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ABSTRACT

Understanding the 3D structure of RNA is essential for deciphering its function
and developing RNA-based therapeutics. Geometric Graph Neural Networks (Ge-
oGNNs) that conform to the E(3)-symmetry have advanced RNA structure eval-
uation, a crucial step toward RNA structure prediction. However, existing Ge-
oGNNs are still defective in two aspects: 1. inefficient or incapable of capturing
the full geometries of RNA; 2. limited generalization ability when the size of
RNA significantly differs between training and test datasets. In this paper, we
propose EquiRNA, a novel equivariant GNN model by exploring the three-level
hierarchical geometries of RNA. At its core, EquiRNA effectively addresses the
size generalization challenge by reusing the representation of nucleotide, the com-
mon building block shared across RNAs of varying sizes. Moreover, by adopting
a scalarization-based equivariant GNN as the backbone, our model maintains di-
rectional information while offering higher computational efficiency compared to
existing GeoGNNs. Additionally, we propose a size-insensitive K-nearest neigh-
bor sampling strategy to enhance the model’s robustness to RNA size shifts. We
test our approach on our created benchmark as well as an existing dataset. The
results show that our method significantly outperforms other state-of-the-art meth-
ods, providing a robust baseline for RNA 3D structure modeling and evaluation.

1 INTRODUCTION
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Figure 1: RNA structure evaluation.

RNA, or ribonucleic acid, is a pivotal type
of molecules essential to myriad processes
within biological organisms. Central to its
versatility is RNA’s 3D structure, which dic-
tates its function and interaction with other
molecules (Serganov et al., 2004; Mortimer
et al., 2014). Thus, predicting RNA’s 3D struc-
ture is imperative for advancing our under-
standing of its biological roles and potential
therapeutic applications. Inspired by the break-
throughs achieved by AlphaFold (Jumper et al.,
2021) in the field of protein structure predic-
tion, more and more researchers have started to
adopt deep learning (such as Graph Neural Net-
works (GNNs)) for RNA 3D structure prediction (Wang et al., 2023a; Shen et al., 2022). Moreover,
designing an effective scoring function for evaluation and ranking of RNA structures is a key step in
prediction (Townshend et al., 2021; Zhang et al., 2022b), which is the main focus of our paper. The
process of RNA structure evaluation can be shown in Fig. 1.

∗Corresponding author: Wenbing Huang.
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RNA structure evaluation presents several challenges: 1. The predictor we leverage should con-
form to the E(3) symmetry (3D translation and rotation), as RNA structures are independent to the
choice of the coordinate system. 2. Since large RNA structures are difficult to determine experimen-
tally, currently-known RNA structures are of limited number and mostly of small size (Wang et al.,
2023b). As shown in Fig. 2, in the well-known RNAsolo dataset (Adamczyk et al., 2022), among
RNA structures with high resolution (≤ 2.0 Å), RNAs longer than 100 nucleotides account for only
3.60%; while at low resolutions (> 2.0 Å), RNAs longer than 100 nucleotides account for 24.62%.
This observation underscores the current limitations of experimental methods in determining the
3D structures of large RNAs, highlighting a significant challenge in the field of structural biology.
Therefore, effectively using smaller RNAs for training a predictor that is generalizable to larger
RNAs poses an intriguing research topic, which is identified as the problem of size generalization
in this paper. As an initial exploration, in this paper, we use smaller RNAs of 50-100 nt for training
and larger RNAs of 100-200 nt for testing. The detailed definition of size generalization as well as
the detailed explanation of the significance for studying this problem are provided in Appendix B.
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Figure 2: RNA distribution of RNAsolo.

Several Geometric GNNs (GeoGNNs) have
been proposed for RNA structure evalua-
tion (Zhang et al., 2022b; Townshend et al.,
2021), but they are still defective in address-
ing these two challenges. To be specific,
PaxNet (Zhang et al., 2022b) utilizes a typical
GNN on invariant input (such as bond lengths
and angles), making it lose directional infor-
mation during message passing and thus inef-
fective in characterising the spatial geometry.
ARES (Townshend et al., 2021), on the other
hand, employs an equivariant GNN that is able
to retain the directional information, but is ex-
panded through high-degree irreducible representations, leading to more computational cost. More
importantly, both models are not explicitly and specifically designed to tackle RNAs of varying size,
leaving the issue of size generalization less explored.

In this paper, we propose a hierarchical equivariant GNN, dubbed as EquiRNA, which consists of
three components: the atom-level, subunit-level, and nucleotide-level equivariant message passing
processes. Built upon the biological insight that nucleotides are common building blocks shared
across RNAs of varying sizes, our model effectively generalizes to different RNA sizes by reusing
nucleotides. In particular, we obtain a uniform representation of each nucleotide by undertaking
the atom-level and subunit-level message passing over the atoms inside each nucleotide, and then
capture the interactions between nucleotides by utilizing the nucleotide-level component. Notably,
our model preserves full-atom information throughout all components, in contrast to those pooling-
based hierarchical models in other domains (e.g. ProNet (Wang et al., 2022)). Moreover, by adopt-
ing a scalarization-based equivariant GNN (i.e. the EGNN model (Satorras et al., 2021)) as the
backbone, our model maintains directional information while offering higher computational effi-
ciency compared to existing GeoGNNs. Additionally, we equip our model with a size-insensitive
K-nearest neighbor sampling strategy at the nucleotide level. This complements the aforementioned
hierarchical structural design, jointly mitigating the challenge of size generalization.

In summary, this paper contributes to the following aspects:

• We introduce a new dataset named rRNAsolo for assessing size generalization in RNA
structure evaluation. It covers a broader range of RNA sizes, includes more RNA types,
and features more recent RNA structures when compared to existing datasets.

• We propose EquiRNA, a hierarchical equivariant graph neural network, tailored to address
the size generalization challenge by reusing the representations of nucleotides.

• Extensive experiments on our new dataset rRNAsolo and the existing dataset ARES (Town-
shend et al., 2021) show that our model achieves better performance across all metrics than
SOTA methods, establishing its superiority.
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2 OUR METHOD

In this section, we first introduce necessary preliminaries related to RNA modeling, and then present
the details of our created benchmark rRANsolo for structure evaluation. After this, we describe
the architecture of EquiRNA with multi-level equivariant message passing, followed by a size-
insensitive K-nearest neighbor sampling strategy for handling the imbalance of the size between
the training and test RNAs. Fig. 3 shows the whole architecture of our model.

2.1 PRELIMINARIES

RNA is a polymeric molecule composed of four types of nucleotides: adenine (A), uracil (U), cy-
tosine (C), and guanine (G). Each nucleotide includes three distinctive chemical sub-units: a five-
carbon sugar ribose, a phosphate group, and a nucleobase. The atoms that constitute all components
are carbon (C), nitrogen (N), oxygen (O), phosphorus (P), and hydrogen (H). In most cases, different
nucleotide shares the same ribose and phosphate group (called ribose-phosphate backbone below),
and could contain different type of nucleobase. In this paper, we preserve full-atom representations
to enhance the characterization of RNA’s 3D structure. In particular, the ribose-phosphate backbone
of each nucleotides is denoted as a fully-connected graph Gr = (Vr, Er). Each node in Vr encapsu-
lates the information of the i-th atom, namely v⃗ri = (x⃗ri ,hri) with x⃗ri ∈ R3 being the equivariant
3D coordinate and hri ∈ Rc being the invariant embedding feature based on atom type. The edges
Er are constructed by connecting all pairs of atoms in the ribose-phosphate backbone. Similarly,
we can define a fully-connected graph for a nucleobase as Gb = (Vb, Eb). To reduce computational
complexity, we adopt the strategy outlined in ARES (Townshend et al., 2021) in the above graph
construction process, which only considers heavy atoms without hydrogen (H). Finally, a nucleotide
is referred to as a joint graph G = (Vr∪Vb, Er∪Eb), which is illustrated more clearly in Appendix O.

Task formulation. Given a candidate RNA structure with N nucleotides {Gi}Ni=1, our goal is to de-
sign a neural network f to predict the Root Mean Square Deviation (RMSD) between the candidate
and native structures, which will be used to score and rank all candidates to identify the one most
closely matching the native structure.

2.2 NEW DATASET: RRNASOLO

Although several datasets already exist for RNA structure evaluation (Townshend et al., 2021), they
contain RNAs of either limited types or narrow size ranges. Therefore, to extensively explore the
problem of size generalization, we devise a novel dataset from the RNAsolo database (Adamczyk
et al., 2022), a publicly available online repository that comprises a diverse array of biomolecular
information concerning RNA. We call this new dataset as rRNAsolo. We provide the details of the
dataset construction process as follows.

Data Collection and Purification. To better investigate the intrinsic properties of RNA molecules,
we exclusively select data from the solo RNA category with a resolution higher than 4 Å. We engage
in a detailed cleaning process of the collected data, which is unfolded through two levels. At the
atomic level: First, we scrutinize all atoms within every RNA molecule to ensure the legitimacy
of their valency, eliminating any RNA that contained illicit atoms. Second, we conduct a compre-
hensive count of atoms within each nucleotide of all RNAs, excluding those with the number of
atoms deviated from the normal range. At the nucleotide level: First, we analyze the sequencing
of nucleotide numbers across all RNAs, discarding those with discontinuous numbering. This dis-
continuity might be due to insufficient data from solution nuclear magnetic resonance experiments
needed to determine their structures. Second, we assess the number of chains contained within the
RNA, and exclude any instance with more than two chains, which possibly are redundant chains as a
result of experimental techniques. Third, we verify that all RNAs consisted solely of nucleotides and
rule out any containing additional residues, such as amino acids. Fourth, aligning with the method-
ology presented in paper (Townshend et al., 2021), we eliminate RNAs with non-canonical base
pairs. Finally, we examine every RNA molecule to reduce conformational ambiguity, specifically
for atoms that could occupy possible positions A or B. We choose the configuration with higher
occurrence frequency, removing all other configurations.

Data Partitioning and Clustering. We employ USAlign (Zhang et al., 2022a) to calculate the TM-
score between any two RNA samples. USAlign is a metric used to evaluate the structural similarity
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Figure 3: The architecture of EquiRNA. Each layer comprises three levels: atom-level, subunit-
level, and nucleotide-level. (hr, x⃗r) and (hb, x⃗b) denote the features and coordinates of the atom in
ribose-phosphate and nucleobase, respectively. (h, X⃗) denotes the features and coordinates of each
nucleotide. KNN represents our size-insensitive K-nearest neighbor sampling strategy. EquiRNA
predicts RMSD from native structure and selects structure with the lowest predicted RMSD.

of two RNAs. A TM-score greater than 0.45 indicates that the two RNAs belong to the same RNA
family. We then apply the clustering method proposed in USAlign based on the TM-scores to cluster
all RNA structures. Specifically, we first sort RNAs by the number of nucleotides in descending
order. Then, starting with the largest RNA as the cluster representative, the TM-score is computed
with the rest using the USAlign algorithm. If the score is higher than 0.45, it’s categorized into
the same cluster as the largest RNA; otherwise, the largest RNA forms its own cluster. Repeat the
process with the second largest RNA until all RNAs are clustered. Given that RNAs with over 200
nucleotides require considerable time for candidate conformation generation, our validation and test
sets primarily focus on RNAs with 100-200 nucleotides, using a training set composed of RNAs
with 50-100 nucleotides. Since the number of RNAs within the 100-200 range is smaller than those
within 50-100, we first create the validation and test sets by enumerating all clusters and randomly
sampling RNAs within the 100-200 range, ensuring maximum coverage of all potential clusters.
After the completion of the validation and test sets, we remove the clusters that contain any sample
in the validation or test set, and construct the training set using the remaining clusters to prevent data
leakage. To be specific, we enumerate the remaining clusters and randomly sample a certain number
of RNAs from each cluster to form the training set.

Table 1: The detailed comparisons between our rRNAsolo and ARES.

Method Range of sizes Numbers Release date

Train Valid Test Train Valid Test

ARES (10, 50) (10, 50) (20, 150) 18 4 16 ˜2020
rRNAsolo (50, 100) (100, 200) (100, 200) 200 15 15 ˜2023

Table 1 compares the statistic of rRNAsolo against the existing benchmark ARES (Townshend et al.,
2021). Our rRNAsolo exhibits the following advantages: 1. Wider range of RNA sizes: the train-
ing set includes RNAs of 50-100 nucleotides , whereas ARES covers only RNAs less than 50 nu-
cleotides. Our validation and test set consists of RNAs of 100-200 nucleotides, while ARES has
only three entities over 100 nucleotides. 2. A greater number of RNAs: our dataset comprises
RNAs approximately 7 times more than ARES. 3. More recently released data: our dataset contains
all the eligible RNA structures up to the latest release, as opposed to ARES which includes RNAs
published between 1994-2006 for the training set. Overall, our dataset possesses higher quality and
thus enables a more comprehensive evaluation of the current methods. More detailed information
about our rRNAsolo can be found in Appendix D.

2.3 THE PROPOSED EQUIRNA MODEL

EquiRNA consists of the three-level E(3)-equivariant processes: atom-level, subunit-level and
nucleotide-level. In this way, EquiRNA largely reuses the common building block (i.e. the nu-
cleotide) for RNAs of different sizes, better addressing size generalization. Specifically, the atom-
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level and subunit-level modules are able to obtain a uniform representation of each nucleotide, while
the nucleotide-level message passing can capture the interaction between different nucleotides.

(1) Atom-Level Equivariant Message Passing.

Previous works like (Zhang et al., 2022b) initially calculate E(3)-invariant scalars from atomic co-
ordinates, such as planar angles, dihedral angles, and bond lengths, and then encode and propagate
these invariant information through a typical GNN. However, the explicit calculations of scalars suf-
fer from suboptimal computational efficiency and insufficient representational capability. Here, we
employ an equivariant GNN to process the atomic coordinates straightforwardly, which is able to
retain the orientation information in each layer by propagating geometric information beyond local
neighborhoods (Joshi et al., 2023), thus enhancing the modeling of RNAs.

Our model is built upon a prevailing equivariant GNN model, i.e., EGNN (Satorras et al., 2021), by
further drawing inspiration from the biological properties of RNA. In particular, for each nucleotide,
we conduct atom-level equivariant message passing over the atoms within the ribose-phosphate
backbone Gr and the nucleobase Gb, separately. We denote these two processes as Equivariant
Ribose-phosphate Network (ERN) and Equivariant nucleoBase Network (EBN).

ERN. For a ribose-phosphate graph Gl
r comprising Nr nodes (atoms) denoted as {x⃗l

ri ,h
l
ri}

Nr
i=1 at

the l-th layer, the formula for updating each node within the graph is given by:

ml
rirj = φm

(
rbf(∥x⃗l

ri − x⃗l
rj∥),h

l
ri ,h

l
rj

)
,

x⃗l+1
ri = x⃗l

ri +
1

Nr − 1

∑
j ̸=i

(x⃗l
ri − x⃗l

rj )φx(m
l
rirj ),

hl+1
ri = hl

ri + φh(h
l
ri ,

∑
j ̸=i

ml
rirj ),

(1)

where φm, φx and φh represent different Multi-Layer Perceptrons (MLPs), rbf(·) is the Radial
basis function on the relative distance ∥x⃗l

ri − x⃗l
rj∥, and ml

rirj is the invariant message from node
j to i. To derive x⃗l+1

ri , we first multiply the 1D invariant scalar φx(m
l
rirj ) ∈ R with the relative

coordinate (x⃗l
ri − x⃗l

ri) to recover the orientation information and maintain orthogonality equivari-
ance, and then aggregate all such terms from all neighbors, followed by an addition of the original
coordinate x⃗l

ri to ensure translation equivariance. The update of the hidden embedding hl+1
ri follows

the conventional message passing strategy. For simplicity, we abstract Eq. (1) as Gl+1
r = ERN(Gl

r).

EBN. Given a nucleobase graph Gl
b = {x⃗l

bi
,hl

bi
}Nb
i=1 at the l-th layer, the updates of all atoms are

similar to ERN as detailed in Eq. (1). We denote this message passing process as Gl+1
b = ERN(Gl

b).

(2) Subunit-Level Equivariant Massage Passing.

The atom-level message passing above only models the geometry of each subunit, without charac-
terizing their interactions. Biologically, interactions between the ribose-phosphate backbone and the
nucleobase involve a complex interplay of forces, e.g., covalent bonds, hydrogen bonds, and so on.
To involve interactions, we develop subunit-level equivariant message passing across the atoms in
the ribose-phosphate backbone and the nucleobase. We first compute the center of Vr and Vb, as
x⃗l+1
rc = 1

Nr

∑Nr

i=1 x⃗
l+1
ri and x⃗l+1

bc
= 1

Nb

∑Nb

i=1 x⃗
l+1
bi

. Subsequently, we achieve translation invari-
ance by center normalization as x̃l+1

ri = x⃗l+1
ri − x⃗l+1

rc and x̃l+1
bi

= x⃗l+1
bi

− x⃗l+1
bc

, respectively. Then,
the update process for each atom in Gr is given by:

qi = φq

(
hl+1
ri , rbf(∥x̃l+1

ri ∥)
)

kj = φk

(
hl+1
bj

, rbf(∥x̃l+1
bj

∥)
)

vj = φv

(
hl+1
bj

, rbf(∥x̃l+1
bj

∥)
)
 =⇒


αij = Softmax(q⊤

i kj)

x⃗l+2
ri = x⃗l+1

ri + 1
Nb

∑
j∈Vb

αijx̃
l+1
bj

φxr(vj)

hl+2
ri = hl+1

ri + φhr

(
hl+1
ri ,

∑
j∈Vb

αijvj

) , (2)

where φq , φk, φv , φxr and φhr are all MLPs, rbf(·) is the Radial basis function. We apply
the attention mechanism to depict the interaction between each atom in Gr and Gb. The invariant
quantities qi, kj and vj refer to the query, key and value features, respectively, and αij signifies the
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attention weights, with higher values indicating more pronounced interactions between atom i and
j. The aforementioned procedure can be succinctly expressed as Gl+2

r = EB2R(Gl+1
r ,Gl+1

b ).

Following this, we employ an analogous approach to model the interactions exerted by the ribose-
phosphate backbone on the nucleobase, leading to Gl+2

b = ER2B(Gl+1
b ,Gl+1

r ).

(3) Nucleotide-Level Equivariant Message Passing.

Upon completing the atom-level and subunit-level modeling, we advance to message passing at
the nucleotide level. We aggregate the features of all atoms within the the same nucleotide,
which have been updated as described previously, deriving the nucleotide feature by summation:
hl+2 =

∑Nr

i=1 h
l+2
ri +

∑Nb

j=1 h
l+2
bj

, and the coordinate matrix by concatenating all atomic coordi-

nates: X⃗ l+2 ∈ R3×(Nr+Nb). To distinguish between nucleotides, we denote different nucleotide
via subscript i: (X⃗ l+2

i ,hl+2
i ) with Ni being the number of atoms in this nucleotide.

It is challenging to design a function on X⃗ l+2
i , since different nucleobase could have a distinct

number of atoms, implying that the dimension of X⃗ l+2
i varies. Here, we address this challenge

by using templates. First, we define 4 atom templates {W a
k ∈ Rda}4k=1, as there are 4 types of

atoms used in our model. Each atom template is learnable with the number of channels as da. The
atom-level templates are engineered to capture the intrinsic characteristics of all atoms. We further
define nucleotide templates {W n

k ∈ RNi×dn}4k=1, where 4 reflects the 4 types of nucleotides,
and dn reflects the dimension of the nucleotide template. The nucleotide-level templates aim to
capture the unique attributes of the same atom when situated in different categories of nucleotides.
In summary, W a

k and W n
k are two learnable templates that store information about each type of

atom and nucleotide, respectively. In W n
k , different row represents the characteristics of different

atom, and therefore does not share the same representation. We apply these templates to X⃗ l+2
i to

derive fixed-size message from nucleotide j and i.

In detail, we begin by calculating the distances between any pair of atoms in nucleotide i and j,
yielding the distance matrix Dij ∈ RNi×Nj . We then compute the center of each nucleotide, de-
noted as x⃗l+2

c = 1
Nr+Nb

(
∑Nr

i=1 x⃗
l+2
ri +

∑Nb

j=1 x⃗
l+2
bj

). The coordinates and features of each nucleotide
are updated as follows:

mn
ij =

(
W a

ti ⊕Wn
τi

)⊤ (
(pτip

⊤
τj )⊙Dij

)(
W a

tj ⊕Wn
τj

)
,

ml+3
ij = φhn

(
hi,hj ,

mn
ij

∥mn
ij∥F

)
,

X⃗ l+3
i = X⃗ l+2

i + 1
|N (i)|

∑
j∈N (i)

Pool
(
φxn

(
ml+3

ij

))
·
(
X⃗ l+2

i − x⃗l+2
cj

)
,

hl+3
i = hl+2

i + φhn

(
hl+2
i ,

∑
j∈N (i)

ml+3
ij

)
,

(3)

where x⃗l+2
cj represents the center of nucleotide j, ⊕ represents concatenations along the channel

dimension; ti ∈ {1, . . . , 4}Ni are vectors concatenated by all atom types in nucleotide i and τi ∈
{1, . . . , 4} represents its nucleotide type; the dimension of W a

ti and Wn
τi are RNi×da and RNi×dn ,

respectively; pτi and pτj are two learnable vectors used to model the atom-wise correlation in the
distance matrix Dij ; N (i) denotes all neighboring nucleotides of nucleotide i. The dimension
of the derived message mn

ij in the first equation keeps unchanged regardless of the value of Ni.
The message mn

ij is a matrix with dimension R(da+dn)×(da+dn). By default, we will flatten mn
ij

into a vector of size R(da+dn)
2

before feeding it to the update function φhn. The pooling operation
Pool(·) with adaptive stride ensures the output of φxn(m

l+3
ij ) to have the same dimension as X⃗ l+2

i .

Size-insensitive K-nearest neighbor sampling strategy. To further alleviate the size-
generalization issue, we propose a size-insensitive K-nearest neighbor sampling strategy, designed
to leverage the abundant smaller RNAs for training and enable the model to generalize effectively to
larger RNAs. In detail, we first perform M -nearest neighbor sampling for all RNAs, then randomly
select K out of these M neighbors (K < M ) with equal probability. Consequently, the model has
been exposed to M -neighbors’ information during training, allowing it to transfer the spatial infor-
mation of M -neighbors learned from the training set to larger RNAs in the test set. This process is
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analogous to randomly masking nodes and dropping edges in the graph during each training period,
which renders the model less sensitive to variations in the size of RNAs and enhances its robustness.

Learning objective. After implementing L layers of computations using the modules described
in § 2.3, we perform the final calculation on the output hl+3

i from Eq. (3) to predict the RMSD
between the candidate structure and the native structure. Specifically, we first sum up the features
of all nucleotides, and then feed them through a MLP to predict a scalar. This scalar represents the
predicted RMSD by the model. Ultimately, we employ Smooth ℓ1 loss as our loss function. This
process is delineated as follows:

L = Lsmooth l1

(
y, MLP

(∑Nnu
i=1 h

l+3
i

))
, (4)

where y is a scalar, calculated by FARFAR2 when generating the candidate structure, representing
the ground truth label. Nnu represents the number of nucleotide in RNA. A pivotal characteristic of
our model is its E(3)-equivariance, with proofs provided in Appendix C.

3 EXPERIMENT

Datasets. We conducted exhaustive experiments on two datasets comprising a wide range of RNA
structures. 1. rRNAsolo: In our meticulously designed dataset, we employs candidate structures of
RNAs with 50-100 nt as training set and candidate structures with 100-200 nt as validation and test
sets. The dataset rRNAsolo consists of 80k/6k/6k candidate structures generated from 200/15/15
RNAs for training, validation, and test sets, respectively. 2. ARES: Within ARES dataset (Town-
shend et al., 2021), 14 RNAs with 19-47 nt form training set and 4 RNAs with 17-41 nt form vali-
dation set, each generating 1k candidate structures. Additionally, 16 RNAs (only three of which are
larger than 100 nt) with 27-147 nt form test set, with each RNA generating 5k candidate structures.
The training, validation, and test sets include 14k/4k/80k candidate structures, respectively.

Baselines and Implementation. We compare our method with the following baselines: the invariant
GNNs including PaxNet (Zhang et al., 2022b) and RDesign (Tan et al., 2024), and the equivariant
GNNs including ARES (Townshend et al., 2021), EGNN (Satorras et al., 2021), dyMEAN (Kong
et al., 2023b), and GET (Kong et al., 2024). We use the default configurations in the corresponding
source codes for all baselines. Details of the configuration settings are provided in Appendix E and
Appendix P.

Metrics. For each RNA in the validation and test sets, the models are required to score all related
candidate structures and selects the best-scoring one. Subsequently, the RMSD between the selected
best structure and the native structure is utilized as the criterion for assessing the model’s evaluation
ability. The metrics include: 1.Median RMSD: Following the evaluation metrics in Zhang et al.
(2022b); Townshend et al. (2021), we calculate the median RMSD across RNAs; 2.Mean RMSD:
We also calculate the mean RMSD across RNAs to further evaluate the model’s scoring capability
comprehensively. 3.Relative Error of Median/Mean RMSD: For each RNA , there is a theoretical
minimum RMSD value among all the candidate structures. Thus, we calculate the relative error of
the median/mean RMSD with respect to the median/mean of the minimum RMSD.

3.1 MAIN RESULTS

Results on rRNAsolo. Table 2 provides a detailed comparison of various methods’ performance on
rRNAsolo. Within this dataset, our model shows significant improvements on all evaluation metrics
compared to the current SOTA methods for both validation and test sets. We can observe that: 1.
Our model achieves the greatest performance gains by 2.00 and 1.55 across the Mean RMSD and
Medium RMSD metrics on both validation and test sets. Furthermore, as indicated by Relative
Error of Mean RMSD and Relative Error of Medium RMSD, our model yields improvements of
up to 17% and 13% on the validation and test sets, respectively. Given the small performance
differences among SOTA models, this demonstrates the efficiency and superiority of our method in
RNA 3D structure modeling. 2. Analyzing from the perspective of equivariance, the PaxNet, which
retains only invariant feature, underperforms equivariant models like dyMEAN and EquiRNA. This
underscores the importance of considering physical symmetry in RNA 3D structure modeling. 3.
As a method in protein domain, dyMEAN still exhibits a certain gap in performance compared
to EquiRNA. This suggests that despite structural similarities, the intricacy and flexibility of RNA
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Table 2: All four metrics on the validation and test sets of rRNAsolo. The four metrics in the table,
ER, DR, R-ER, and R-DR, correspond to the abbreviations of the previously mentioned metrics
Mean RMSD, Median RMSD, Relative Error of Mean RMSD, and Relative Error of Median RMSD,
respectively.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

ARES (Townshend et al., 2021) 22.13 22.45 1.12 1.22 20.98 20.89 0.84 0.84
EGNN (Satorras et al., 2021) 22.12 23.12 1.01 1.34 20.99 20.42 0.71 0.69
PaxNet (Zhang et al., 2022b) 22.71 24.00 1.12 1.43 21.64 21.53 0.76 0.78
dyMEAN (Kong et al., 2023b) 21.34 20.94 0.99 1.11 20.91 20.52 0.71 0.70
RDegisn (Tan et al., 2024) 21.99 20.79 1.05 1.11 20.22 19.34 0.65 0.60
GET (Kong et al., 2024) 21.61 21.68 1.01 1.20 20.03 19.19 0.63 0.59

EquiRNA 19.77 19.62 0.84 0.99 18.22 17.79 0.48 0.47

EquiRNA

RDesign

dyMEAN
RMSD: 23.66

RMSD: 20.46

RMSD: 12.07

RMSD: 23.35

RMSD: 27.38

RMSD: 13.89

RMSD: 19.34

RMSD: 22.99

RMSD: 15.93

RMSD: 19.89

RMSD: 26.67

RMSD: 17.20

(100, 110) (110, 120) (120, 150) (150, 200)

Figure 4: Native structures (gray) versus predicted structures (beige) by EquiRNA and other models.

structures places higher demands on a model’s ability to capture RNA characteristics. 4. Inferior
performance is observed of GET, attributable to its lack of specialized mechanisms for addressing
the unique structural features of RNAs. This limitation likely stems from GET’s general-purpose
design, rather than RNA-specific optimization.

100 110 120 150 200
RNA Nucleotide Size Intervals

16
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22

24

26
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e 
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SD

RDesign
PaxNet
dyMEAN
EquiRNA

Figure 5: Comparison of different methods in the
validation and test sets.

To comprehensively compare our model’s abil-
ity to assess RNAs of various sizes with cur-
rent SOTA models, Fig. 5 further analyzes each
model’s evaluation capability across all RNAs
in the validation and test sets. We first divide
the RNAs into size intervals of 100-110, 110-
120, 120-150, and 150-200, based on the dis-
tribution of RNA sizes. Then we calculate the
average prediction values for RNAs in each in-
terval. Fig. 5 clearly shows our method’s supe-
rior predictive results across various RNA sizes,
indicating our approach effectively addresses
the size generalization problem, transferring the
knowledge of nucleotide interactions learned
from small RNAs to larger RNAs. Moreover,
we selecte four RNAs from the size intervals discussed previously. Fig. 4 displays the native struc-
tures, compared with the predicted structures of the current SOTA models and our model.
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Table 3: Results across four metrics on the test
set of ARES dataset.

Method ER DR R-ER R-DR

ARES 12.33 11.22 1.02 0.90
EGNN 13.47 12.12 1.21 1.05
PaxNet 13.15 10.28 1.16 0.74
dyMEAN 13.56 11.30 1.23 0.91
RDegisn 13.37 12.96 1.20 1.20
GET 13.29 11.62 1.18 0.97

EquiRNA 11.74 9.57 0.93 0.62

Table 4: The Relative Ranking of all the models
on rRNAsolo and ARES datasets.

Method rRNAsolo ARES

ARES 0.591 0.294
EGNN 0.435 0.325
PaxNet 0.628 0.343
dyMEAN 0.603 0.347
RDesign 0.476 0.351
GET 0.423 0.343

EquiRNA 0.280 0.238

Results on ARES. To further assess the versatility and generalization capabilities of our model,
we conducted experiments on the public dataset ARES. As shown in Table 3, our method achieves
optimal results on all four metrics. Despite the smaller size and fewer training samples in this
dataset, our model still outperforms the current SOTA method ARES, demonstrating its capability
to encode essential structural information within and between nucleotides. Additionally, following
the ARES paper, we present the results of all methods on the rRNAsolo and ARES datasets using
the 1 best-scoring model and 10 best-scoring models in Table 9 of Appendix F.1. Morever, we also
provide detailed analyses of the experimental results in Appendix F.2.

High-level RMSD values presented in rRNAsolo. The RMSD values observed in our rRNAsolo
dataset are higher than those in ARES dataset. We briefly elucidate the underlying factors contribut-
ing to this discrepancy and introduce a more appropriate metric for evaluating model performance.
Comprehensive analyses of this phenomenon are provided in Appendix G. There are primarily two
reasons: (1) Our rRNAsolo is more challenging with wider range of RNA sizes and a greater number
of large RNAs. (2) The reported RMSD values are predominantly contingent upon the quality of
candidate structures; however, for large RNAs, existing predictive methods often struggle to generate
high-quality candidates with low RMSD values. To provide a more direct understanding of model’s
evaluation capability, we have reported the Relative Ranking metric of all models on rRNAsolo and
ARES datasets in Table 4. The calculation of Relative Ranking is as follows: the evaluation model
first ranks all candidate structures’ ground-truth RMSD values in an ascending order out of N candi-
date structures in total. Then we identify the order of evaluation model’s selected structure as E, and
Relative Ranking is calculated as (E/N). Clearly, our method significantly outperforms other eval-
uation models on these two datasets. Moreover, our method shows consistent performance across
both rRNAsolo and ARES datasets, while the performance of other methods declines noticeably on
rRNAsolo. Compared to metrics we originally used, Relative Ranking provides a more scientific
and intuitive assessment of the model’s ability to rank candidate structures. One can directly use
ranking metric to evaluate whether evaluation model offers reliable guidance for RNA selection.

Further exploratory experiments. We also conduct a series of exploratory experiments, the de-
tails of which are presented in the appendices, including: the incorporation of molecular chirality
in the model architecture (Appendix H); the influence of the noise (Appendix N); the model per-
formance under a more general scenario where size generalization is not a constraint (Appendix J);
performance comparisons with other leading models (Appendix L); the performance of the model
after fine-tuning on a dataset constructed using the recently published RhoFold (Shen et al., 2024)
as a novel candidate structure generator (Appendix Q); and the analysis of some error cases (Ap-
pendix M).

Complexity analyses. We now proceed to conduct a complexity analysis of the different models.
The efficiency analysis and comparison are provided in Table 5. In this table, Na, na, Ka, Knu, C,
and L denote number of atoms in each RNA, number of atoms in each nucleotide, number of nearest
atom neighbors, number of nearest nucleotide neighbors, channel size of high-degree tensors, and
angular order, respectively. The Ka1 and Ka2 in PaxNet denotes the the number of nearest atom
neighbors in two different settings, the da and dnu in EquiRNA denotes the embedding size of the
atom template and the nucleotide template. Our EquiRNA costs much less inference time than
the methods that using high-degree irreducible representations (ARES, SE(3)-Transformer (Fuchs
et al., 2020), Equiformer (Liao & Smidt, 2022) and SE(3)-Hyena (Moskalev et al., 2024)), and is
even faster than EGNN since EquiRNA employs the hierarchical modeling and can fulfil desirable
performance with a smaller neighbor size K than EGNN in the atom-level message passing.
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Table 5: Complexity and inference time.

Method Complexity Inference Time

ARES O(NaKaC
3L6) 0.095s

SE(3)-Transformer O(NaKaC
3L6) -

Equiformer O(NaKaC
3L6) -

SE(3)-Hyena O(Na(Ka + logNa)C
3L6) -

EGNN O(NaKa) 0.042s
PaxNet O(Na(Ka1 +Ka2)) 0.035s
EquiRNA O(naNa + (n2

a + na(da + dnu))KnuNnu) 0.038s

3.2 ABLATION STUDIES

Table 6: Ablation studies on rRNAsolo.

ER DR R-ED R-DE

w/o At 19.38 19.40 0.58 0.61
w/o Su 19.53 19.57 0.59 0.62
w/o Nu 20.25 19.41 0.65 0.61
w/o Sa 19.40 17.94 0.58 0.49
w/o Eq 20.53 19.42 0.67 0.61
w/o W a

k 20.03 19.64 0.63 0.63
w/o W n

k 18.69 17.97 0.52 0.49

EquiRNA 18.22 17.79 0.48 0.47

Comprehensive ablation studies are carried out to
evaluation the impact of each component of the
EquiRNA model on performance, with specific
results presented in Table 6. The At, Su, Nu,
Sa, and Eq correspond to the abbreviations of the
atom-level, subunit-level, nucleotide-level, size-
insensitive K-nearest neighbor sampling strategy,
and equivariance, respectively. We have the fol-
lowing observations: 1. The experiments indicate
that eliminating any one of atom-level, subunit-
level, or nucleotide-level submodule will lead to a
decrease in performance. This phenomenon con-
firming that EquiRNA effectively encodes critical
information of RNA 3D structures, such as dihe-
dral angles, and facilitates message passing within and between these three levels. 2. The removal
of the nucleotide-level results in a significant decline in performance, revealing the significance of
nucleotide interactions. 3. The ablation of the size-insensitive K-nearest neighbor sampling strategy
also leads to diminished performance, demonstrating that this strategy allows the model to engage
with a more extensive range of local neighbors during training, which is beneficial when coping
with the large RNAs. 4. From the results presented in Row 5, the introduction of equivariance
enhances the model’s ability to encode physical symmetry, resulting in a stronger capacity for 3D
structure representation. 5. Removing atom template W a

k or nucleotide template Wn
k hinders the

performance, indicating their ability to capture the biology information. More ablation studies on
subunit-level and nucleotide-level can be found in Appendix I.

4 CONCLUSION

We introduce EquiRNA, a hierarchical equivariant model designed for RNA structure evaluation.
The innovation of this model lies in deconstructing RNA structures into multiple levels. It performs
message passing and aggregation from the bottom-up, starting at the atom-level and progressing
through subunit-level and nucleotide-level, while preserving full-atom details. Additionally, we
incorporate a size-insensitive K-nearest neighbor sampling strategy to mitigate challenges associ-
ated with generalizing to large RNAs. The entire architecture of EquiRNA guarantees the critical
E(3)-equivariance to properly encode physical symmetries and enhance its expressive capabilities.
Comprehensive experiments on two datasets with a broad range of RNA sizes demonstrate that the
selected structures of our model have significantly lower RMSD values, showcasing its superior
performance. We hope that EquiRNA will serve as a robust baseline for the field and foster further
advancement.
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Davide Buffelli, Pietro Liò, and Fabio Vandin. Sizeshiftreg: a regularization method for improv-
ing size-generalization in graph neural networks. Advances in Neural Information Processing
Systems, 35:31871–31885, 2022.

Jiacheng Cen, Anyi Li, Ning Lin, Yuxiang Ren, Zihe Wang, and Wenbing Huang. Are high-degree
representations really unnecessary in equivariant graph neural networks? In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu,
Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution
generalization on graphs. Advances in Neural Information Processing Systems, 35:22131–22148,
2022.

Jessica L Childs-Disney, Xueyi Yang, Quentin MR Gibaut, Yuquan Tong, Robert T Batey, and
Matthew D Disney. Targeting rna structures with small molecules. Nature Reviews Drug Discov-
ery, 21(10):736–762, 2022.

Xu Chu, Yujie Jin, Xin Wang, Shanghang Zhang, Yasha Wang, Wenwu Zhu, and Hong Mei. Wasser-
stein barycenter matching for graph size generalization of message passing neural networks. In
International Conference on Machine Learning, pp. 6158–6184. PMLR, 2023.

Rhiju Das and David Baker. Automated de novo prediction of native-like rna tertiary structures.
Proceedings of the National Academy of Sciences, 104(37):14664–14669, 2007.

J Thorben Frank, Oliver T Unke, Klaus-Robert Müller, and Stefan Chmiela. A euclidean transformer
for fast and stable machine learned force fields. Nature Communications, 15(1):6539, 2024.

11



Published as a conference paper at ICLR 2025

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. Advances in neural information processing systems,
33:1970–1981, 2020.
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A RELATED WORK

RNA Structure Prediction and Evaluation. Due to the scarcity of RNA structural data and the
inherent variability of RNA structures, predicting RNA 3D structures has long been a challenge in
the academic community. Furthermore, a key subtask of 3D structure prediction, which involves ac-
curately evaluating and scoring the predicted set of RNA 3D candidate conformations, also presents
a substantial challenge, largely because many features closely related to RNA structural energy
have yet to be fully understood. Traditional approaches often employ physics-based methods (Li
& Chen, 2023) or knowledge-based methods (Das & Baker, 2007; Watkins et al., 2020) for struc-
ture prediction and leverage statistical potentials (Samudrala & Moult, 1998; Wang et al., 2015)
for conformation evaluation. Recently, deep learning-based methodologies have begun to emerge,
with DeepFoldRNA (Pearce et al., 2022) and trRosettaRNA (Wang et al., 2023a) employing Trans-
former networks as their main architecture to predict 3D structures. ARES (Townshend et al., 2021)
and PaxNet (Zhang et al., 2022b) modeling and scoring candidate conformations at the atomic level
with notable success. Our research, drawing upon RNA’s biological nature, introduces a hierarchical
modeling approach to enhance the accuracy of structural scoring.

Geometric GNNs. In scientific scenarios such as molecular property prediction (Jiao et al., 2023;
2024; Liu et al., 2025), dynamics simulation (Han et al., 2022; Zhang et al., 2024; Wu et al., 2023;
Xu et al., 2024b), and protein design (Kong et al., 2023a; Yu et al., 2024; Yue et al., 2025), a large
amount of 3D structured data is contained, which is often modeled as geometric graphs. In or-
der to efficiently process this type of special data structure, geometric GNNs came into being and
achieved great success (Han et al., 2024). Different from invariant GNNs (e.g. SchNet (Schütt et al.,
2018), DimeNet (Gasteiger et al., 2020), DisGNN (Li et al., 2024b), GeoNGNN (Li et al., 2025a),
QMP (Yue et al., 2024)) with limited expressiveness (Joshi et al., 2023) and high-degree steerable
models (e.g. TFN (Thomas et al., 2018), SEGNN (Brandstetter et al., 2021), MACE (Batatia et al.,
2022)) which incur a lot of computational overhead on tensor products, scalarization-based mod-
els (e.g. EGNN (Satorras et al., 2021), GMN (Huang et al., 2022), PAINN (Schütt et al., 2021))
utilize scalars as weights to combine geometric vector information has achieved remarkable re-
sults in both accuracy and efficiency. Motivated by this , spherical-scalarization approaches (e.g.,
SO3KRATES (Frank et al., 2024), HEGNN (Cen et al., 2024), GotenNet (Aykent & Xia, 2025))
employ invariant information—such as inner products or moduli-derived from high-degree repre-
sentations to strengthen model expressivity. More recently, ETNN (Battiloro et al., 2025) and Equi-
LLM (Li et al., 2025b) enhance model capabilities by injecting information obtained through deep
topological learning and large language models into the scalar, respectively. In the RNA scoring
task, ARES (Townshend et al., 2021) and PaxNet (Zhang et al., 2022b) adopt high-degree steer-
able GNNs and invariant GNNs, respectively, revealing inherent limitations as described above. In
this paper, we introduce EGNN (Satorras et al., 2021) as the backbone that preserves the model’s
equivariant characteristics while achieving computational efficiency.

Size Generalization. In the realm of graph neural networks (GNNs), particularly in biological con-
texts, the size generalization capability of GNNs remains underexplored. Existing literature has
noted models trained on small-scale graphs often fail to retain their performance when generalized
to larger graphs (Ji et al., 2022; Chu et al., 2023; Zhou et al., 2022; Chen et al., 2022). In pursuit of
a more comprehensive understanding of this phenomenon, Yehudai et al. (2021) identify discrepan-
cies in local structural d-patterns as the cause for the reduction in generalization capacity. Buffelli
et al. (2022) introduce graph coarsening to simulate size shift, thereby augmenting the model’s ro-
bustness. Additionally, Yang et al. (2022) advocate for the identification of invariant substructures
within graphs, such as molecular substructures, to ascertain key (bio)chemical properties. To solve
this problem, our work presents a high-quality dataset specifically curated to validate model general-
izability over varying sizes of RNA data. Additionally, we introduce a hierarchical equivariant GNN
as well as a size-insensitive K-nearest neighbor sampling strategy that enhances model’s adaptabil-
ity to large-scale RNAs.

B DEFINITION AND SIGNIFICANCE OF SIZE GENERATION

The definition of size generation:
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We define the size generalization problem as follows: Given two datasets composed of different
RNA structures, one designated as the training set and the other as the test set. The training set and
test set have the following two characteristics: 1. The structural similarity (measured by TM-score)
between any RNA in the training set and any RNA in the test set is less than 0.45 to prevent data
leakage; 2. All RNA sequences in the test set are longer than any RNA sequence in the training set.
Our research question is: After training on the training set, how well does the model perform on the
test set? We measure the model’s generalization ability by evaluating its accuracy in assessing the
3D structures of RNA in the test set.

The significance of studying size generation:

During our experiments, we observe that the average length of RNA in the existing ARES
dataset (Adamczyk et al., 2022) is significantly shorter during training compared to testing (26.42
nt vs. 78.12 nt). This pattern is not unique to the ARES dataset; similar statistics from other RNA
structure datasets indicate a consistent trend: the proportion of large RNAs is much smaller than that
of smaller ones. Specifically:

(1) According to statistics from the RCSB PDB (Berman et al., 2000), in the early RNA 3D structure
datasets (1978-2010), RNAs longer than 100 nucleotides accounted for only 9.81% of the total, with
the remaining being shorter RNAs.

(2) Based on statistics from the RNAsolo dataset (Adamczyk et al., 2022), currently, RNAs longer
than 100 nucleotides account for only 16.79% of all experimentally determined RNA 3D structures.
In contrast, according to RNAcentral data consisting of 1D sequences (Sweeney et al., 2019), RNAs
longer than 100 nucleotides account for 53.36% of all sequences. This indicates that while RNA
sequences longer than 100 nucleotides are widely present, there is a significant scarcity of 3D struc-
tural data for them.

(3) In the RNAsolo dataset, among RNA structures with high resolution (≤ 2.0 Å), RNAs longer
than 100 nucleotides account for only 3.60%; while at resolutions > 2.0 Å, RNAs longer than 100
nucleotides account for 24.62%. Table 7 shows detailed statistical information about the distribution.

All these findings indicate that experimental determination of large RNA structures presents signif-
icant challenges, leading to a much smaller number of large RNA structures than the small ones.
Several papers published in top-tier journals have also highlighted this issue (Ma et al., 2022; Li
et al., 2024a).

Given the difficulty in experimentally determining large RNA structures, we naturally consider using
deep learning to predict RNA 3D structures. In this context, the evaluation task aims to select the
candidate structure that most closely matches the experimentally determined native structure from
the predicted RNA 3D structure ensembles. However, due to the limited number of available large
RNA structures, it is not feasible to train a model on a large dataset composed of such RNAs to
achieve strong evaluation performance. Therefore, we propose a dataset that leverages small RNA
structures to train the evaluation model, then tests whether the evaluation capability can successfully
generalize to larger RNA structures. This is precisely the size generalization problem we propose.
We believe this problem is worthy of in-depth exploration.

Table 7: The distribution of RNAs of different sizes in the RNAsolo dataset.

RNA Length Range RNA ≤ 2.0 Å RNA >2.0 Å

0-100 610 648
100-200 11 118
200-300 0 19
300-400 0 53
400-500 0 15
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C PROOF OF EQUIVARIANCE/INVARIANCE

In this section, we will prove that, the whole EquiRNA model is E(3)-invariant. And at first, we will
prove that, such a conclusion can be drawn with three sub-conclusion as follow:

1. The modules EBN(·) and ERN(·) in are E(3)-equivariant;

2. The modules EB2R(·) and ER2B(·) are E(3)-equivariant;

3. The module ENN(·) is E(3)-equivariant;

Theorem C.1. The whole EquiRNA model’s E(3)-invariance can be drawn with the three sub-
conclusion mentioned above.

Proof. Consider a sequence composed of functions {φi : X (i−1) → X (i)}Ni=1 equivariant to a same
group G, the equivariance lead to an interesting property that

φN ◦ · · · ◦ φi+1 ◦ ρX (i)(g)φi ◦ · · · ◦ φ1 = φN ◦ · · · ◦ φj+1 ◦ ρX (j)(g)φj ◦ · · · ◦ φ1,

holds for all i, j = 1, 2, . . . , N and g ∈ G, which means that the group elements g can be freely
exchanged in the composite sequence of equivariant functions. In particular, if one of the equivariant
functions (e.g. φk) is replaced by an invariant function, the group element g will be absorbed, that
means

φN ◦ · · · ◦ φk ◦ · · · ◦ φi+1 ◦ ρX (i)(g)φi ◦ · · · ◦ φ1 = φN ◦ · · · ◦ φ1.

holds for all g ∈ G but only i = 1, 2, . . . , k. Although φN ◦ · · · ◦φk is still equivariant, because the
group elements must be input starting from φ1, the overall φN ◦· · ·◦φ1 is still an invariant function.

Noted that the loss function in Eq. (4) only uses invariant feature h, the whole model’s invariance
can be implied by the equivariance of all layers just as the three sub-conclusion.

Since EBN(·) and ERN(·) are all based on EGNN (Satorras et al., 2021), and the equivariance is
obvious. We only need to prove the equivariance of Eqs. (2) and (3).

Theorem C.2. The modules EB2R(·) and ER2B(·) are E(3)-equivariant.

Proof. The key point is to prove the attention mechanism is E(3)-invariant. Since x̃l+1
ri = x⃗l+1

ri −
x⃗l+1
rc and x̃l+1

bi
= x⃗l+1

bi
− x⃗l+1

bc
, all resluts based on them will be translation-invariance. And with

the norm operator ∥ · ∥, we can build orthogonal-invariant features since ∥Ox⃗∥ = ∥x⃗∥, and x⃗ here
can be replaced by x̃l+1

ri or x̃l+1
bi

. That means the attention mechanism is E(3)-invariant.

Other operators only linearly combine all Cartesian vectors without changing their own symmetries,
so the module is E(3)-equivariant.

Theorem C.3. The module ENN(·) is E(3)-equivariant.

Proof. The key point is to prove the mn
ij is E(3)-invariant. Since W a

ti ⊕Wn
τi ,W

a
tj ⊕Wn

τj ,Pi,Pj

are all invariant embeddings from atom type ,nucleotide type and position (not coordinates), we
only to show that the distance matrix Dij is O(3)-invariant. The distance is O(3)-invariant can also
be proved by unitarity of the norm, that means ENN(·) will not change the symmetry of the vector
input. Since x⃗l+2

cj is the center of nucleotide j, X⃗ l+2
i − x⃗l+2

cj outputs the relative position difference,
which is translation-invariant and O(3)-equivariant, and that means the whole ENN(·) module is
E(3)-equivariant.

D RRNASOLO DATASET

In this section, we provide details not covered in the main paper about our rRNAsolo dataset.
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D.1 GENERATION OF CANDIDATE STRUCTURES

Following the description of data collection, purification, and partitioning in the main paper, we first
predict the secondary structure of all RNAs using (Zok et al., 2018). Then, with the primary and
predicted secondary structures as inputs, we use the knowledge-based fragment assembly method
FARFAR2 (Watkins et al., 2020) to generate candidate tertiary structures. Finally, we calculate the
RMSD between these candidate structures and the native structure as the label for our task.

D.2 THE CHOICE OF FARFAR2

Here, we chose to use FARFAR2 for dataset construction primarily for two reasons:

Firstly, the paper (Townshend et al., 2021) published in Science ’21 uses FARFAR2 to construct their
dataset, demonstrating that its generation quality has been practically verified and has undergone
rigorous peer review, ensuring reliable quality.

Secondly, FARFAR2, as a classic RNA 3D structure prediction method, is widely recognized in the
field. For instance, (Childs-Disney et al., 2022) published in Nature Reviews Drug Discovery ’22
compares FARFAR2 to ROSETTA: ”currently available programs, including FARFAR2 (RNA ana-
logue of ROSETTA for protein prediction)” . The paper (Wong et al., 2023) published in Science ’23
lists FARFAR2 alongside AlphaFold as representative sequence-to-structure models: ”We anticipate
that sequence-to-structure models, such as AlphaFold for proteins or FARFAR2 for RNAs.”

Given FARFAR2’s widespread recognition in the field and its use in constructing datasets in peer-
reviewed papers, we decide to employ FARFAR2 to generate RNA candidates and build our rRNA-
solo dataset. Additionally, other methods could also be used as long as they produce high-quality
RNA candidate structures. In the future, we plan to further explore and optimize the rRNAsolo
dataset to enhance the quality of candidate structures.

E CONFIGURATIONS

Table 8 presents the hyper-parameters of EquiRNA used in two experiments of this paper. Addi-
tionally, the results reported in our paper for other baselines are all obtained by retraining using
publicly available code on rRNAsolo dataset. Each layer here consists of the Eq. (1), Eq. (2), and
Eq. (3). Both our approach and all other baseline methods are trained and tested on a single NVIDIA
A100-80G GPU.

Table 8: Hyper-parameters of EquiRNA. The nucleotide template size denotes the size of trainable
template for each type of nucleotide, the atom template size denotes the size of trainable template
for each type of atom, the hidden size denotes the size of hidden states in our EquiRNA, and the
n layers denotes the number of layers in EquiRNA.

Hyperparameter rRNAsolo dataset ARES dataset

Learning Rate 1e-4 1e-4
Epochs 20 20

nucleotide template size 16 16
atom template size 16 16
hidden size 128 128
n layers 3 3
K 16 16
M 26 26
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F MORE COMPREHENSIVE EXPERIMENTS AND ANALYSIS

F.1 MORE EXPERIMENTS USING THE 1 BEST-SCORING MODEL AND 10 BEST-SCORING
MODELS

To provide a more comprehensive analysis of our method compared to other methods, we present
the results of all methods on the rRNAsolo and ARES datasets using the 1 best-scoring model
and 10 best-scoring models in Table 9. As shown in the table, our method still achieves the best
performance on the rRNAsolo dataset for the 10 best-scoring models, demonstrating the superior
performance and robustness of our model. On the ARES dataset, our 10 best-scoring model is
slightly inferior to the ARES method, but still achieves the second-best results, surpassing most of
the other baseline methods. The 10 best-scoring setting evaluates the models’ performance within
the top 10 candidates, but it does not identify which candidate represents the best prediction. In
contrast, the 1 best-scoring setting assumes that the top candidate is the best prediction, which better
aligns with practical applications.

Table 9: Results of all methods on the rRNAsolo and ARES datasets using the 1 best-scoring model
and 10 best-scoring models. Bold indicates the best method, while underline represents the second-
best method.

rRNAsolo ARES
1 best-scoring 10 best-scoring 1 best-scoring 10 best-scoring

ER ↓ R-ER ↓ ER ↓ R-ER ↓ ER ↓ R-ER ↓ ER ↓ R-ER ↓
ARES 22.57 0.84 16.19 0.32 12.33 1.02 8.42 0.43
EGNN 20.99 0.71 15.69 0.28 13.47 1.21 10.00 0.70
PaxNet 21.64 0.76 15.77 0.29 13.15 1.16 10.78 0.83
dyMEAN 20.91 0.71 15.95 0.30 13.56 1.23 9.35 0.59
RDesign 20.22 0.65 15.86 0.29 13.37 1.20 9.51 0.61
EquiRNA 18.22 0.48 15.30 0.25 11.74 0.93 8.99 0.52

F.2 DETAILED ANALYSIS OF THE EXPERIMENTAL RESULTS

In this section, we endeavor to elucidate the potential factors contributing to the notable performance
degradation of ARES on the rRNAsolo dataset.

(1) The strong performance of ARES reported in their paper might be due to the careful tuning of
hyperparameters specific to their dataset. In the supplementary materials of the ARES paper, the
authors stated, ”We optimized several hyperparameters that specify characteristics of the training
process: batch size, number of epochs, learning rate, and number of candidate structural models
per RNA to feed in. We considered 100 sets of hyperparameter values. For each of these sets,
we trained the network parameters.” When applied to our rRNAsolo dataset using the same set of
hyperparameters, ARES performs significantly worse, indicating reduced robustness across diverse
scenarios. In contrast, our method, without extensive hyperparameter tuning and using the same
hyperparameters across both datasets, consistently achieves superior performance.

(2) As mentioned in the final paragraph of § 2.2 and shown in Table 1, our rRNAsolo dataset features
a broader range of RNA sizes, a larger number of RNAs, and more recently released data compared
to the ARES dataset. Notably, the RNA size range overlaps between the training and test sets in the
ARES dataset, whereas in our rRNA dataset, these ranges are distinct. Therefore, we believe our
dataset presents a more challenging study for evaluating size generalization.

G REGARDING THE HIGH-LEVEL RMSD VALUES

Regarding the high-level RMSD values presented in the experimental tables, they are primarily due
to the following two reasons:
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Table 10: The results of rRNAsolo when considering molecular chirality.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

EquiRNA with SBDD 20.66 21.02 0.92 1.13 18.85 19.28 0.53 0.60
EquiRNA 19.77 19.62 0.84 0.99 18.22 17.79 0.48 0.47

Table 11: Ablation studies on rRNAsolo.

ER DR R-ED R-DE

EGNN-like at Subunit-Level 18.86 19.75 0.53 0.64
Averaging at Nucleotide-Level 19.87 18.66 0.62 0.55

EquiRNA 18.22 17.79 0.48 0.47

(1) The inherent difficulty of the task: As RNA size increases from small to large, the complexity
and flexibility of RNA structures increase significantly, making the task more challenging.

(2) The quality of the RNA candidates: Since our task is RNA structure evaluation, our reported
RMSD values largely depend on the candidate structures generated by FARFAR2 (Watkins et al.,
2020) (FARFAR2 is a widely recognized method in the field, and for the rationale behind using
FARFAR2, please refer to Appendix D.2). Here, we would like to further clarify the computation
process of the RMSD metric for better understanding. For each RNA in the test set, we generate
multiple candidate structures using FARFAR2. The task of the evaluation model is to score these
candidate structures based on the model’s predicted RMSD values, then select the one with the
minimum predicted value, and finally report the ground-truth RMSD between the selected candidate
structure and the native structure. Thus, the theoretical minimum of this value is NOT necessarily
zero; instead, it is the lowest RMSD between the best candidate and the native structures. As our
constructed dataset rRNAsolo is more challenging than the ARES dataset, the generated candidates
by FARFAR2 (the same method used in the ARES paper to generate candidates) generally exhibit
higher-level RMSD than those in the ARES dataset, leading to high-level RMSD reported in our
experiments.

H CONSIDERING MOLECULAR CHIRALITY

We attempt the approach from SBDD (Schneuing et al., 2022) by incorporating Eq. (6) and Eq. (7)
of SBDD into our model to further account for molecular chirality. The results are shown in the
Table 10. As can be seen, including chirality actually led to a slight performance drop. This is quite
reasonable. In fact, our task is to predict the RMSD between candidate RNA structures and stable
structures, which is an E(3)-invariant quantity and is insensitive to structural flipping. Therefore, for
our task, an E(3)-invariant model is more appropriate than an SE(3)-invariant model. Of course, we
agree that if the task involves predicting molecular properties sensitive to chirality, such as optical
activity, then an SE(3)-invariant model would indeed be more suitable.

I THE ABLATION STUDIES ON SUBUNIT-LEVEL AND NUCLEOTIDE-LEVEL

We conduct an experiment by replacing the attention mechanism with a simpler EGNN-like
message-passing scheme in subunit-level. The results, presented in Table 11, show that the EGNN-
like scheme performs worse compared to our original strategy. These findings highlight the effec-
tiveness of the attention mechanism in capturing the intricacies of subunit-level interactions. More-
over, we conduct an experiment by averaging the atomic coordinates within each nucleotide. The
experimental results, as shown in Table 11, indicate that this approach adversely affects the model’s
performance.
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Table 12: The results of all four metrics on the first split.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

RDesign 13.04 9.56 0.92 0.46 16.36 16.12 0.86 1.44
EquiRNA 11.56 10.05 0.71 0.53 15.00 14.15 0.70 1.14

Table 13: The results of all four metrics on the second split.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

RDesign 15.86 13.84 1.22 1.78 13.01 11.16 1.07 0.83
EquiRNA 14.08 12.46 0.97 1.50 11.47 9.74 0.82 0.59

J MORE SPLITS ON RRNASOLO

We extend our study to a more general scenario where size generalization is not a constraint. Based
on the clustering approach described in § 2.2, we randomly split the training, validation, and test
sets at the cluster level. Due to time and resource limitations, we test three random split configu-
rations, with each split containing 20k, 6k, and 6k samples in the training, validation, and test sets,
respectively. The results, presented in Table 12, Table 13 and Table 14, demonstrate that our model
consistently achieves superior performance across nearly all three splits, further underscoring its
robustness and effectiveness. Furthermore, we also list the PDB IDs of the RNAs included in each
split.

J.1 FIRST SPLIT

Training: 4MGN 1 D, 2B57 1 A, 7EQJ 1 A, 7KVT 1 B, 3SKW 1 A, 4YB0 1 A, 5TPY 1 A,
7KVV 1 D, 6UC9 1 B, 7OAV 1 B, 2EET 1 A, 7OAX 1 B, 7OAX 1 D, 6TFF 1 A, 2GDI 1 Y,
6CC3 1 A, 3DS7 1 A, 3D2G 1 B, 4YB0 1 R, 6UET 1 A, 6UFH 1 B, 6Q57 1 A, 7KJU 1 A,
3OXE 1 B, 6PRV 1 C, 5C7U 1 B, 4FEL 1 B, 3OWI 1 A, 6QN3 1 A-B, 4FE5 1 B, 7D7W 1 A,
6UES 1 A, 6TFE 1 A, 7U4A 1 A, 5FK1 1 A, 3OWI 1 B, 7D82 1 A, 6UFJ 1 A, 3GER 1 A,
6DMC 1 B, 7OAV 1 D, 6WLQ 3 A, 2EEW 1 A, 4ENB 1 A, 3GAO 1 A, 2G9C 1 A, 4FEO 1 B,
2EES 1 A, 2QUW 1 B, 6TF3 1 A

Validation: 4PLX 1 A, 5OB3 1 A, 4JRC 1 A, 4K27 1 U, 2YIF 1 Z-X, 3R4F 1 A, 4WFM 1 B,
2YIE 1 X-Z, 6SVS 1 B, 7JRT 1 A, 4JRC 1 B, 6UFM 1 B, 3SLM 1 B, 6SVS 1 A, 7L0Z 1 G

Test: 5D5L 1 A, 7JRR 1 A, 6DN2 1 Y-X, 5V3I 1 A, 4JF2 1 A, 6DN1 1 Z-X, 7LYJ 1 A,
7K16 1 P, 6WTL 1 A, 7JJU 1 A-B, 6JQ5 1 B-A, 5D5L 1 C, 4P5J 1 A, 6WTR 1 A, 5D5L 1 B

J.2 SECOND SPLIT

Training: 7OAV 1 B, 3SKR 1 A, 6DME 1 A, 3IVN 1 B, 3IVN 1 A, 2G9C 1 A, 4FE5 1 B,
4LVW 1 A, 4WFM 1 A, 7OAV 1 C, 6DN1 1 Z-X, 4WFM 1 B, 6UC9 1 B, 7D7Y 1 A,
3SKL 1 A, 4FEL 1 B, 6DMD 1 B, 4YB0 1 A, 5FKF 1 A, 1Y27 1 X, 6Q57 1 A, 3OWW 1 A,
3FO6 1 A, 4YB0 1 R, 6DN2 1 Y-X, 4TZX 1 X, 3SUX 1 X, 6TB7 1 A, 3OXE 1 B, 2YIF 1 Z-
X, 6UC8 1 B, 2GDI 1 X, 4LVZ 1 A, 3SKL 1 B, 2XNZ 1 A, 6UFK 1 A, 4WFL 1 A, 3SKI 1 A,
6UFJ 1 C, 7D81 1 A, 3SKI 1 B, 3SKT 1 A, 4MGN 1 C, 7KVU 1 G, 6UFK 1 C, 5FK6 1 A,
3GOG 1 A, 6SVS 1 A, 2YIE 1 X-Z, 3OXD 1 A

Validation: 6N5N 1 A, 4JF2 1 A, 5TPY 1 A, 7JRR 1 A, 5D5L 1 A, 4PQV 1 A, 3FWO 1 B,
6CC3 1 A, 7K16 1 P, 7U4A 1 A, 7JJU 1 A-B, 5D5L 1 B, 2OIU 1 Q, 5D5L 1 D, 4R4V 1 A

Test: 7L0Z 1 G, 4EN5 1 A, 3R4F 1 A, 6V9D 1 B-E, 7LYJ 1 A, 4ENB 1 A, 4ENA 1 A,
4ENC 1 A, 5OB3 1 A, 4P5J 1 A, 1KXK 1 A, 5UNE 1 A-B, 4K27 1 U, 6JQ5 1 B-A, 3Q3Z 1 A
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Table 14: The results of all four metrics on the third split.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

RDesign 15.61 15.41 1.05 1.14 16.68 15.16 1.03 1.24
EquiRNA 14.15 14.36 0.86 1.00 14.89 13.63 0.81 1.02

Table 15: The comparison with more leading models.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

ProNet 21.33 22.16 0.99 1.24 20.56 20.45 0.67 0.69
Equiformer 20.76 20.70 0.93 1.10 19.22 18.20 0.56 0.51
EquiRNA 19.77 19.62 0.84 0.99 18.22 17.79 0.48 0.47

J.3 THIRD SPLIT

Training: 6WTR 1 A, 3DIR 1 A, 3IVN 1 B, 6WTL 1 A, 7D7Y 1 A, 4FEL 1 B, 6DMC 1 B,
7OAX 1 B, 4PLX 1 A, 3DIY 1 A, 4LX5 1 A, 3OXB 1 A, 7KVU 1 G, 7L0Z 1 G, 6UEY 1 C,
2EEW 1 A, 3OWW 1 A, 3GOT 1 A, 6N5N 1 A, 7EQJ 1 A, 6JQ5 1 B-A, 6TF3 1 A, 3OX0 1 A,
3SKW 1 B, 3SKW 1 A, 6N5K 1 A, 6UFG 1 B, 3OXE 1 A, 6N5P 1 A, 6N5T 1 A, 3SKT 1 A,
3SKL 1 B, 3SLQ 1 A, 3SKL 1 A, 6N5O 1 A, 7OAV 1 C, 6N5Q 1 A, 3SD3 1 A, 7KVT 1 B,
4TZX 1 X, 4FEN 1 B, 3SKR 1 A, 6UFM 1 A, 3D2V 1 B, 4FE5 1 B, 6UFJ 1 A, 4FEO 1 B,
6JQ6 1 U, 2CKY 1 A, 6N5S 1 A

Validation: 5FK1 1 A, 2OIU 1 P, 2QUW 1 D, 4K27 1 U, 2QUW 1 B, 3Q3Z 1 V, 6DN1 1 Z-X,
5FKF 1 A, 3Q3Z 1 A, 2QUS 1 A, 5FJC 1 A, 6V9D 1 B-E, 2QUS 1 B, 4P8Z 1 A, 1KXK 1 A

Test: 6DN2 1 Y-X, 3SLM 1 B, 3VRS 1 A, 4WFL 1 A, 4ENB 1 A, 4YB0 1 A, 4YB0 1 R,
7JJU 1 A-B, 4ENC 1 A, 4PQV 1 A, 4WFM 1 A, 4EN5 1 A, 4ENA 1 A, 4R4V 1 A, 6WLQ 3 A

K DISCUSSION ON THE RECENT SCALABLE EQUIVARIANCE METHODS

SE(3)-Hyena (Moskalev et al., 2024), VN-EGNN (Sestak et al., 2024), and Ponita (Bekkers et al.,
2023) employ global context (the SE(3)-Hyena operator, virtual nodes, and global group actions,
respectively) to enhance the scalability of equivariant neural networks. These approaches represent
excellent strategies for further improving general-purpose models. In contrast, our EquiRNA is a
specialized design tailored to leverage the prior knowledge of RNA nucleotide structures, enabling
the effective application of equivariant neural networks to large RNA molecules. This specialization
allows EquiRNA to address the unique challenges of modeling RNA, distinguishing it from the more
general approaches discussed.

L THE COMPARISON WITH MORE LEADING MODELS

There are various strong baselines like SphereNet (Liu et al., 2022), Equiformer (Liao & Smidt,
2022), MACE (Batatia et al., 2022), and ProNet (Wang et al., 2022). We conduct experiments
with Equiformer and ProNet. The results are shown in Table 15. Equiformer demonstrates strong
performance, likely due to its incorporation of higher-order information. ProNet, however, does not
perform as well. We suspect that the original ProNet paper is for proteins and it computes Euler
angles using alpha carbon, carbon, and nitrogen atoms, which are not strictly corresponding to the
atoms in RNA. In our reproduction, we substituted these with P, C4’, and C3’ atoms, which might
have influenced ProNet’s performance to some extent. Overall, our EquiRNA still achieves the best
performance, substantiating our claims.
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Ground Truth EquiRNA

4R4V

6JQ5

Figure 6: The visualization of bad cases.

Table 16: The results of rRNAsolo when considering noise.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

EquiRNA w noise 20.44 20.68 0.90 1.09 19.51 18.94 0.59 0.57
EquiRNA 19.77 19.62 0.84 0.99 18.22 17.79 0.48 0.47

M THE ANALYSIS OF SOME ERROR CASES

We have presented two RNA samples in Fig. 6 where EquiRNA performs poorly. We observe that
both samples exhibit significant structural symmetry, which we hypothesize may contribute to the
suboptimal performance. Symmetry could result in a phenomenon akin to ”systematic extinction”
in crystallography (Janner & Janssen, 1977), where information in certain directions is weakened
or lost. Although RNA structures are not perfectly symmetric, this might affect the model’s ability
to effectively learn directional information. Indeed, prior literature (Joshi et al., 2023; Lawrence
et al., 2024) suggests that equivariant neural networks may encounter challenges when dealing with
symmetric structures.

N CONSIDERING NOISE

Since noise is common in experimental structure determination/sequencing (Xu et al., 2024a), we
conduct the experiments to evaluate our model when considering noise. We apply Gaussian noise
N (0, 0.01 · E(∥x⃗ − x⃗c∥) · I) to the coordinates of all training RNAs, where x represents the 3D
coordinate of each atom in RNA, and xc represents the mean coordinate of all the atoms in one
RNA. The results on rRNAsolo are shown in the Table 16. It is observed that adding noise leads to a
decline in model performance. Excitingly, our EquiRNA with noise is still better than other methods
that are trained from clean data.

O THE FIGURE FOR THE GRAPH STRUCTURE

We illustrate the graph structures in § 2.1 more clearly with the Fig. 7.
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Figure 7: RNA distribution of RNAsolo.

P THE DETAILED EXPLANATION OF THE IMPLEMENTATION OF OTHER
BASELINES

ARES and PaxNet were originally designed for RNA structure evaluation. We use their official code
for our experiments.

As for EGNN, the original paper models small molecules at the atomic level. When adapting it to
our task, we model RNA at the full-atom level and directly use their official code.

For dyMEAN, the original paper models proteins using amino acids as basic units. When adapting it
to our task, we replaced amino acids with nucleotides and modeled RNA using nucleotides as basic
units, employing their official code.

For RDesign, the original paper is developed for RNA inverse folding tasks and considers only
backbone atoms. Since RNA representations in the original method primarily rely on backbone
dihedral angles and distance information, we retain the original settings by using backbone atoms to
represent RNA and employ the invariant feature h calculated from the method for the final RMSD
prediction. We use their official code for our experiments.

For GET, the original paper models proteins hierarchically by capturing intra-amino acid and inter-
amino acid interactions via blocks. When adapting it to our task, we replace amino acids with
nucleotides and use their official code.

Q FINETUNED RESULTS ON A NEW DATASET GENERATED BY RHOFOLD.

In this section, we attempt to utilize the recently published RhoFold (Shen et al., 2024) method as a
new candidate structure generator to construct a new dataset and finetune the models on this dataset.

Predicting 3D structures with RhoFold requires both 1D fasta sequences and MSA data. How-
ever, the RNAsolo dataset used in our experiments does not provide the corresponding MSA
data. To overcome this, we first search for similar sequences for each RNA using RNAcentral
(https://rnacentral.org/) and BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). We then perform
multiple sequence alignment with Infernal (Nawrocki & Eddy, 2013) and MAFFT (Katoh et al.,
2002) to generate the required MSA data files. Following the methodology outlined in the origi-
nal paper (Shen et al., 2024), we randomly sample from the MSA data to ensure the uniqueness of
each generated candidate structure. Finally, we compute the RMSD values between the candidate
structures and their native counterparts using the pair fit function in PyMOL, which is based on the
Kabsch algorithm (Kabsch, 1976).
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We randomly select 20 RNAs from the training set in our rRNAsolo and generate 400 candidate
structures for each RNA using RhoFold, following the process described above. This results in a
dataset containing 8,000 samples. We then finetune both RDesign and our EquiRNA model on this
new dataset. The experimental results are presented in Table 17.

Table 17: The finetuned results on the new dataset generated by RhoFold.

Validation Set Test Set

ER ↓ DR ↓ R-ER ↓ R-DR ↓ ER ↓ DR ↓ R-ER ↓ R-DR ↓

RDegisn 21.99 20.79 1.05 1.11 20.22 19.34 0.65 0.60
RDegisn+finetune 20.86 21.02 0.94 1.31 21.53 20.45 0.75 0.69
EquiRNA 19.77 19.62 0.84 0.99 18.22 17.79 0.48 0.47
EquiRNA+finetune 18.87 18.54 0.76 0.88 18.78 18.25 0.53 0.51

The results show that after finetuning, our EquiRNA model achieves improved performance of all
four metrics on the validation set, while RDesign shows better performance only in terms of the ER
and R-ER metric. However, EquiRNA showed a slight decline in test set performance, possibly due
to bias introduced when using only FARFAR2 to generate candidate structures. Since the structures
generated by RhoFold follow a different distribution from those generated by FARFAR2, the model’s
performance on the test set could be partially influenced by this bias. Notably, EquiRNA exhibits a
much smaller performance drop compared to RDesign on the test set (e.g., 0.56 vs. 1.5 in terms of
ER), suggesting that our model is more robust across different candidate structure generators.

R BROADER IMPACTS

Our in-depth investigation into more accurate methods for modeling and evaluating the 3D structures
of RNA positively impacts both our understanding of the fundamental mechanisms of biological
activities and the discovery of RNA-targeted drugs.

S LIMITATIONS

Relative to the abundance of data for proteins, extant RNA datasets are substantially inadequate to
train highly accurate prediction and scoring models, especially for large RNAs where the intricate
structural variations often lead to higher RMSD values. It is our aspiration to delve deeper into the
prediction and scoring tasks of large RNAs in our subsequent research endeavors.
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