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Abstract

Vision foundation models can automate analysis of surgical videos and enable multiple
applications that support patient care and surgical training. For cataract surgery, existing
models are limited by reliance on small datasets, privacy concerns, and poor generalizability
across surgical settings. In this paper, we introduce JHU-VPT(JEPA), a self-supervised vi-
sion foundation model leveraging Joint-Embedding Predictive Architecture (JEPA) to learn
spatiotemporal representations via latent feature prediction on a large corpus of unlabeled
cataract videos, without requiring extensive labeled datasets or pixel-level reconstruction.
JHU-VPT(JEPA) is pretrained on 2591 videos from multiple sites that capture different
surgical technique and style variations. Comprehensive evaluations on step recognition, sur-
gical feedback, and skill assessment tasks demonstrate that JHU-VPT(JEPA) outperforms
existing methods. JHU-VPT(JEPA)’s effectiveness is evident even when using attentive
probing with a frozen encoder, highlighting the robustness of the learned features and ad-
dressing privacy concerns by not requiring access to raw videos during downstream tasks.
Our approach offers a scalable, generalizable, and privacy-preserving solution for surgical
video analysis, with significant potential to advance patient care and surgical education.
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1. Introduction

Vision foundation models to analyze videos of the surgical field can have a substantial global
impact on patient care. Intraoperative videos of the surgical field are a rich source of data
for algorithms that can enable several critical applications such as activity recognition for
situation awareness, skill and feedback prediction for supporting surgeons’ learning and
evaluation, among others (Maier-Hein et al., 2017; Yu et al., 2019; Padoy, 2019). The
emergence of surgical data science has accelerated models for analyzing videos of the surgical
field. However, the state-of-the-art models have several constraints including small datasets
from convenience samples (Shah et al., 2023), limited evaluation on a few applications, and
models that lack generalizability in new datasets (Lecuyer et al., 2020; Padoy, 2019; Funke
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et al., 2019). While foundation models are rapidly being trained for applications in several
domains (Kang et al., 2023; Lu et al., 2023), vision foundation models by pretraining on
large surgical video datasets have not yet been developed.

Self-supervised learning (SSL) has emerged as a powerful paradigm to leverage large cor-
pora of unlabeled video data and train vision foundation models. Traditional SSL methods
for medical imaging often involve multimodal cues, e.g., textual radiology reports paired
with X-ray images (Boecking et al., 2022; Moon et al., 2022). By contrast, surgical videos
typically lack accompanying text annotations, necessitating visual self-supervised schemes.
To address the lack of granular text annotations, we propose a new self-supervised approach
tailored to the complexity of spatio-temporal information across the surgical videos. Building
on the Joint-Embedding Predictive Architecture (JEPA) (Assran et al., 2023), our method
focuses on feature prediction in latent space, a strategy that captures both spatio-temporal
coherence and surgical scene semantics without requiring direct pixel-level reconstruction.

Unlike prior self-supervised strategies that primarily rely on contrastive learning or
masked autoencoders (MAEs) (He et al., 2022; Tong et al., 2022), our JEPA-based ap-
proach operates in the latent feature domain, reducing the overhead of reconstructing
pixel details that may be irrelevant for clinical applications. We develop our model, JHU-
VPT(JEPA):Cataract, which we refer to as JHU-VPT(JEPA), by pretraining on a large cor-
pus of cataract surgery videos including multiple sites and surgeons. The dataset diversity
allows learning of domain-robust embeddings. The resultant representations can be shared
more readily than raw videos (protecting patient privacy), and they excel in label-scarce
scenarios, reducing the need for extensive manual annotations and data-hungry fine-tuning
protocols. We comprehensively evaluate JHU-VPT(JEPA)’s learned embeddings on three
key tasks: (1) Step Recognition, wherein the aim is to identify surgical steps or phases; (2)
Surgical Feedback, to predict specific performance feedback for the surgeon; and (3) Skill
Assessment, which is essential for both surgeon training and credentialing. By varying the
size of the annotated subsets used for fine-tuning, we show that JHU-VPT(JEPA) achieves
strong performance even with limited labels, highlighting its data efficiency. Furthermore, we
validate cross-domain generalization by testing on previously unseen videos, demonstrating
JHU-VPT(JEPA)’s capacity to adapt to new surgical styles or camera configurations.

Contributions. In summary, our main contributions are:

e JEPA-based approach for cataract videos. We introduce JHU-VPT(JEPA) with
a novel architecture for surgical video analysis that employs feature prediction in latent
space to learn rich spatio-temporal representations.These representations are validated
via attentive probing with a frozen encoder, confirming their high transferability and
effectiveness in downstream tasks without fine-tuning.

e Large-scale video pretraining using a large dataset. We use an extensive dataset
of unlabeled surgical videos from multiple institutions and surgeons, ensuring robust,
domain-generalizable embeddings.

e Comprehensive downstream evaluation. We test JHU-VPT(JEPA) on three impor-
tant tasks—step recognition, surgical feedback, and skill assessment—and show notable
gains under varying amounts of labeled data, underscoring its potential clinical utility.
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2. JHU-VPT(JEPA): Cataract model

In this section, we describe our proposed Vision Foundation Model for Cataract Surgery
JHU-VPT(JEPA), which builds upon the JEPA principle (Garrido et al., 2024; Bardes
et al., 2024) for learning rich, robust visual representations from cataract surgery videos. Our
goal is to exploit feature prediction as a stand-alone objective, enabling the model to learn
meaningful spatio-temporal embeddings without extra supervision. A high-level overview of
JHU-VPT(JEPA) is shown in Figure 1.

2.1. Overview

At the core of feature prediction as a stand-alone objective, the model learns by predicting
the representation of a target input y from the representation of a context input x. Specif-
ically, an encoder Ey(-) projects x into latent space, while a predictor Py(-) attempts to
recover the embedding of y given x. A conditioning variable §, indicating the transforma-
tion or corruption that links x and y, guides the predictor to generate distinct outputs for
different transformations. In our setting, x and y are disjoint spatio-temporal patches from
a surgical clip, and § encodes the masking pattern (or offset) between these two regions.

Visual
Encoder

Remove
Masked
Tokens

F, € RV

Figure 1: Overview of the JHU-VPT(JEPA) architecture. The framework consists of Block
Masking, an Encoder, a Predictor, and an EMA-updated Target Encoder. The
Encoder processes the non-masked tokens, predicting their feature representa-
tions. The Predictor combines these representations with learnable mask tokens
and a conditioning variable to predict the embeddings of masked regions. The
Target Encoder encodes all tokens, generating target embeddings for the feature-
prediction loss.

2.2. Training Objective

To learn robust representations, we train the visual encoder Ey(-) and the predictor Py(-) via
a feature-prediction loss. Let context region x and target region y be two non-overlapping
subsets of video tokens from a video X, selected according to a masking scheme (see Sec-
tion 2.3). We define the loss function to encourage the predicted representation of y to
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match the actual representation of y, generated by a target encoder E&() Concretely, we
minimize:
min [|Py(Ey(x), 8) — se(E5() (1)

where sg(-) is a stop-gradient blocking updates to E;(-). In practice, @ is maintained
as an exponential moving average (EMA) of v, consistent with prior work that mitigates
representation collapse (Garrido et al., 2024). Using L1 loss and a stop-gradient on the
target encoder prevents trivial solutions(i.e. feature collapse) by forcing the encoder and
predictor to capture meaningful spatio-temporal information in the surgical video.

Collapse Prevention. Combining an EMA target encoder, a stop-gradient, and a pre-
dictor prevents representation collapse in various self-supervised contexts (Grill et al., 2020;
Assran et al., 2023). Intuitively, ¢ changes more slowly than v, compelling E,(x) to cap-
ture detailed information needed by P(-) to match the slowly evolving target representation.
This strategy drives the encoder to encode distinct semantic cues (e.g., instruments, ocular
structures, movements) rather than collapsing to constant outputs.

2.3. Prediction Task and Masking Strategy

We implement the feature-prediction objective using a masked modeling approach. Each
video clip is partitioned into 3D tokens, and large continuous blocks are sampled to form the
masked regions y; the remaining tokens constitute the visible regions x. Applying large or
continuous masks across time creates a challenging prediction task, encouraging the model
to capture dynamic interactions between surgical instruments and ocular tissue.

To achieve this, we use multi-block masking (Bardes et al., 2024). First, short-range
masks involve sampling several small blocks (e.g., 8) that cover about 15% of each frame,
applied consistently across all frames. This forces the model to rely on temporal cues
to infer fine-grained details and quick instrument movements. Second, long-range masks
involve sampling fewer, larger blocks (e.g., 2) covering approximately 70% of each frame
and extending over time, forcing the model to understand broader surgical phases and
slower eye changes from limited visible areas. This multi-block masking strategy challenges
the predictor to reconstruct features of large masked regions from small visible segments,
enhancing the model’s understanding of actions and anatomy in surgery videos.

2.4. Implementation Details

JHU-VPT(JEPA) comprises three learnable modules and an EMA-updated target encoder.
Tokenizer: The tokenizer converts the raw video X € RTXCXHXW into non-overlapping
3D tokens representing spatio-temporal volumes. We apply a 3D convolutional layer with
kernel and stride (¢, h, w), producing N = % X % X % tokens, each of dimension k. Fixed 3D
positional encodings (He et al., 2022; Tong et al., 2022) are added to retain spatio-temporal
information.

Encoder Ey(-): The encoder is a Vision Transformer (ViT) backbone (Dosovitskiy et al.;
Arnab et al., 2021) that processes the visible tokens x, producing an embedding F, € RXIxd,
where d is the embedding dimension. This embedding is passed to the predictor.
Predictor Py(-): The predictor is a lightweight transformer that maps F, to a predicted

embedding F,. It also receives learnable mask tokens M (one per masked patch) with
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positional encodings and the conditioning variable &, which encodes positional offsets or
transformations between x and y. Formally,

F, = Py(F,, M, 9). (2)

Target Encoder Ed;(-): The target encoder is an EMA copy of the encoder, updated at
each training iteration by

Y ap+(1-a)y, (3)

where o € [0,1) is a momentum coefficient. It processes the masked tokens y, generating
F, for the loss in Eq. (1).

2.5. Pretraining Architecture Analysis

By predicting the representations of large, masked video regions from limited visible cues,
JHU-VPT(JEPA) captures both fine-grained details and long-range context inherent to
cataract surgery workflows. The joint-embedding mechanism directs the encoder to focus
on discriminative aspects such as surgical instruments, subtle eye movements, and relevant
clinical steps. The combined effect of the EMA target encoder, stop-gradient mechanism,
and predictor network prevents representation collapse, enabling the learning of tempo-
rally coherent and anatomically relevant features. This design is scalable to various down-
stream tasks, including surgical phase recognition and skill assessment, and demonstrates
strong generalization with minimal labeled data. In Section 3.3, we demonstrate JHU-
VPT(JEPA)’s effectiveness in capturing the complexities of real-world surgical workflows
while maintaining low annotation requirements

2.6. Downstream Task Evaluation

After pretraining JHU-VPT(JEPA), we evaluate its representations on downstream tasks
using two approaches: fine-tuning and attentive probing. In fine-tuning, we initialize the
encoder Ey(-) with the pretrained weights and attach a linear classification head. The
entire model, including the encoder and the classification head, is then optimized jointly on
the downstream dataset.

In contrast, attentive probing keeps the pretrained encoder EJ)() fixed to assess the
quality of the learned features without updating them. We introduce a learnable cross-
attention layer with a query token that attends to the output features of the frozen encoder.
The output of the cross-attention layer is added to the query token via a residual connection
and passed through a two-layer multilayer perceptron (MLP) for prediction:

h = MLP(q + CrossAttn(q, Ei(x))), (4)

where q is the learnable query token, and h is the output used for classification or regression
tasks. Attentive probing evaluates the robustness of the pretrained features while keeping
the feature extractor unchanged, ensuring that the representation quality is not influenced
by further training. This approach is useful when labeled data is limited or when data
privacy restrictions prevent sharing raw videos, as it allows training downstream models on
new tasks using shared features without accessing the raw video data.
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2.7. Datasets

For Pretraining JHU-VPT(JEPA), we assembled a multi-institutional dataset of 2,591
unlabeled cataract surgery videos. This dataset comprises 1,838 internal videos averaging
30 minutes at 59 fps, and 753 videos from Cataract-1k (Ghamsarian et al., 2024) averaging
8 minutes, with total of 2591 unique videos. We did not pretrain on the Cataract-1k videos
for which step recognition annotations were provided. All videos were subsampled to 1 fps
and resized to 250 x 250 pixels for pretraining, following prior protocols (Gao et al., 2021;
Twinanda et al., 2016). CSMAE (Shah et al., 2025) was pretrained on the D-450 dataset
(an extension of D99 videos), following methodology for MAE-based pretraining (Bandara
et al., 2023).

We evaluated JHU-VPT(JEPA) on three downstream tasks: step recognition, surgical
feedback, and skill assessment. For step recognition, experiments were conducted under
both low-data (10%, 25%, 50%) and full-data settings using four cataract surgery datasets:
Cataract-101 (Schoeffmann et al., 2018), D99 (Yu et al., 2019), Cataract-1k (subset for
which annotations were provided with the original dataset) (Ghamsarian et al., 2024), and
a larger subset of Cataract-1k which we internally annotated (referred to as Cataract-1k-
JHU and includes the annotated videos in the original dataset). Cataract-101 contains 101
videos at 25 fps with 10 annotated steps and a resolution of 720 x 540 pixels, split into
50 training, 10 validation, and 40 testing videos (Shah et al., 2023). D99 comprises 99
videos at 59 fps with 12 annotated steps and resolution 640 x 480 pixels, partitioned into
60 training, 20 validation, and 19 testing videos (Shah et al., 2023). For Cataract-1k, we
used 25 training, 7 validation, and 24 testing videos. For Cataract-1k-JHU, we employed
181 training, 31 validation, and 91 testing videos. All evaluation videos were subsampled to
1 fps and resized to 250 x 250 pixels for consistency.

In the surgical feedback task, we evaluated JHU-VPT(JEPA) on feedback items (Xia
et al., 2025) during the capsulorhexis step using the D99 dataset (Hira et al., 2022) of 99
videos. Frames were resized to 224 x 224 pixels, applying data augmentations like rotation
and color jitter. Data was split into training (60%), validation (20%), and testing (20%)
sets, we repeated experiments with three random splits and averaged the results.

For skill assessment in the main incision and capsulorhexis steps, we used 56 videos
from D99 and an additional 37 videos captured under consistent conditions. Expert surgeons
evaluated the videos using ICO-OSCAR:Phacoemulsification (Puri et al., 2017). Skill was
categorized as novice (scores 2-4) and expert (score 5) for main incision and novice and
expert for capsulorhexis following (Hira et al., 2022; Kim et al., 2019).

3. Experiments and Results

3.1. Evaluation Metrics

We evaluate JHU-VPT (JEPA) using Accuracy, Precision, Recall, and Jaccard Index for
step recognition (Shah et al., 2023; Kim et al., 2019), and Accuracy, Sensitivity, Specificity,
and AUC for surgical feedback and skill assessment.
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3.2. Comparison to State-of-the-Art Cataract Pretraining Models

We compare JHU-VPT(JEPA) with existing pretraining models on the Cataract-101, D99,
Cataract-1k, and Cataract-1k-JHU datasets. As shown in Table 1, in the attentive probing
setup, where the encoder remains frozen during downstream evaluation, JHU-VPT(JEPA)
consistently outperforms VideoMAE (Tong et al., 2022) (pretrained on same pretraining set)
across all data splits and all datasets. For example, on Cataract-1k with 10% training
data, JHU-VPT(JEPA) attains an accuracy of 35.12%, surpassing VideoMAE’s 20.70%
by 14.42 percentage points—a relative improvement of approximately 70%. These results
indicate that the features learned by JHU-VPT(JEPA) are more robust and generalizable,
effectively capturing important surgical patterns without updating the feature extractor
during downstream tasks.

Table 1: Comparison of Step Recognition Accuracy across different dataset splits. These
results are based on Attentive Probe experiments, showing that our model,
JHU-VPT(JEPA) consistently outperforms VideoMAE (Tong et al., 2022), JHU-
VPT(MAE) across all settings when pretrained on the same pretraining set (D-

Dataset 10% Split 25% Split 50% Split 100% Split
VideoMAE  Ours VideoMAE Ours VideoMAE Ours VideoMAE  Ours
Cataract-101 29.87 56.95 43.14 79.73 57.13 84.79 65.49 89.82
Cataract-1k 20.70 35.12 32.12 45.09 46.04 58.80 52.26 79.58
D99 20.14 45.56 28.71 63.21 32.21 71.51 40.60 77.20

Cataract-1k-JHU 43.77 63.81 52.69 74.55 55.24 80.71 58.76 83.65

In full fine-tuning experiments (Tab. 2, Figure 2), JHU-VPT(JEPA) shows substantial
improvements over CSMAE (Shah et al., 2025), despite CSMAE employing advanced sam-
pling strategies (Bandara et al., 2023). Pretraining on a larger and more diverse dataset
enhances JHU-VPT(JEPA)’s performance, emphasizing the critical role of data diversity
in self-supervised learning for surgical video analysis. While JHU-VPT(MAE), VideoMAE
model pretrained on our pretraining dataset, often achieves higher accuracy under full fine-
tuning (Feichtenhofer et al., 2022), JHU-VPT(JEPA) is pretrained with a predictive ob-
jective that emphasizes the learning of abstract, high-level representations. These robust,
generalizable features perform better when evaluated using attention probes without up-
dating all network parameters showcasing robustness of pretraining features. In contrast,
full fine-tuning adjusts every parameter, which can perturb the delicate representations and
lower the performance compared to models optimized for end-to-end updates.

Overall, JHU-VPT(JEPA)’s feature prediction approach, enabled by large and diverse
pretraining data, yields significant performance gains in cataract surgery analysis. Its robust
features allow surgical video analysis in privacy-constrained scenarios with minimal fine-
tuning (Garrido et al., 2024).

3.3. Comparison on Feedback and Skill Performance

Table 3(a) shows that our method improves feedback prediction by 10% in AUC. Compared
to other methods, JHU-VPT(JEPA) improves specificity, i.e., reduces false positives, indi-
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Table 2: Quantitative results of step recognition from different methods on the Cataract-101
and D99 datasets.

Method Cataract-101 D99

Jaccard Precision Recall Accuracy Jaccard Precision Recall Accuracy
ResNet(He et al., 2016) 62.58 76.68 74.73 82.64 37.98 54.76 52.28 72.06
SV-RCNet(Jin et al., 2017) 66.51 84.96 76.61 86.13 39.15 58.18 54.25 73.39
OHFM(Yi and Jiang, 2019) 69.01 85.37 78.29 87.82 40.01 59.12 55.49 73.82
TeCNO(Czempiel et al., 2020) 70.18 86.03 79.52 88.26 41.31 61.56 55.81 74.07
TMRNet(Jin et al., 2021) 71.83 85.09 82.44 89.68 41.42 61.37 56.02 75.11
Trans-SVNet(Gao et al., 2021) 72.32 86.72 81.12 89.45 42.06 60.12 56.36 74.89
ViT(Dosovitskiy et al.) 64.77 78.51 75.62 84.56 38.18 55.15 53.60 72.45
TimesFormer(Bertasius et al., 2021) 75.97 85.38 84.47 90.76 42.69 64.24 55.17 77.83
STMAE(Feichtenhofer et al., 2022) 70.54 81.47 78.67 85.29 41.67 59.38 53.22 74.16
VideoMAE(Tong et al., 2022) 71.39 82.13 80.16 86.47 42.58 61.24 56.35 74.39
CSMAE(Shah et al., 2025) 76.82 84.26 86.73 89.83 43.51 64.32 52.45 78.14
JHU-VPT(MAE) 79.95 87.80 89.10 92.00 49.95 64.78 64.46 78.69
JHU-VPT(JEPA) 79.58 87.88 88.89 91.52 43.63 55.39 62.19 75.61

cating that the model has meaningful discrimination between positive and negative labels.
Table 3(b,c) demonstrates our model performance on skill assessment for main incision and
capsulorhexis. We observe steady improvement of 10%-20% for both phases, which high-
lights the robustness of its learned feature representations across various phases.

Table 3: Model evaluation for predicting feedback items, skill assessment in main incision,
and skill assessment in capsulorhexis.

Feedback Prediction (Table 3a)

Model Accuracy Sensitivity Specificity AUC
CNN-LSTM (Wan et al., 2024) 76.3+£16 94.3+1.5 153+ 1.7 0.659 £ 0.049
CNN-LSTM-GNN (Xia et al., 2025)  75.0 +1.1 85.6 + 2.6 34.5+6.7 0.559 £ 0.048
JHU-VPT(MAE) (D-2591) 80.4+£29  93.1+8.0 35.9+8.2 0.817 £ 0.032
TimeSformer (Bertasius et al., 2021)  77.2+1.1 85.7+5.9 40.2+124  0.710 £ 0.066
JHU-VPT(JEPA) (Ours) 82.3+1.4 926+69 40.84+16.5 0.842+0.045
Main Incision Skill Assessment (Table 3b)
Model Accuracy Sensitivity Specificity AUC
CNN-LSTM (Hira et al., 2022) 63.0 92.0 36.0 0.64
ViT (Dosovitskiy et al.) 62.0 10.0 100.0 0.55
JHU-VPT(JEPA) (Ours) 73.0 60.0 63.0 0.72
Capsulorhexis Skill Assessment (Table 3c)
Model Accuracy Sensitivity Specificity AUC
ResNet-101 (He et al., 2016) 62.0 76.0 80.0 0.45
STMAE (Feichtenhofer et al., 2022) 66.0 68.0 80.0 0.55
JHU-VPT(MAE) (D-2591) 71.0 85.0 90.0 0.55
JHU-VPT(JEPA) (D-2591) 80.0 70.0 56.25 0.80

4. Conclusion

We introduced JHU-VPT(JEPA) for cataract surgery video analysis. By leveraging feature
prediction in the latent space, JHU-VPT(JEPA) captures rich spatio-temporal representa-
tions without dependence on pixel-level reconstruction or large amounts of labeled data. It
allows clinical use of the model while preserving patient privacy. While JHU-VPT (JEPA)
shows strong performance, further improvements can be achieved by increasing temporal
resolution and incorporating finer-grained motion features for feedback prediction and skill
assessment. Future work may explore domain adaptation techniques to improve generaliza-
tion across different surgical environments.
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Appendix A. More results of comparison on Pretraining dataset and
Masking methods

Table 4 presents a detailed comparison of JHU-VPT(JEPA) with several state-of-the-art
methods for D99 Step Recognition under various data-regime settings (10

Notably, JHU-VPT(JEPA), which is pretrained on the large and diverse D-2591 dataset
using a Multi-block masking approach, achieves the highest performance in low-data regimes
(62.2 at 10%, 65.86 at 25%, and 70.42 at 50%). These results underscore JHU-VPT(JEPA)’s
ability to learn robust representations that are particularly effective when labeled data is
scarce. While some methods, such as GLSFormer, surpass JHU-VPT(JEPA) at the full data
regime (100%), our approach offers a compelling advantage in scenarios where extensive
labeled data is unavailable.

Overall, these findings highlight the effectiveness of combining extensive pretraining
with tailored masking strategies, positioning JHU-VPT(JEPA) as a strong candidate for
applications with privacy constraints and limited annotation resources.

Table 4: Comparison of JHU-VPT(JEPA) with other state-of-the-art methods on D99 Step
Recognition, under different data-regime settings and pretraining datasets.

Methods | Pre-training Dataset | Masking | Data Regime (%)

50 100
60.47 7285
63.76  80.24
70.91

MaskFeat (Wei et al., 2022) 5-400
B ( 2023) K 5-400

74.16
60.99 73.35
62.34 7298
63.72  74.39
65.83  78.14
70.42  75.61

STMAE (Feic
/ideoMAE (Tor

CSMAE (Shah et al., 2025)
JHU-VPT(JEPA)

Figure 2 shows the step recognition accuracy across different dataset splits after full
fine-tuning. Both our JHU-VPT(JEPA) and the D-2591 models (VideoMAE pretraining)
consistently outperform CSMAE on the Cataract-1k and Cataract-1k-JHU datasets, rein-
forcing the robustness of our pretraining with a large dataset.
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Step Recognition Accuracy Across Dataset Splits
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Figure 2: Step Recognition Accuracy across different dataset splits after complete fine-
tuning.
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