 top5 top10
Retrieval

46

48

50

52

54

56

58

Ac
c

47.6

52.3

50.0
51.1

51.9 51.952.4

55.6
56.5OpenTab-JR

OpenTab-SR
OpenTab-GRSR

Figure 4: Ablation study on the open-domain
strategy. “JR” stands for “Joint Reasoning” and
“SR” stands for “Sequential Reasoning”.

Table 6: Ablation studies on the STC SQL
generations.

Closed-
domain

Open-domain-
top2

OPENTAB 0.710 0.523

OPENTAB-adv. 0.585 0.367
OPENTAB-int. 0.609 0.406
OPENTAB-basic 0.617 0.390

and complex table reasoning tasks. Alternatively, BINDER (Cheng et al., 2023) maps the natural
language questions into programing languages such as SQL and Python with API calls to invoke
LM functions, improving the reasoning capability beyond the basic programming language gram-
mar. He et al. (2022) proposed a strategy that involves rethinking with retrieval to enhance LLM
faithfulness by retrieving relevant knowledge using the chain-of-thought prompting, showing the
effectiveness in a series of reasoning tasks, including tabular reasoning.

Table Retrieval. Wang et al. (2022) investigated the necessity of designing table-specific dense
retrievers with structure-related modules. The authors showed that DPR (Dense Passage Retriever)
and DTR (Dense Table Retriever) have comparable performances, justifying the effectiveness of
deploying DPR in table retrieval tasks. Furthermore, Kweon et al. (2023) shared similar findings on
the Open-WikiTables dataset. Despite the efforts of applying dense retrievers on tables, a number of
existing works rely on sparse methods to realize the retriever. Schlichtkrull et al. (2021) leveraged
TF-IDF to retrieve tables in the open-domain setting. Aly et al. (2021) introduce the FEVEROUS
dataset and also use a sparse method DrQA (Chen et al., 2017) to retrieve both text and tables.
Moreover, DCUF (Hu et al., 2022) utilized DrQA to retrieve and BM25 to rerank the retrieved
documents. Chen et al. (2022) proposed to use fine-tuned DPR on open-domain table retrieval task,
and the answers are heavily dependent on the generated SQL queries. These dependencies can result
in subpar retrieval performance for unseen tables and cannot handle the cases when the generated
SQL queries fail to execute. In summary, effectively retrieving relevant tables from a large data
corpus still remains an open question.

Retrieval Augmented Generators (RAG). RAGs leverage retrievers to fetch information from ex-
ternal knowledge database and augment the text input to the language models (Lewis et al., 2020).
REALM (Guu et al., 2020) and RETRO (Borgeaud et al., 2022) pretrains the retrieval augmentation
framework in the end-to-end manner so that the language model learns to better utilize the retrieved
information, while ATLAS (Izacard et al., 2022) jointly trains the retriever as well as the language
model. We point out that these well-known RAG models are specialized in the text reasoning do-
main and cannot be directly applied to table reasoning tasks without fine-tuning, thus inapplicable
to the experimental setup of this work.

7 CONCLUSION

In this work, we study the task of open-domain table reasoning, where complex questions are an-
swered using knowledge and evidence stored in structured tables. The reasoning part is empowered
by Large Language Models (LLMs), enabling the OPENTAB to work directly on the target dataset
without being specifically fine-tuned. This is a highly desired property for several applications, from
both efficiency and privacy perspectives. The proposed method OPENTAB incorporates CODER,
ROWSELECTOR, and READER that are effective in generating valid SQL programs, highlighting
informative content and absorbing longer context allowing for accurate response. We perform com-
prehensive empirical studies demonstrating the efficacy of OPENTAB. In both open-domain and
closed-domain settings, OPENTAB outperforms baseline methods by a large margin, revealing its
advanced capability.

9

Published as a conference paper at ICLR 2024

8 REPRODUCIBILITY

To ensure reproducibility of OPENTAB, we provide detailed discussion regarding the experimental
setup in Section 4, including the LLM backbone usage, pretrained checkpoint model name, few-shot
sample count, etc. We share the prompt used in the experiments in the Appendix. We discuss the
details of datasets and the specific metrics used in Section A.3.

REFERENCES

Rami Aly, Zhijiang Guo, Michael Schlichtkrull, James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. Feverous: Fact extraction and verifi-
cation over unstructured and structured information. In Proceedings of the Neural Information
Processing Systems (NeurIPS) Track on Datasets and Benchmarks, volume 1, 2021.

Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. Tutorial proposal: Retrieval-based lan-
guage models and applications. In The 61st Annual Meeting of the Association for Computational
Linguistics (ACL): Tutorial Abstracts, pp. 41, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
De Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack Rae, Erich Elsen, and Laurent Sifre. Improving
language models by retrieving from trillions of tokens. In Proceedings of the 39th International
Conference on Machine Learning (ICML), volume 162, pp. 2206–2240. PMLR, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33:1877–1901,
2020.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pp. 1870–1879, 2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021a.

Siqin Chen, Yubo Liu, Jie Wu, and Mengshu Hou. Retrieval augmented via execution guidance in
open-domain table qa. In Proceedings of the 2022 5th International Conference on Algorithms,
Computing and Artificial Intelligence (ACAI), pp. 1–6, 2022.

Wenhu Chen. Large language models are few(1)-shot table reasoners. In Findings of the Association
for Computational Linguistics (EACL), pp. 1120–1130, 2023.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W Cohen. Open ques-
tion answering over tables and text. In The Ninth International Conference on Learning Repre-
sentations (ICLR), 2021b.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Binding lan-
guage models in symbolic languages. In The Eleventh International Conference on Learning
Representations (ICLR), 2023.

10

Published as a conference paper at ICLR 2024

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Hangfeng He, Hongming Zhang, and Dan Roth. Rethinking with retrieval: Faithful large language
model inference. arXiv preprint arXiv:2301.00303, 2022.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian Eisen-
schlos. TaPas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 4320–4333, 2020.

Jonathan Herzig, Thomas Müller, Syrine Krichene, and Julian Eisenschlos. Open domain question
answering over tables via dense retrieval. In Proceedings of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 512–519, 2021.

Nan Hu, Zirui Wu, Yuxuan Lai, Xiao Liu, and Yansong Feng. Dual-channel evidence fusion for
fact verification over texts and tables. In Proceedings of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 5232–5242, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
In Findings of the Association for Computational Linguistics (ACL), pp. 1049–1065, 2023.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning with re-
trieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, and Weizhu Chen. OmniTab: Pretraining
with natural and synthetic data for few-shot table-based question answering. In Proceedings of
the North American Chapter of the Association for Computational Linguistics (NAACL), pp. 932–
942, 2022.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 6769–6781, 2020.

Sunjun Kweon, Yeonsu Kwon, Seonhee Cho, Yohan Jo, and Edward Choi. Open-WikiTable :
Dataset for open domain question answering with complex reasoning over table. In Findings of
the Association for Computational Linguistics (ACL), pp. 8285–8297, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu. A comprehensive evaluation of chatgpt’s
zero-shot text-to-sql capability, 2023a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023b.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
TAPEX: Table pre-training via learning a neural SQL executor. In The Tenth International Con-
ference on Learning Representations (ICLR), 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing, pp. 1470–1480, 2015.

11

Published as a conference paper at ICLR 2024

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992, 2019.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qifei Wu, Yuchen Ding, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. A thorough examination on zero-shot dense retrieval. arXiv preprint
arXiv:2204.12755, 2022.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009a.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009b.

Michael Sejr Schlichtkrull, Vladimir Karpukhin, Barlas Oguz, Mike Lewis, Wen-tau Yih, and Se-
bastian Riedel. Joint verification and reranking for open fact checking over tables. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing, pp. 6787–6799, 2021.

Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and
Tomas Pfister. Sql-palm: Improved large language model adaptation for text-to-sql, 2023.

Zhiruo Wang, Zhengbao Jiang, Eric Nyberg, and Graham Neubig. Table retrieval may not necessi-
tate table-specific model design. In Proceedings of the Workshop on Structured and Unstructured
Knowledge Integration (SUKI), pp. 36–46, 2022.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-
Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong, Bailin Wang, Chengzu
Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming Xiong, Lingpeng Kong,
Rui Zhang, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. UnifiedSKG: Unifying and multi-
tasking structured knowledge grounding with text-to-text language models. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 602–631,
2022.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual reason-
ing. Advances in Neural Information Processing Systems (NeurIPS), 35:30378–30392, 2022.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decomposing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 174–184, 2023.

Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng, Shi Han, and Dongmei Zhang. Tacube:
Pre-computing data cubes for answering numerical-reasoning questions over tabular data. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 2278–2291, 2022.

12

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 CODER IN-CONTEXT LEARNING PROMPT (2 SHOTS)

Given the table schema and three example rows out of the table, write a SQLite program to
↪→ extract the sub-table that contains the information needed to answer the questions.

The SQLite does not need to directly answer the question.
Assume you always have enough information when executing the SQLite.
If you cannot generate the SQLite with high confidence that it is correct, then generate some

↪→ SQLite that is less complex but correct.
Try to use fuzzy-match for values if you are not sure about the values.
Generate 3 SQLite programs with respect to the question separated by [SQLSEP], the

↪→ complexities of the SQLite programs generated ascend (basic, intermediate, advanced).

CREATE TABLE Fabrice_Santoro(
row_id int,
name text,
_2001 text,
_2002 text,
_2003 text,
_2004 text,
_2005 text,
_2006 text,
_2007 text,
_2008 text,
_2009 text,
_2010 text,
career_nsr text,
career_nwin_loss text)

/*
3 example rows:
SELECT * FROM Fabrice_Santoro LIMIT 3;
row_id name _2001 _2002 _2003 _2004 _2005 _2006 _2007 _2008 _2009 _2010

↪→ career_nsr career_nwin_loss
0 australian open 2r 1r 3r 2r 1r qf 3r 2r 3r 1r

↪→ 0 / 18 22 1 8
1 french open 4r 2r 2r 3r 1r 1r 1r 2r 1r

↪→ a 0 / 20 17 2 0
2 wimbledon 3r 2r 2r 2r 2r 2r 2r 1r 2r

↪→ a 0 / 14 11 1 4

*/
Q: did he win more at the australian open or indian wells?
SQLite:
SELECT name, career_nwin_loss FROM Fabrice_Santoro; [SQLSEP]
SELECT name, career_nwin_loss FROM Fabrice_Santoro WHERE name LIKE "%australian open%" OR name

↪→ LIKE "%indian wells%"; [SQLSEP]
WITH Wins AS (

SELECT
name,
CAST(SUBSTR(career_nwin_loss, 1, INSTR(career_nwin_loss, ’ ’) - 1) AS INT) AS wins,
CAST(SUBSTR(career_nwin_loss, INSTR(career_nwin_loss, ’ ’) + 1) AS INT) AS losses
FROM Fabrice_Santoro
WHERE name LIKE "%australian open%" OR name LIKE "%indian wells%"

)
SELECT name, SUM(wins) as total_wins, SUM(losses) as total_losses FROM Wins GROUP BY name;

CREATE TABLE Playa_de_Oro_International_Airport(
row_id int,
rank text,
city text,
passengers text,
ranking text,
airline text)

/*
3 example rows:
SELECT * FROM Playa_de_Oro_International_Airport LIMIT 3;
row_id rank city passengers ranking airline
0 1 united states, los angeles 14,749 nan alaska airlines
1 2 united states, houston 5,465 nan united express
2 3 canada, calgary 3,761 nan air transat, westjet

*/
Q: how many more passengers flew to los angeles than to saskatoon from manzanillo airport in

↪→ 2013?
SQLite:
SELECT city, passengers FROM Playa_de_Oro_International_Airport; [SQLSEP]
SELECT city, passengers FROM Playa_de_Oro_International_Airport WHERE city LIKE "%los angeles

↪→ %" OR city LIKE "%saskatoon%"; [SQLSEP]

13

Published as a conference paper at ICLR 2024

WITH PassengerCounts AS (
SELECT
city,
CAST(REPLACE(passengers, ’,’, ’’) AS INT) AS passenger_count
FROM Playa_de_Oro_International_Airport
WHERE city LIKE "%los angeles%" OR city LIKE "%saskatoon%"

)
SELECT
SUM(CASE WHEN city LIKE "%los angeles%" THEN passenger_count ELSE 0 END) -
SUM(CASE WHEN city LIKE "%saskatoon%" THEN passenger_count ELSE 0 END) AS passenger_difference
FROM PassengerCounts;

A.2 READER IN-CONTEXT LEARNING PROMPT (2 SHOTS)

Given the execution result attained by running SQLite, extract the final answer of the
↪→ question from the table.

Assume you can always find the answer from the table, so you must give an answer that makes
↪→ sense to the question based on the given table.

If the answer contains multiple items, separate them by [SEP].

CREATE TABLE Fabrice_Santoro(
row_id int,
name text,
_2001 text,
_2002 text,
_2003 text,
_2004 text,
_2005 text,
_2006 text,
_2007 text,
_2008 text,
_2009 text,
_2010 text,
career_nsr text,
career_nwin_loss text)

/*
3 example rows:
SELECT * FROM Fabrice_Santoro LIMIT 3;
row_id name _2001 _2002 _2003 _2004 _2005 _2006 _2007 _2008 _2009 _2010

↪→ career_nsr career_nwin_loss
0 australian open 2r 1r 3r 2r 1r qf 3r 2r 3r 1r

↪→ 0 / 18 22 1 8
1 french open 4r 2r 2r 3r 1r 1r 1r 2r 1r

↪→ a 0 / 20 17 2 0
2 wimbledon 3r 2r 2r 2r 2r 2r 2r 1r 2r

↪→ a 0 / 14 11 1 4

*/
Q: did he win more at the australian open or indian wells?
SQLite:
SELECT

name,
CAST(SUBSTR(career_nwin_loss, 1, INSTR(career_nwin_loss, ’-’) - 1) AS INT) AS total_wins

FROM
Fabrice_Santoro

WHERE
(name LIKE ’%australian open%’) OR
(name LIKE ’%indian wells%’)

Execution Result:
name total_wins
australian open 22
indian wells 23
A:
indian wells

CREATE TABLE Playa_de_Oro_International_Airport(
row_id int,
rank text,
city text,
passengers text,
ranking text,
airline text)

/*
3 example rows:
SELECT * FROM Playa_de_Oro_International_Airport LIMIT 3;
row_id rank city passengers ranking airline
0 1 united states, los angeles 14,749 nan alaska airlines
1 2 united states, houston 5,465 nan united express

14

Published as a conference paper at ICLR 2024

Table 7: Applicability of OPENTAB and baselines.

Method Open-domain Large table w/o Fine-tuning

FEVEROUS-base (Aly et al., 2021) ✓
DCUF (Hu et al., 2022) ✓
OpenWT-base (Kweon et al., 2023) ✓
BINDER (Cheng et al., 2023) ✓
DATER (Ye et al., 2023) ✓

OPENTAB (proposed) ✓ ✓ ✓

2 3 canada, calgary 3,761 nan air transat, westjet

*/
Q: how many more passengers flew to los angeles than to saskatoon from manzanillo airport in

↪→ 2013?
SQLite:
SELECT

city,
REPLACE(passengers, ’,’, ’’) AS passenger_count

FROM
Playa_de_Oro_International_Airport

WHERE
(city LIKE ’%los angeles%’) OR
(city LIKE ’%saskatoon%’)

Execution Result:
city passenger_count
united states, los angeles 14749
mexico, saskatoon 10000
A:
4749

A.3 DATASETS

Open-WikiTables. We directly leverage the Open-WikiTables dataset provided by (Kweon et al.,
2023) in our experiments. Note that this dataset has limited amount of cases whose final ground
truth answer is empty, which will not be used in our experiments. Our evaluations happen on the
validation set of the dataset. Due to the budget limitation, the experiments are carried out on 2,000
random samples out of the validation set with a fixed random seed 42 to make sure all the models
and methods are evaluated on the same subset fairly. Note that for this dataset each input question
will only has one gold table as evidence. Table corpus size is 24,680. For the evaluation metric,
we adopt the semantic-match evaluator as used in BINDER (Cheng et al., 2023), which is a more
reasonable metric to evaluate the table QA task.

FEVEROUS. FEVEROUS (Aly et al., 2021) dataset is a fact verification dataset consisting of evi-
dences in the format of both natural language text and structured tables. To adapt the dataset into the
open-domain table reasoning setting, we filter 323 claims out of the validation set whose verification
is only based on table information. Also because the tables are noisy web tables where a lot of sam-
ples incorporate undesired properties such as empty sells, multi-header, cell count mismatch, etc.
These tables cannot naturally be used in the SQL database interface so we need to further remove
claims that need to be verified on such tables. The table corpus of the FEVEROUS dataset used here
is of 26,177 different tables. Note that for the processed subset, each claim will only have one gold
table as evidence. The prediction space is limited to “refutes” and “supports”. For the evaluation
metric, inspired by the FEVEROUS score metric in Aly et al. (2021), which requires predictions to
be made on the correct evidences, we further invent our metric as to make the right prediction while
locating the correct evidence table in the same time. Such scenario will be regarded as a successful
prediction. As long as the model does not make the right decision, or makes decision based on the
wrong table, it will be considered a failure case.

A.4 SANITY CHECK ON TEXT-TO-SQL DATASET

STC is proposed in the context of end-to-end table QA task, in which SQL programs work as an ef-
ficient and scalable interface to query the database and extract relevant information for READER to
make inference on. SQL generation is an intermediate tool in the QA pipeline, instead of outcome.
While on text-to-SQL benchmarks, ground truth is SQL program itself, which is different from our

15

Published as a conference paper at ICLR 2024

Coder Prompt

Coder Instructions

Table Schema Example Rows Query

SQL Basic

SQL Intermediate

SQL Advanced
LLM

Coder Generation

LLM

Reader Instructions

SQL Selected SQL Execution Results Response

Reader Prompt

Context & Query

Context & Query

Context & Query

Coder Reader

Figure 5: Prompt and generation structures of both CODER and READER.

Coder Prompt

Q: Did Fabrice Santoro
win more at the

Australian open or
Wimbledon?

SELECT name, career_nwin_loss
FROM Fabrice_Santoro

SELECT name, career_nwin_loss
FROM Fabrice_Santoro
WHERE name LIKE "%australian open%"
OR name LIKE "%wimbledon%";

WITH Fabrice_Santoro_Wins AS (
 SELECT name, CAST(SUBSTR(career_nwin_loss, 0,

INSTR(career_nwin_loss, '–') - 1) AS INT) AS wins
 FROM Fabrice_Santoro
 WHERE name LIKE '%australian open%'
 OR name LIKE '%wimbledon%')
SELECT name AS Tournament_With_More_Wins
FROM Fabrice_Santoro_Wins
ORDER BY wins DESC
LIMIT 1;

LLM

Coder Generation

SQL Selected

Reader Prompt

Context & Question

Context & Question

Given the table schema and three example
rows out of the table, write a SQLite program
to extract the sub-table that contains the
information needed to answer the
questions. The SQLite does not need to
directly answer the question. Assume you
always have enough information when
executing the SQLite. If you cannot generate
the SQLite with high confidence that it is
correct, then generate some SQLite that is
less complex but correct.

Coder Instructions
SQL Basic

SQL
Intermediate

SQL
Advanced

name career_nwin_loss

SQL Execution Results

Given the execution result attained by
running SQLite, extract the final answer of
the question from the table. Assume you can
always find the answer from the table, so
you must give an answer that makes sense
to the question based on the given table.

Reader Instructions

Context & Question

row_id name _2001 _2002 _2003 _2004 _2005 _2006 _2007
_2008 _2009 _2010 career_nsr career_nwin_loss
0 australian open 2r 1r 3r 2r 1r qf 3r 2r 3r 1r 0/18 22-18
1 french open 4r 2r 2r 3r 1r 1r 1r 2r 1r a 0/20 17-20
2 wimbledon 3r 2r 2r 2r 2r 2r 2r 1r 2r a 0/14 11-14

CREATE TABLE Fabrice_Santoro(
row_id int, name text, _2001 text,
_2002 text, _2003 text, _2004 text,
_2005 text, _2006 text, _2007 text,
_2008 text, _2009 text, _2010 text,
career_nsr text, career_nwin_loss text)

Table Schema Example Rows Question

austrailian open 22-18
french open 17-20

LLM

austrailian
open Answer

Figure 6: Concrete prompt and generation structures of both CODER and READER.

motivation. While text-to-SQL task is not the focus of this work, we carried out complementary ex-
periments on the “flight 4” database of the Spider dataset to verify the effectiveness of our CODER
module with the STC prompting strategy. Below we list the results in the order of question,
ground truth, and SQL generated by CODER. We also show the stats of the large-scale
database in the table.

How many routes does American Airlines operate?
SELECT count(*) FROM airlines AS T1 JOIN routes AS T2 ON T1.alid =

↪→ T2.alid WHERE T1.name = ’American Airlines’
SELECT COUNT(*) FROM routes r INNER JOIN airlines a ON r.alid = a.

↪→ alid WHERE a.name = ’American Airlines’;

How many routes end in a Canadian airport?
SELECT count(*) FROM airports AS T1 JOIN routes AS T2 ON T1.apid =

↪→ T2.dst_apid WHERE country = ’Canada’
SELECT COUNT(*) FROM routes WHERE dst_apid IN (SELECT apid FROM

↪→ airports WHERE country = ’canada’);

What are the names of all airports in Cuba or Argentina?
SELECT name FROM airports WHERE country = ’Cuba’ OR country =

↪→ ’Argentina’
SELECT name FROM airports WHERE country LIKE "%cuba%" OR country

↪→ LIKE "%argentina%";

16

Published as a conference paper at ICLR 2024

What are the countries of all airlines whose names start with
↪→ Orbit?

SELECT country FROM airlines WHERE name LIKE ’Orbit%’
SELECT DISTINCT country FROM airlines WHERE name LIKE "Orbit%";

In how many cities are there airports in the country of Greenland?
SELECT count(DISTINCT city) FROM airports WHERE country = ’

↪→ Greenland’
SELECT COUNT(DISTINCT city) as airport_cities FROM airports WHERE

↪→ country LIKE "%greenland%";

17

	Introduction
	Definition of Open-Domain Table Reasoning
	Method
	Table Retriever
	Table Reasoner
	Coder
	Reader
	RowSelector

	Open-domain Table Reasoning

	Experiments
	Experiment Setup
	Main Results
	Table retrieval results

	Ablation Studies & Analysis
	Related Works
	Conclusion
	Reproducibility
	Appendix
	Coder in-context learning prompt (2 shots)
	Reader in-context learning prompt (2 shots)
	Datasets
	Sanity check on text-to-SQL dataset

