
Appendix for “Beyond Pinball Loss: Quantile Meth-
ods for Calibrated Uncertainty Quantification”

A Theoretical Results

A.1 Proof of Proposition 1

Proposition 1. Consider a finite dataset D, the pinball loss ρτ (Eq. 1) and a quantile model
f : X × (0, 1)→ Y that is average calibrated on D, i.e. ECE(D, f) = 0. Then there always exists
another quantile model g : X × (0, 1) → Y , such that, for any quantile level τ ∈ (0, 1), g has
lower pinball loss than f on D, i.e.

∑N
i=1 ρτ (yi, gτ (xi)) <

∑N
i=1 ρτ (yi, fτ (xi)), but worse average

calibration than f , i.e. ECE(D, g) > ECE(D, f).

Proof:

Denote {pj}mj=1 as the set of quantiles used to compute ECE(D, f). Since f is average calibrated
on D, for any τ ∈ {pj}mj=1, p̂obs

avg(D, τ) of f is equal to τ , i.e. 1
N

∑N
i=1 I{yi ≤ fτ (xi)} = τ .

Hence,

• |{(xi, yi) | yi ≤ fτ (xi)}| = τ ∗N ,

• |{(xi, yi) | yi > fτ (xi)}| = (1− τ) ∗N .

Denote {(xi, yi) | yi ≤ fτ (xi)} as Sunder
f and {(xi, yi) | yi > fτ (xi)} as Sover

f .

Let ρτ (D, fτ ) be the pinball loss of fτ on D, i.e. ρτ (D, fτ ) =
∑N
i=1 ρτ (yi, fτ (xi)).

Then,

ρτ (D, fτ ) =

N∑
i=1

ρτ (yi, fτ (xi)) =
∑

(xi,yi)∈Sunder
f

(fτ (xi)− yi)(1− τ)

+
∑

(xi,yi)∈Sover
f

(fτ (xi)− yi)(−τ).

We can construct another quantile model g, s.t. its prediction for τ , gτ , is as follows: take any point
(xk, yk) ∈ Sover

f and set gτ (xk) = yk − τ
2(1−τ) (fτ (xk)− yk). For all other points, (xi, yi)i 6=k ∈ D,

set gτ (xi) = fτ (xi).

Since yk − gτ (xk) = τ
2(1−τ) (fτ (xk)− yk) < 0, we have that yk < gτ (xk).

Therefore, |{(xi, yi) | yi ≤ gτ (xi)}| = (τ ∗N)+1 and |{(xi, yi) | yi > gτ (xi)}| = ((1−τ)∗N)−1.

Therefore, |p̂obs
avg(D, τ) of g − τ | > |p̂obs

avg(D, τ) of f − τ |, which implies that according to {pj}mj=1,
ECE(D, g) > ECE(D, f).

We further consider the pinball loss of gτ on D, ρτ (D, gτ ).

ρτ (D, gτ ) =
∑N
i=1 ρτ (yi, gτ (xi)) = ρτ (yk, gτ (xk)) +

∑
i∈[N ],i6=k ρτ (yi, fτ (xi)).
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Note that the term, ρτ (yk, gτ (xk)) satisfies:

ρτ (yk, gτ (xk)) = (gτ (xk)− yk)(1− τ)

=
τ

2(1− τ)
(yk − fτ (xk))(1− τ)

=
τ

2
(yk − fτ (xk))

< τ(yk − fτ (xk))

= (−τ)(fτ (xk)− yk)

= ρτ (yk, fτ (xk))

Therefore, ρτ (D, gτ ) < ρτ (D, fτ ), i.e. the pinball loss of gτ on D is less than the pinball loss of fτ
on D.

Note that for any τ 6∈ {pj}mj=1, we can follow the same steps to construct gτ s.t. |p̂obs
avg(D, τ) of g −

τ | > |p̂obs
avg(D, τ) of f − τ |, i.e. gτ is more miscalibrated than fτ . Therefore, for any quantile level

τ ∈ (0, 1),
∑N
i=1 ρτ (yi, gτ (xi)) <

∑N
i=1 ρτ (yi, fτ (xi)), but ECE(D, g) > ECE(D, f).

A.2 Proof of Proposition 2

Proposition 2. For any quantile level p ∈ (0, 1), the true quantile function Qp minimizes the
calibration objective, C(Q̂p, p). Further, on a finite dataset D, the empirical calibration objective,
C(D, Q̂p, p), is minimized by an average calibrated solution on D, i.e. when p̂obs

avg(D, p) = p.

Proof:
Recall the calibration objective for a quantile level p ∈ (0, 1),

C(Q̂p, p) = I{p̂p < p} ∗ E[Y − Q̂p|Y > Q̂p] ∗ P (Y > Q̂p)

+ I{p̂p > p} ∗ E[Q̂p − Y |Q̂p > Y ] ∗ P (Q̂p > Y ),where p̂p = P (Y ≤ Q̂p).

For the true quantile function Qp, P (Y ≤ Qp) = p, thus achieves the minimum value of 0 for
C(Q̂p, p), as the two non-negative terms of C(Q̂p, p) are 0.

Further, recall the empirical calibration objective,

C(D, Q̂, p) = I{p̂obs
avg < p} ∗ 1

N

N∑
i=1

[
(yi − Q̂p(xi))I{yi > Q̂p(xi)}

]
+ I{p̂obs

avg > p} ∗ 1

N

N∑
i=1

[
(Q̂p(xi)− yi)I{Q̂p(xi) > yi}

]

An average calibrated solution on the dataset D satisfies p̂obs
avg = p, thus achieves the minimum value

of 0 for C(D, Q̂, p), as the two non-negative terms of C(D, Q̂, p) are 0.

A.3 Derivation of Gradients of Calibration Objective

Denote the CDF and PDF of the random variable Y as FY and fY .
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• When p̂p = P (Y ≤ Q̂p) < p:

C(Q̂p, p) = E[Y − Q̂p|Y > Q̂p] ∗ P (Y > Q̂p)

=
(
E[Y |Y > Q̂p]− Q̂p

)
∗ P (Y > Q̂p)

=

(∫∞
Q̂p yfY (y)dy

P (Y > Q̂p)
− Q̂p

)
∗ P (Y > Q̂p)

=

(∫ ∞
Q̂p

yfY (y)dy

)
−
(
Q̂p ∗ P (Y > Q̂p)

)
=

(∫ ∞
Q̂p

yfY (y)dy

)
−
(
Q̂p ∗ (1− FY (Q̂p))

)

Note that,

∂
(∫∞

Q̂p yfY (y)dy
)

∂Q̂p
= −Q̂p ∗ fY (Q̂p)

∂
(
Q̂p ∗ (1− FY (Q̂p)

)
∂Q̂p

= (1− FY (Q̂p) + Q̂P ∗ (−fy(Q̂p))

Therefore,

∂C(Q̂p, p)
∂Q̂p

=
∂
(∫∞

Q̂p yfY (y)dy
)

∂Q̂p
−
∂
(
Q̂p ∗ (1− FY (Q̂p)

)
∂Q̂p

= −Q̂p ∗ fY (Q̂p)− (1− FY (Q̂p) + Q̂P ∗ fy(Q̂p)

= −(1− FY (Q̂p)

= −P (Y > Q̂p)

• When p̂p = P (Y ≤ Q̂p) > p:

C(Q̂p, p) = E[Q̂p − Y |Q̂p > Y ] ∗ P (Q̂p > Y )

=
(
Q̂p − E[Y |Q̂p > Y ]

)
∗ P (Q̂p > Y )

=

Q̂p −
∫ Q̂p
−∞ yfY (y)dy

P (Q̂p > Y )

 ∗ P (Q̂p > Y )

=
(
Q̂p ∗ P (Q̂p > Y )

)
−
(∫ Q̂p

−∞
yfY (y)dy

)

=
(
Q̂p ∗ FY (Q̂p)

)
−
(∫ Q̂p

−∞
yfY (y)dy

)

Note that,

∂
(
Q̂p ∗ FY (Q̂p)

)
∂Q̂p

= FY (Q̂p) + Q̂P ∗ fY (Q̂p)

∂
(∫ Q̂p
−∞ yfY (y)dy

)
∂Q̂p

= Q̂p ∗ fY (Q̂p)
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Therefore,

∂C(Q̂p, p)
∂Q̂p

=
∂
(
Q̂p ∗ FY (Q̂p

)
∂Q̂p

−
∂
(∫ Q̂p
−∞ yfY (y)dy

)
∂Q̂p

= FY (Q̂p) + Q̂P ∗ fY (Q̂p)− Q̂p ∗ fY (Q̂p)

= FY (Q̂p)

= P (Y < Q̂p).

�

A.4 Optimum of Interval Score

Following notation from Section 3.3, we denote l̂ = Q̂(x, α2 ) and û = Q̂(x, 1 − α
2 ), and we omit

conditioning on x for clarity.

Assume l̂ ≤ û. Then,

E
[
Sα(l̂, û; y)

]
=

∫ l̂

−∞
Sα(l̂, û; y)dF(y) +

∫ û

l̂

Sα(l̂, û; y)dF(y) +

∫ ∞
û

Sα(l̂, û; y)dF(y)

= (û− l̂) +
2

α

∫ l̂

−∞
(l̂ − y)dF(y) +

2

α

∫ ∞
û

(y − û)dF(y)

∂E
[
Sα(l̂, û; y)

]
∂l̂

= −1 +
2

α

∫ l̂

−∞
dF(y) = −1 +

2

α
F(l̂)

∂E
[
Sα(l̂, û; y)

]
∂û

= 1− 2

α

∫ ∞
û

dF(y) = 1− 2

α
(1− F(û)).

Setting
∂E[Sα(l̂,û;y)]

∂l̂
and

∂E[Sα(l̂,û;y)]
∂û to zero reveals the interval loss minima at the respective true

quantiles,

F(l̂) =
α

2
and F(û) = 1− α

2

i.e. l̂ = Q(·, α
2

) and û = Q(·, 1− α

2
)

�
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B Model Agnostic Quantile Regression

B.1 General Algorithm for Model Agnostic Quantile Regression

As stated in Section 3.1, Algorithm 1 is one implementation of a general model-agnostic quantile
regression procedure, in which we take direct estimates of the target density and regress onto these
estimates. This general framework is stated in Algorithm 3

Algorithm 3 General Algorithm for Model Agnostic Quantile Regression
1: Input: Train data {xi, yi}Ni=1
2: Initialize D ← ∅
3: for i = 1 to N do
4: Select a set of quantile levels {pk}mk=1, pk ∈ [0, 1]
5: q̂i,pk ← KDE estimate of Q(xi, pk), k = 1, . . . ,m
6: D ← D ∪ {xi, pk, q̂i,pk}mk=1
7: end for
8: Use D to fit a regression model Q̂

Q̂ : (xi, pk) 7→ q̂i,pk , k = 1, . . . ,m
9: Output: ĝ, k = 1, . . . ,m

Algorithm 1 implements the KDE step of Algorithm 3 (Line 5 of Algorithm 3) by using a uniform
kernel over X (Line 2 of Algorithm 2) and Y (Lines 3,5,6 of Algorithm 2).

It should also be noted that many other conditional KDE methods can be used to construct the dataset
D. We refer the reader to Holmes et al. [25], Hyndman et al. [26] for a more thorough treatment of
methods in conditional KDE.

Lastly, this algorithm is model agnostic because any regression model can be used for ĝ in Algorithm 3,
and for f̂ and ĝ in Algorithm 1. In our specific implementation of Algorithm 1, we used a neural
network for ĝ to fit the quantile dataset D, but we can also use other models, such as a random forest
or gradient-boosted trees. In particular, we have replaced ĝ in Algorithm 1 with a gradient-boosted
tree model and observed very similar UQ performance on the UCI datasets as reported in Section 4.1
(we omit numerical values because they are very similar and otherwise uninformative).

B.2 Algorithm Complexity

Lines 2 and 3 of Algorithm 2 requires calculating the distance between xk and all other xi, 1 ≤ i ≤ N ,
and ordering these distances to construct the empirical CDF. Let the distance calculation between a
pair of points take constant C time. Ordering the distance requires sorting the N distances. Hence,
Lines 5 and 6 takes O(N logN) time.

If K points are in the set Ek,dN , Lines 5, 6, 7 of Algorithm 2 are done for each of the K points. We
consider the worst case when each set Ek,dN contains all N points, which costs O(N).

The above two procedures are done for all N points (Line 4 of Algorithm 1), therefore the for loop
from Lines 4 to 7 in Algorithm 1 requires O(N2 logN) time. This loop takes into account creating
the dataset D for the quantile model. The rest of the algorithm constitutes fitting a regression model
with this dataset D, which we do not analyze here.

We now discuss the space complexity. In Lines 5, 6, 7 of Algorithm 2, we only draw the quantiles at
which a discontinuous step occurs in the constructed empirical CDF. For example, if we constructed
an empirical CDF with three equally weighted points, we will only draw the quantiles [1/3, 2/3, 1].
Following this procedure, in the worst case, for each of the N points, we will construct a CDF with all
N points, and hence draw N quantiles to append to the quantile model dataset D. If we consider the
space complexity of the mean function and the quantile model to be constant, the algorithm requires
O(N2) space in total.
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C Details on Datasets and Setup of Main Experiments

C.1 UCI Experiment Details

Here, we provide details on the setup of the UCI experiments presented in Section 4.1.

For each of the 8 UCI datasets, we split 10% of the data into the test set, and we further split 20% of
the remaining 90% of the data for the validation, resulting in a train/validation/test split of proportions
72%, 18%, 10%. For all tasks and all 8 datasets, the data was preprocessed by centering to zero mean
and scaling to unit variance.

We used the same NN architecture across all methods: 2 layers of 64 hidden units with ReLU
non-linearities. We used the same learning rate, 1e−3, and the same batch size, 64, for all methods.
For all methods, training was stopped early if the validation loss did not decrease for more than
200 epochs, until a maximum of 10000 epochs. If training was stopped early, the final model was
backtracked to the model with lowest validation loss.

IndvCal (individual calibration) has one hyperparameter, α, which balances the NLL loss and the
individual calibration loss in the loss function. We 5-fold cross-validated α in [0.0, 1.0] in 20
equi-spaced intervals based on Pareto optimality in test set NLL and adversarial group calibration. If
there were multiple α values that were Pareto optimal, we chose the value that had the best test set
adversarial group calibration.

Cali (penalized calibration loss) has one hyperparameter, λ, which balances the calibration loss and
sharpness penalty in the loss function. We tuned λ according to the same grid as above for α, based
on the criterion of adversarial group calibration. Note that adversarial group calibration will not
always favor lower values of λ as λ = 0 will only target average calibration, which, in the degenerate
case, may converge to the marginal distribution of FY. This state will achieve very poor adversarial
group calibration.

Group batching was applied to Interval (interval score) and Cali according to the implementation
detailed in Appendix C.3. During training, we alternated between “group batching epochs” and
“regular batching epochs” (where batches are drawn uniformly from the training set), and the frequency
of group batching epochs was a hyperparameter we tuned with cross-validation in [1, 2, 3, 5, 10, 30,
100], based on the criterion of adversarial group calibration.

MAQR has a two-step training process: we first learn a mean model, then construct a quantile
dataset D, then regress onto this dataset with the quantile model. Both the mean model and the
quantile model had the same NN architecture as mentioned above. The mean model was trained
with the MSE loss according to the same, aforementioned training procedure. For each UCI dataset,
we learned one mean model from the first seed, and re-used this mean model for all other seeds.
Using this mean model, we then populated the quantile dataset according to the method outlined in
Algorithm 1. Algorithm 1 requires one hyperparameter: the distance threshold in X space (dN in
Line 2 of Algorithm 2). We tuned this hyperparameter by setting the minimum distance required to
include k number of points, on average, in constructing an empirical CDF at each training point. We
tuned this parameter with cross-validation using the grid k ∈ [10, 20, 30, 40, 50]. The quantile model
was trained according to the same training procedure but with one difference: the batch size was set
to 1024 because the quantile dataset D could become very large due to many conditional quantile
estimates at each training point.

All methods, for all datasets were repeated with 5 seeds: [0, 1, 2, 3, 4].

C.2 Fusion Experiment Details

We first describe the fusion dataset from Section 4.1, then the details of the fusion experiment set up.

The fusion dataset was recorded from the DIII-D tokamak in San Diego, CA, USA, and describes the
dynamics of plasma during a nuclear fusion reaction within the tokamak. Consent and access to use
this dataset was obtained via collaborations with the Princeton Plasma Physics Lab.

While the dataset in its raw format is a time-series of the state variables and action variables, for the
purposes of a supervised learning problem to learn the dynamics of plasma, it has been re-structrued
into a (state, action, next state) format. Therefore, the modeling task at hand is to learn the mapping

20



State Variables
aminor Minor Radius

dssdenest Line Averaged Electron Density
efsbetan Normalized Beta

efsli Internal Inductance
efsvolume Plasma Volume

ip Plasma Curent
kappa Elongation

R0 Major Radius
tribot Bottom Triangularity
tritop Top Triangularity

Action Variables
pinj_15l Co-current Beam 1 Power
pinj_15r Co-current Beam 2 Power
pinj_21l Counter-current Beam 1 Power
pinj_21r Counter-current Beam 2 Power
pinj_30l Co-current Beam 3 Power
pinj_30r Co-current Beam 4 Power
pinj_33l Co-current Beam 5 Power
pinj_33r Co-current Beam 6 Power

Figure 5: State and Action Variables for Fusion Dataset. 10 variables describe the current state of
plasma, and the action space is 8 dimensional.

(state, action) to (next state), and the UQ task is then to learn the distribution over the next state given
the current state and action.

There are 10 plasma state variables that we use both as the input state variables and the target variables.
For the action variables, we use the power level of 8 neutral beams, which are a primary means of
controlling plasma in a tokamak. These variables are described in Figure 5.

As input to the dynamics model, we model the current state as a 200 millisecond (ms) history window
of the 10 state variables and 8 action variables, and we model the current action as a 200ms window
into the future of the 8 action variables. The target variables are modeled as the change (or delta) of
the state variables 200ms in the future. The state and action features are engineered according to the
method used by Fu et al. [16]. Each 200ms window is taken as one “frame”, the 200ms window is
further divided into 2 “frames” of equal length (100ms each), as well as thirds. Then we calculate the
mean, variance, and slope of each state and action variable for each of these frames, and collect these
statistics as the features. Hence, each 200ms window for 1 variable is summarized into 18 features (3
statistics per frame, and 6 frames per 200ms window). Since there are 10 state variables and 8 action
variables, and since the state window is 200ms long and the action window is 200ms long, the input is
a 468 dimensional array (10 state variables + 8 previous action variables + 8 current action variables
for a total of 26 input variables, and 18 features per variable). Once these features are created, we
centered and scaled the inputs and targets to zero mean and unit variance.

There were a total of 100K training data points, and 10K validation and 10K test data points.

The training and hyperparameter tuning procedures were exactly the same as the UCI experiments
(detailed above in Appendix C.1), except for two differences: 1) we have increased the NN capacity
to 3 hidden layers of 100 hidden units and 2) the batch size was set to 500.

The fusion experiment was likewise repeated 5 times with the seeds [0, 1, 2, 3, 4].

C.3 Group Batching Implementation Details

Group batching, as introduced in Section 3.4, is a general procedure in which deliberate subsets of
the training data are constructed and batched from during train time. There is no “correct” method to
form these subsets, because the main point is to simply avoid drawing batches only from FX. One
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could consider thresholding the values of each dimension of the domain and discretizing the subsets
according to the thresholds, and also taking unions of these discretizations to form new subsets.

This implementation can be computationally demanding, because for each threshold setting, one has
to make sure to choose a subset with sufficiently many points, and iteratively increase or decrease the
dimension thresholds if no subset with sufficiently many points can be found. This computational
cost increases significantly with dimension.

Our implementation of group batching for all our experiments were as follows: we sort the datapoints
according to a single dimension, then take consecutive sets of size equal to the batch size, and use
these sets as the batches to take gradient steps over during an epoch. We repeat the above process by
cycling through each dimension for sorting. While this process is very simple and inexpensive and
only considers a single dimension in constructing the subsets, this group batching scheme has shown
to be very effective in our experiments.

C.4 Calculation of Evaluation Metrics

To measure the calibration metrics (average, adversarial group, centered interval), we discretized the
expected probabilities from 0.01 to 0.99 in 0.01 increments (i.e. 0.01, 0.02, . . . , 0.97, 0.98, 0.99)
and calculated ECE according to this finite discretization.

To measure centered interval calibration, for each expected probability p, we predict centered 100×p%
PIs, and calculate p̂obs

avg as the proportion of test points falling within the PI, i.e. p̂obs
avg(p) here would

be calculated as

p̂obs
avg(p) for centered intervals =

1

N

N∑
i=1

I{Q̂(0.5−p/2)(xi) ≤ yi ≤ Q̂(0.5+p/2)(xi)}.

The procedure in which we measure adversarial group calibration is the following. For a given test
set, we scale group size between 1% and 100% of the full test set size, in 10 equi-spaced intervals,
and for each group size, we draw 20 random groups from the test set and record the worst calibration
incurred across these 20 random groups. This is also the method used by Zhao et al. [65] to measure
adversarial group calibration.

Sharpness was measured as the mean width of the 95% centered PI (i.e. between p = 0.025 and
0.975).

The proper scoring rules (check score, interval score) were measured as the average of the score on
the test set.

C.5 Discussion of Compute and Resources

All experiments were run on a single NVIDIA GeForce GTX 1080Ti GPU, with a Intel(R) Xeon(R)
Silver 4110 CPU. The fusion datasets were the largest (100K training) and highest dimensional (468
dimensional) and took the longest to run: training one model to convergence took roughly ∼ 1 hour.
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D Full Experimental Results

In this section, we provide all of the experimental results from Section 4, for all metrics: 1) average
calibration - sharpness, 2) adversarial group calibration, 3) check score, 4) interval score, and 5)
centered interval calibration

For average calibration and sharpness, we present the numeric tables again, along with a visualization
which plots calibration and sharpness along the x and y axes.

D.1 Full UCI Experiment Results

SQR mPAIC Interval Cali MAQR

U
C

I

Concrete 9.3 ± 1.5(7.0 ± 1.0) 6.2 ± 0.5(14.2 ± 0.8) 3.7 ± 0.6(18.1 ± 0.6) 5.6 ± 0.8(17.3 ± 1.5) 5.3 ± 0.4(16.0 ± 0.4)
Power 2.6 ± 0.4(13.4 ± 0.2) 5.2 ± 0.4(13.5 ± 0.3) 2.2 ± 0.4(21.0 ± 1.0) 2.0 ± 0.1(13.1 ± 0.1) 1.6 ± 0.3(19.9 ± 0.2)
Wine 4.2 ± 0.2(29.5 ± 0.4) 10.3 ± 0.3(37.7 ± 0.5) 5.0 ± 0.8(41.4 ± 2.5) 4.2 ± 0.4(26.0 ± 0.8) 2.7 ± 0.2(39.3 ± 0.5)
Yacht 9.4 ± 0.9(1.0 ± 0.1) 10.8 ± 2.3(2.6 ± 0.4) 7.5 ± 0.9(4.5 ± 1.0) 8.3 ± 0.6(2.0 ± 0.4) 6.8 ± 2.1(2.4 ± 0.3)
Naval 9.7 ± 1.6(3.5 ± 0.4) 3.1 ± 0.5(63.0 ± 1.8) 4.7 ± 1.4(28.4 ± 3.6) 5.9 ± 0.7(3.0 ± 0.2) 2.3 ± 0.2(1.7 ± 0.1)
Energy 9.8 ± 0.8(2.0 ± 0.1) 10.4 ± 0.5(4.3 ± 0.2) 4.3 ± 0.6(5.1 ± 0.9) 5.8 ± 0.4(3.6 ± 0.3) 3.5 ± 1.0(3.2 ± 0.1)
Boston 9.0 ± 0.8(9.3 ± 0.7) 8.7 ± 1.3(12.3 ± 0.7) 6.9 ± 1.1(20.3 ± 0.5) 8.5 ± 1.5(10.9 ± 0.6) 6.2 ± 1.8(10.9 ± 0.8)
Kin8nm 4.4 ± 0.1(11.4 ± 0.2) 6.6 ± 0.4(17.0 ± 0.5) 2.9 ± 0.4(16.9 ± 0.5) 3.5 ± 0.3(13.7 ± 0.7) 1.8 ± 0.4(17.1 ± 0.1)

F
u
si

o
n

aminor 5.8 ± 0.9(1.6 ± 0.0) 13.5 ± 0.0(5.3 ± 0.0) 3.6 ± 0.7(3.7 ± 0.1) 2.9 ± 0.2(2.2 ± 0.0) NA
betan 3.1 ± 0.4(2.8 ± 0.1) 9.2 ± 0.4(5.5 ± 0.1) 5.1 ± 0.4(5.7 ± 0.3) 3.4 ± 0.5(3.3 ± 0.2) NA

dssdenest 4.4 ± 0.5(7.2 ± 0.2) 8.4 ± 0.1(13.7 ± 0.1) 2.9 ± 0.3(13.3 ± 0.4) 4.1 ± 0.5(8.9 ± 0.3) NA
ip 3.2 ± 0.3(2.4 ± 0.1) 13.5 ± 0.2(9.0 ± 0.2) 4.4 ± 0.3(5.4 ± 0.1) 2.3 ± 0.2(3.8 ± 0.1) NA

Figure 2: UCI Check Score. Full check score results of Section 4.1, Figure 3, Left Table.

3

Figure 6: UCI Average Calibration-Sharpness Table. The table shows mean average calibration
(measured by ECE) and sharpness in parentheses, along with ±1 standard error. The best mean ECE
for each dataset has been bolded and the best mean sharpness has been underlined. All values have
been multiplied by 100 for readability (same table as Figure 2 (Top), repeated here for completeness).
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Figure 7: UCI Average Calibration-Sharpness Plot. Visualization of average calibration-sharpness
from UCI experiments in Section 4.1
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Figure 8: UCI Adversarial Group Caibration. The plot displays the worst calibration error
incurred for any group of any given size. The mean is plotted along with ±1 standard error in shades.
Group size here refers to the proportion of the test dataset size (full results for Figure 2 (Bottom)).

SQR mPAIC Interval Cali MAQR
concrete 0.085(0.006) 0.085± 0.005 0.086± 0.004 0.118± 0.006 0.059± 0.008
power 0.057± 0.001 0.070± 0.001 0.062± 0.001 0.064± 0.001 0.058± 0.001
wine 0.205± 0.008 0.219± 0.004 0.214± 0.006 0.210± 0.008 0.191± 0.003
yacht 0.012± 0.002 0.015± 0.002 0.018± 0.003 0.019± 0.004 0.007± 0.001
naval 0.070± 0.001 0.276± 0.004 0.066± 0.013 0.159± 0.029 0.004± 0.000

energy 0.014± 0.000 0.015± 0.001 0.017± 0.003 0.017± 0.002 0.010± 0.001
boston 0.088± 0.008 0.095± 0.008 0.094± 0.009 0.103± 0.013 0.063± 0.016
kin8nm 0.078± 0.001 0.104± 0.003 0.077± 0.001 0.096± 0.005 0.070± 0.001

Figure 9: UCI Check Score. Full check score results of UCI experiments from Section 4.1. Mean
score across 5 trials is given, along with ±1 standard error. The best mean has been bolded. MAQR
tends to achieve the best check score, which is surprising given that SQR utilizes the same model
class to optimize the check score directly.

SQR mPAIC Interval Cali MAQR
concrete 2.038± 0.225 1.157± 0.069 0.943± 0.053 1.465± 0.086 0.672± 0.118
power 0.834± 0.022 0.917± 0.021 0.620± 0.010 0.699± 0.019 0.592± 0.009
wine 3.242± 0.166 3.168± 0.019 2.197± 0.045 2.498± 0.135 2.052± 0.052
yacht 0.314± 0.061 0.197± 0.036 0.190± 0.021 0.298± 0.063 0.086± 0.016
naval 0.097± 0.011 3.112± 0.053 0.620± 0.114 1.560± 0.268 0.044± 0.001

energy 0.290± 0.016 0.223± 0.017 0.182± 0.026 0.204± 0.018 0.101± 0.006
boston 1.833± 0.299 1.395± 0.176 1.010± 0.118 1.449± 0.259 0.864± 0.287
kin8nm 1.241± 0.041 1.347± 0.031 0.776± 0.017 1.121± 0.072 0.691± 0.015

Figure 10: UCI Interval Score Full interval score results of UCI experiments from Section 4.1.
Mean score across 5 trials is given, along with ±1 standard error. The best mean has been bolded.
MAQR tends to achieve the best interval score, which is surprising given that Interval utilizes the
same model class to optimize the interval score directly.
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SQR mPAIC Interval Cali MAQR
concrete 0.186± 0.031 0.089± 0.005 0.061± 0.008 0.096± 0.013 0.059± 0.020
power 0.045± 0.004 0.068± 0.008 0.023± 0.003 0.037± 0.002 0.010± 0.002
wine 0.053± 0.006 0.169± 0.008 0.079± 0.014 0.065± 0.007 0.045± 0.005
yacht 0.135± 0.009 0.100± 0.020 0.121± 0.005 0.129± 0.016 0.085± 0.024
naval 0.128± 0.031 0.039± 0.003 0.043± 0.014 0.110± 0.013 0.012± 0.002

energy 0.174± 0.011 0.163± 0.009 0.060± 0.010 0.090± 0.011 0.052± 0.018
boston 0.163± 0.020 0.050± 0.007 0.079± 0.015 0.138± 0.028 0.092± 0.041
kin8nm 0.070± 0.005 0.080± 0.002 0.048± 0.006 0.067± 0.005 0.019± 0.008

Figure 11: UCI Centered Interval Calibration Full centered interval calibration results of UCI
experiments from Section 4.1. Mean score across 5 trials is given, along with ±1 standard error. The
best mean has been bolded. MAQR tends to achieve the best centered interval calibration.
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D.2 Full Fusion Experiment Results

SQR mPAIC Interval Cali

F
u
si

o
n

aminor 5.8 ± 0.9(1.6 ± 0.0) 13.5 ± 0.0(5.3 ± 0.0) 3.6 ± 0.7(3.7 ± 0.1) 2.9 ± 0.2(2.2 ± 0.0)
betan 3.1 ± 0.4(2.8 ± 0.1) 9.2 ± 0.4(5.5 ± 0.1) 5.1 ± 0.4(5.7 ± 0.3) 3.4 ± 0.5(3.3 ± 0.2)

dssdenest 4.4 ± 0.5(7.2 ± 0.2) 8.4 ± 0.1(13.7 ± 0.1) 2.9 ± 0.3(13.3 ± 0.4) 4.1 ± 0.5(8.9 ± 0.3)
ip 3.2 ± 0.3(2.4 ± 0.1) 13.5 ± 0.2(9.0 ± 0.2) 4.4 ± 0.3(5.4 ± 0.1) 2.3 ± 0.2(3.8 ± 0.1)

kappa 4.4 ± 0.6(2.5 ± 0.1) 14.8 ± 0.5(9.0 ± 0.4) 4.2 ± 0.4(6.1 ± 0.2) 3.6 ± 0.2(3.4 ± 0.1)
li 4.4 ± 0.6(1.0 ± 0.1) 12.6 ± 0.6(2.7 ± 0.1) 3.7 ± 0.6(2.2 ± 0.1) 2.9 ± 0.4(1.3 ± 0.1)

R0 5.3 ± 0.8(3.3 ± 0.1) 8.7 ± 0.4(7.2 ± 0.3) 3.4 ± 0.2(6.2 ± 0.1) 3.6 ± 0.2(4.0 ± 0.3)
tribot 4.6 ± 0.4(2.4 ± 0.1) 15.1 ± 0.7(8.8 ± 0.7) 3.9 ± 0.5(6.0 ± 0.2) 4.6 ± 0.5(3.0 ± 0.2)
tritop 5.6 ± 0.7(2.7 ± 0.1) 12.9 ± 0.7(7.2 ± 0.7) 3.7 ± 0.8(6.5 ± 0.4) 2.5 ± 0.3(4.4 ± 0.1)
volume 5.8 ± 1.2(0.9 ± 0.0) 16.9 ± 1.1(3.9 ± 0.4) 3.6 ± 0.3(2.0 ± 0.1) 2.8 ± 0.1(1.2 ± 0.0)

Figure 2: UCI Check Score. Full check score results of Section 4.1, Figure 3, Left Table.

3 Figure 12: Fusion Average Calibration-Sharpness Table. The table shows mean average calibra-
tion (measured by ECE) and sharpness in parentheses, along with ±1 standard error. The best mean
ECE for each dataset has been bolded and the best mean sharpness has been underlined. All values
have been multiplied by 100 for readability. Cali tends to achieve the best average calibration, while
SQR achieves the sharpest predictions (same table as Figure 3 (Top), repeated here for completeness)
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Figure 13: Fusion Average Calibration-Sharpness Plot. Visualization of average calibration-
sharpness from fusion experiments from Section 4.1

.

0.0 0.5 1.0
Group Size

10 1

3 × 10 2

4 × 10 2

6 × 10 2

Ca
lib

ra
tio

n 
Er

ro
r

fo
r W

or
st

 G
ro

up

aminor
SQR
mPAIC
Interval
Cali

0.0 0.5 1.0
Group Size

10 1

3 × 10 2

4 × 10 2

6 × 10 2

dssdenest

0.0 0.5 1.0
Group Size

10 1

4 × 10 2

6 × 10 2

efsbetan

0.0 0.5 1.0
Group Size

10 1

3 × 10 2

4 × 10 2

6 × 10 2

efsli

0.0 0.5 1.0
Group Size

10 1

3 × 10 2
4 × 10 2

6 × 10 2

2 × 10 1
efsvolume

0.0 0.5 1.0
Group Size

10 1

3 × 10 2
4 × 10 2

6 × 10 2

Ca
lib

ra
tio

n 
Er

ro
r

fo
r W

or
st

 G
ro

up

ip

0.0 0.5 1.0
Group Size

10 1

4 × 10 2

6 × 10 2

kappa

0.0 0.5 1.0
Group Size

10 1

4 × 10 2

6 × 10 2

R0

0.0 0.5 1.0
Group Size

10 1

4 × 10 2

6 × 10 2

tribot

0.0 0.5 1.0
Group Size

10 1

3 × 10 2
4 × 10 2

6 × 10 2

tritop

Figure 14: Fusion Adversarial Group Calibration Full fusion results of Figure 3 (Bottom). Cali
and Interval tend to achieve the best calibration for any group of any size in the test set.
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SQR mPAIC Interval Cali
aminor 0.087± 0.000 0.182± 0.000 0.097± 0.002 0.092± 0.002

dssdenest 0.179± 0.003 0.273± 0.003 0.180± 0.001 0.184± 0.002
betan 0.146± 0.001 0.253± 0.005 0.153± 0.002 0.150± 0.001

li 0.097± 0.001 0.166± 0.003 0.102± 0.001 0.104± 0.001
volume 0.051± 0.001 0.107± 0.007 0.053± 0.001 0.052± 0.001

ip 0.068± 0.000 0.199± 0.011 0.077± 0.002 0.076± 0.001
kappa 0.072± 0.001 0.150± 0.004 0.079± 0.002 0.078± 0.001

R0 0.120± 0.001 0.208± 0.002 0.126± 0.002 0.130± 0.005
tribot 0.084± 0.001 0.184± 0.020 0.092± 0.001 0.096± 0.005
tritop 0.102± 0.001 0.200± 0.018 0.107± 0.004 0.107± 0.002

Figure 15: Fusion Check Score Check score results from fusion experiments in Section 4.1. Mean
score across 5 trials is given, along with ±1 standard error. The best mean has been bolded. SQR
achieves the best check score.

SQR mPAIC Interval Cali
aminor 1.181± 0.007 3.225± 0.000 1.090± 0.017 1.207± 0.035

dssdenest 2.387± 0.060 4.352± 0.109 1.995± 0.011 2.369± 0.054
betan 1.970± 0.013 4.301± 0.124 1.725± 0.021 2.002± 0.046

li 1.354± 0.018 2.923± 0.088 1.146± 0.010 1.410± 0.015
volume 0.711± 0.023 2.036± 0.154 0.602± 0.012 0.697± 0.026

ip 0.906± 0.005 3.203± 0.295 0.845± 0.017 0.978± 0.026
kappa 1.010± 0.010 2.639± 0.101 0.891± 0.015 1.066± 0.020

R0 1.599± 0.011 3.310± 0.064 1.414± 0.012 1.709± 0.057
tribot 1.211± 0.009 3.185± 0.242 1.074± 0.012 1.421± 0.115
tritop 1.481± 0.022 3.564± 0.351 1.232± 0.034 1.444± 0.031

Figure 16: Fusion Interval Score Interval score results from fusion experiments in Section 4.1.
Mean score across 5 trials is given, along with ±1 standard error. The best mean has been bolded.
Interval achieves the best interval score.

SQR mPAIC Interval Cali
aminor 0.081± 0.006 0.268± 0.000 0.055± 0.007 0.058± 0.004

dssdenest 0.072± 0.003 0.162± 0.003 0.054± 0.006 0.071± 0.008
betan 0.051± 0.001 0.160± 0.012 0.087± 0.009 0.056± 0.007

li 0.071± 0.011 0.214± 0.017 0.069± 0.013 0.043± 0.003
volume 0.073± 0.007 0.315± 0.022 0.063± 0.007 0.056± 0.002

ip 0.051± 0.003 0.227± 0.020 0.077± 0.015 0.036± 0.003
kappa 0.069± 0.008 0.254± 0.014 0.078± 0.011 0.053± 0.004

R0 0.068± 0.007 0.168± 0.009 0.058± 0.007 0.066± 0.004
tribot 0.087± 0.006 0.227± 0.016 0.074± 0.008 0.080± 0.007
tritop 0.077± 0.006 0.231± 0.017 0.058± 0.015 0.037± 0.004

Figure 17: Fusion Centered Interval Calibration Full centered interval calibration results from
fusion experiments in Section 4.1. Mean score across 5 trials is given, along with ±1 standard error.
The best mean has been bolded. Cali and Interval achieves the best centered interval calibration in 9
out of 10 datasets.
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E Additional Experiments

E.1 Details of Synthetic Experiment (Figure 1)

Dataset: The synthetic dataset is based on the Boston UCI dataset. A NN model, µθ, was trained on
the train split of the Boston dataset to predict the mean by optimizing the MSE loss (same architecture
and training details as described in Appendix C.1). Afterwards, all points, {(xi, yi)}Ni=1, in the
full Boston dataset were re-labelled with the prediction of the mean model, (xi, µθ(xi)). Then,
uniform noise, εi was added to these re-labelled mean values to create the observations, ỹi, i.e.
ỹi = µθ(xi) + εi. The uniform noise was 0 mean, with width of the support equal to 5% of the range
of the mean values, i.e εi ∼ Unif[−0.025 ∗ (maxi yi −mini yi), 0.025 ∗ (maxi yi −mini yi)]. Thus
synthetic dataset is {(xi, ỹi)}Ni=1.

Procedure: The training procedure follows exactly that of the main experiments, which is described
in detail in Appendix C.1. The only difference is that the models were trained for the full 1000
epochs, instead of halting training according to the validation loss.

E.2 Regularizing the Pinball Loss

At first glance, regularization may appear to be the answer to what seems like an overfitting problem
with the pinball loss. In fact, regularization has shown to be effective in the “single quantile learning
setting”, where the quantile level p is fixed and the pth conditional quantile is learned from data
[56, 59]. This setting is concerned with learning Q(x) for a given p, which is different from the
setting of this work, which considers learning a single model Qp(x), which takes both x and p as
input and outputs the full predictive distribution by specifying conditional quantiles predictions for
all quantiles levels.

In this section, we empirically demonstrate the effect of applying regularization when minimizing the
pinball loss to learn Qp(x), and show how regularization does not adequately address the issues with
the pinball loss.

With the SQR method (which optimizes the pinball loss simultaneously for random batches of
quantile levels), we applied L1, L2, and dropout, by cross-validating the regularization coeffi-
cients in {2i, i ∈ np.linspace(−13, 1, 40)} for L1 and L2, and dropout probability p in {2i, i ∈
np.linspace(−13,−1, 40)}, for the pinball loss criterion (i.e. cross-validate among 40 different
regularization coefficients, between 2−13 and 2−1 on the log scale). We show the best calibrated
regularization result, across all regularization methods and cross-validation (table in same format as
Figure 2 in paper).

SQR SQR w/Reg
concrete 9.3± 1.5(7.0± 1.0) 10.9± 1.0(6.9± 0.6)
power 2.6± 0.4(13.4± 0.2) 1.0± 0.1(14.8± 0.1)
wine 4.2± 0.2(29.5± 0.4) 5.1± 0.8(26.0± 0.5)
yacht 9.4± 0.9(1.0± 0.1) 12.3± 2.6(1.0± 0.1)
naval 9.7± 1.6(3.5± 0.4) 11.5± 2.8(3.5± 0.3)

energy 9.8± 0.8(2.0± 0.1) 9.4± 1.3(1.9± 0.2)
boston 9.0± 0.8(9.3± 0.7) 11.6± 1.1(8.6± 0.8)
kin8nm 4.4± 0.1(11.4± 0.2) 3.5± 0.3(11.2± 0.2)

Figure 18: Applying Regularization with SQR: Average Calibration and Sharpness. The table
shows SQR’s mean ECE and sharpness (in parentheses) and their standard error with and without
regularization. Among the 3 regularization methods (L1, L2, dropout), the method resulting in the
best calibration is shown, for each dataset. The best mean ECE for each dataset has been bolded and
the best mean sharpness has been underlined. All values have been multiplied by 100 for readability.

Counter-intuitively, regularization tends to further the bias towards sharpness, and upon reflection,
this may not be surprising because the range of quantile predictions shrinks: given a quantile model
f : X×P → Y , whereP is the space of quantile levels in (0, 1), regularization affects the smoothness
not only in X , but also in P , hence for any fixed x ∈ X , the range in predictions for different quantile
level inputs also shrinks.
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E.3 Comparison on 95% Prediction Interval Task

In Section 4, we have presented an experiment that is targeted at evaluating the full predictive
distribution on the 8 UCI datasets.

In this section, we present an experiment that is targeted at constructing a 95% centered prediction
interval (PI) on the same UCI datasets, for the purposes of comparing against other quantile-based
algorithms that are designed to output only a single quantile level. This experiment setup is exactly
the same as the prediction intervals experiments in Section 4.1 of the work by Tagasovska and
Lopez-Paz [58], and we follow the exact same experiment procedure for a direct comparison against
their reported results.

The comparison algorithms here are:

• Dropout [17]: a NN that uses a dropout layer during testing for multiple predictions

• QualityDriven [49]: a NN that optimizes a Binomial likelihood approximation as a surrogate
loss for calibration and sharpness

• GradientBoosting [44]: a decision tree based model that optimizes the pinball loss with
gradient boosting

• QuantileForest [44]: a decision tree based model that predicts the quantiles based on the
trained output of a random forest

• ConditionalGaussian [37]: a probabilistic NN that optimizes the Gaussian NLL to output
the parameters of a Gaussian distribution

We show the performance of MAQR to represent our proposed methods in this experiment, since
MAQR performs the best on the full predictive distribution evaluations in the UCI experiments of
Section 4.1. We also omit the results of SQR Tagasovska and Lopez-Paz [58] in this experiment since
we perform a full evaluation comparison with SQR in Section 4.1 and Appendix D.1, D.2, and the
purpose here is to compare our proposed method against the additional baselines.

In this experiment, since we only output two quantile levels (0.025, 0.975) to construct a single 95%
prediction interval, we do not assess calibration (which requires the predictions for all quantile levels)
and assess only the observed proportion of test points within the PI (also referred to as “prediction
interval coverage probability” or “PICP”) and sharpness represented by the width of the PI (also
referred to as “mean prediction interval width” or “MPIW”). We refer the reader to Tagasovska and
Lopez-Paz [58] for exact details on the experiment setup and the hyperparameters tuned. For MAQR,
we used the exact same NN architecture (1 layer of 64 hidden units, ReLU non-linearities) as the NN
based baselines (Dropout, QualityDriven, ConditionalGaussian) and the same training procedure as
detailed in Tagasovska and Lopez-Paz [58]. The hyperparameters tuned for MAQR are detailed in
Appendix C.1.

Summarizing the experimental result in Figure 19:

• Our proposed method (MAQR) is capable of consistently producing PIs that have the correct
desired coverage (0.95), even in cases when some of the baseline algorithms are not able to.

• Even when the baseline algorithms do produce PIs with correct desired coverage, MAQR is
able to produce PI’s that are much sharper (e.g. mean PI width for naval dataset is an order
of magnitude sharper than all other baselines)

On this limited output and evaluation setting, our proposed method is still competitive in its perfor-
mance. However, it should be noted that this experiment tells only one facet of overall UQ quality.
Inspecting and evaluating the full predictive uncertainty is necessary for a more thorough evaluation
of UQ quality, as done in our main experiments in Section 4.

E.4 Discussion on Recalibration [35]

The recalibration algorithm by Kuleshov et al. [35] utilizes isotonic regression with a validation
set to fine-tune predictive uncertainties from a UQ model. We have applied this recalibration as a
post-processing step on the methods presented in Section 4, and the empirical results indicate that
its effect on overall improvement in UQ quality is inconclusive. Here, we show its effect on one of
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Dropout QualityDriven GradientBoostingQR
concrete none none 0.93± 0.00 (0.71± 0.00)
power 0.94± 0.00 (0.37± 0.00) 0.93± 0.02 (0.34± 0.19) none
wine none none none
yacht 0.97± 0.03 (0.10± 0.01) 0.92± 0.05 (0.04± 0.01) 0.95± 0.02 (0.79± 0.01)
naval 0.96± 0.01 (0.23± 0.00) 0.94± 0.02 (0.21± 0.11) none

energy 0.91± 0.04 (0.17± 0.01) 0.91± 0.04 (0.10± 0.05) none
boston none none 0.89± 0.00 (0.75± 0.00)
kin8nm none 0.96± 0.00 (0.84± 0.00) none

QuantileForest ConditionalGaussian MAQR
concrete 0.96± 0.01 (0.37± 0.02) 0.94± 0.03 (0.32± 0.09) 0.93± 0.01 (0.26± 0.01)
power 0.94± 0.01 (0.18± 0.00) 0.94± 0.01 (0.18± 0.00) 0.95± 0.01 (0.28± 0.03)
wine none 0.94± 0.02 (0.49± 0.03) 0.95± 0.02 (0.56± 0.06)
yacht 0.97± 0.04 (0.28± 0.11) 0.93± 0.06 (0.03± 0.01) 0.92± 0.03 (0.03± 0.01)
naval 0.92± 0.01 (0.22± 0.00) 0.96± 0.01 (0.15± 0.25) 0.94± 0.01 (0.03± 0.00)

energy 0.95± 0.02 (0.15± 0.01) 0.94± 0.03 (0.12± 0.18) 0.94± 0.02 (0.05± 0.01)
boston 0.95± 0.03 (0.37± 0.02) 0.94± 0.03 (0.55± 0.20) 0.95± 0.02 (0.34± 0.09)
kin8nm none 0.93± 0.01 (0.20± 0.01) 0.93± 0.00 (0.20± 0.01)

Figure 19: 95% PI PICP and MPIW The test average and standard deviation PICP of models with
validation PICP in [92.5%, 97.5%] is shown, and the test average and standard deviation MPIW is
shown in parantheses. “none” indicates the method could not find a model with validation PICP in
[92.5%, 97.5%].

our methods, Interval, because we observe the same pattern across all the methods, including the
baseline algorithms.

Recalibration tends to improve average calibration. This is expected, because recalibration specifically
targets average calibration. However, it does so at a cost in sharpness. This is evident in the
recalibrated output moving upper left in the average calibration-sharpness plot in Figure 21.

However, there is little to no improvement in adversarial group calibration (except for the Naval
dataset) as shown in Figure 22, which seems to indicate that the improvement in average calibration
was not meaningful (i.e. the recalibrated result is not closer to individual calibration). This is also the
observation made by Zhao et al. [65].

At the same time, the proper scoring rules improved on average (Figures 23, 24), but interval
calibration tended to worsen (Figure 25).

Based on these metrics, it is difficult to conclude on whether recalibration by Kuleshov et al. [35] is a
beneficial step or not for overall UQ quality. If a practitioner is primarily concerned with average
calibration, the results indicate that recalibration is a beneficial step, but if converging to the true
conditional distribution is the primary objective, recalibration does not seem to be a robust remedy.

Interval Interval Recalibrated
concrete 3.7± 0.6(18.1± 0.6) 3.1± 0.4(26.3± 1.8)
power 2.2± 0.4(21.0± 1.0) 1.0± 0.1(20.6± 0.5)
wine 5.0± 0.8(41.4± 2.5) 2.6± 0.2(50.5± 1.8)
yacht 7.5± 0.9(4.5± 1.0) 4.7± 0.5(5.6± 1.1)
naval 4.7± 1.4(28.4± 3.6) 1.3± 0.1(21.9± 3.3)

energy 4.3± 0.6(5.1± 0.9) 3.8± 0.6(6.9± 1.2)
boston 6.9± 1.1(20.3± 0.5) 5.4± 0.9(30.8± 2.6)
kin8nm 2.9± 0.4(16.9± 0.5) 1.1± 0.1(20.6± 0.3)

Figure 20: UCI Average Calibration-Sharpness Table with Recalibration. Recalibration tends to
trade off sharpness for average calibration. Better mean average calibration has been bolded, and
better sharpness has been underlined. All values have been multiplied by 100 for readability.
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Figure 21: UCI Average Calibration-Sharpness Plots with Recalibration. Recalibration tends to
trade off sharpness for average calibration. This is evident as the recalibrated predictions move upper
left.
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Figure 22: UCI Adversarial Group Calibration with Recalibration. Recalibration in general
shows little improvement in adversarial group calibration.

Interval Interval Recalibrated
concrete 0.086± 0.004 0.077± 0.004
power 0.062± 0.001 0.061± 0.001
wine 0.214± 0.006 0.209± 0.013
yacht 0.018± 0.003 0.018± 0.004
naval 0.066± 0.013 0.062± 0.012

energy 0.017± 0.003 0.016± 0.003
boston 0.094± 0.009 0.076± 0.014
kin8nm 0.077± 0.001 0.077± 0.002

Figure 23: UCI Check Score with Recalibration. Recalibration tends to improve the check score.
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Interval Interval Recalibrated
concrete 0.943± 0.053 0.778± 0.064
power 0.620± 0.010 0.616± 0.006
wine 2.197± 0.045 1.921± 0.024
yacht 0.190± 0.021 0.158± 0.025
naval 3.112± 0.053 3.150± 0.050

energy 0.182± 0.026 0.148± 0.028
boston 1.010± 0.118 0.931± 0.107
kin8nm 0.776± 0.017 0.754± 0.023

Figure 24: UCI Interval Score with Recalibration. Recalibration tends to improve the interval
score.

Interval Interval Recalibrated
concrete 0.061± 0.008 0.068± 0.015
power 0.023± 0.003 0.028± 0.008
wine 0.079± 0.014 0.079± 0.019
yacht 0.121± 0.005 0.136± 0.025
naval 0.043± 0.014 0.105± 0.016

energy 0.060± 0.010 0.066± 0.005
boston 0.079± 0.015 0.078± 0.012
kin8nm 0.048± 0.006 0.061± 0.010

Figure 25: UCI Centered Interval Calibration with Recalibration. Recalibration tends to worsen
centered interval calibration.
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F Ablation Study

F.1 Ablation Study Details

The ablation study from Section 4.2 (with full results in Appendix F.2) investigates the effect of group
batching on two methods: Cali (combined calibration loss, one of our proposed methods) and SQR (a
baseline method).

For each method, we applied group batching by tuning the group batching frequency hyperparameter
with cross-validation according to the details in Appendix C.1.

When we did not apply group batching, each batch was a uniform draw from the training dataset,
which is the default setting in most batch optimization procedures.

F.2 Full Ablation Study Experiment Results

The full set of results from the ablation study presented in Section 4.2 is provided here. To re-iterate
the purpose of this study: we show how group batching affects UQ performance on two methods:
Cali (combined calibration loss, which is one of our proposed methods) and SQR (a baseline method).

We present the effect of group batching via all of the evaluation metrics (average calibration, sharpness,
adversarial group calibration, check score, interval score, and centered interval calibration).

Cali
Random Batch Group Batch

Concrete 6.6± 0.9(17.6± 2.3) 5.6± 0.8(17.3± 1.5)
Power 1.7± 0.2(14.2± 0.3) 2.0± 0.1(13.1± 0.1)
Wine 4.4± 0.5(25.6± 0.8) 4.2± 0.4(26.0± 0.8)
Yacht 11.1± 1.8(1.8± 0.1) 8.3± 0.6(2.0± 0.4)
Naval 2.8± 0.2(12.1± 3.1) 2.4± 0.3(50.6± 8.6)

Energy 9.2± 0.3(2.8± 0.1) 5.8± 0.4(3.6± 0.3)
Boston 9.7± 1.3(10.2± 0.7) 8.5± 1.5(10.9± 0.6)
Kin8nm 3.4± 0.3(13.7± 0.4) 3.5± 0.3(13.7± 0.7)

SQR
Random Batch Group Batch

Concrete 9.8± 1.3(7.0± 0.6) 7.1± 0.9(8.5± 0.6)
Power 2.5± 0.3(14.0± 0.5) 2.9± 0.5(13.6± 0.8)
Wine 4.5± 0.4(29.7± 0.5) 4.0± 0.4(28.5± 0.8)
Yacht 9.0± 0.9(0.9± 0.1) 8.9± 0.9(2.3± 0.2)
Naval 8.6± 1.6(3.6± 0.1) 5.3± 0.8(6.0± 0.5)

Energy 10.2± 0.8(1.8± 0.1) 6.9± 1.1(2.4± 0.2)
Boston 10.9± 1.0(8.8± 1.1) 9.8± 1.2(9.5± 0.9)
Kin8nm 4.7± 0.3(11.1± 0.1) 3.9± 0.4(11.3± 0.2)

Figure 26: Group Batching Ablation: Average Calibration and Sharpness. The table shows
mean ECE and sharpness (in parentheses) and their standard error with and without group batching.
The best mean ECE for each dataset has been bolded and the best mean sharpness has been underlined
for Cali and SQR separately. All values have been multiplied by 100 for readability. This is the same
table as Figure 4 from Section 4.2, which is repeated here for completeness.
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Figure 27: Group Batching Ablation with Cali Method: Average Calibration and Sharpness
Plot. GB in legend refers to group batching. Group batching tends to improve calibration and worsen
sharpness for the Cali method.
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Figure 28: Group Batching Ablation with Cali Method: Adversarial Group Calibration. GB in
legend refers to group batching. Group batching tends to improve adversarial group calibration for
the Cali method.
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Figure 29: Group Batching Ablation with SQR Method: Average Calibration and Sharpness
Plot. GB in legend refers to group batching. Group batching tends to improve calibration and worsen
sharpness for SQR method.
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Figure 30: Group Batching Ablation with SQR Method: Adversarial Group Calibration. GB
in legend refers to group batching. Group batching tends to improve adversarial group calibration for
SQR method.

Cali SQR
Random Batch Group Batch Random Batch Group Batch

Concrete 0.120± 0.007 0.118± 0.006 0.083± 0.006 0.077± 0.004
Power 0.063± 0.002 0.064± 0.001 0.056± 0.001 0.057± 0.001
Wine 0.209± 0.007 0.210± 0.008 0.206± 0.008 0.206± 0.008
Yacht 0.018± 0.002 0.019± 0.004 0.011± 0.002 0.013± 0.002
Naval 0.042± 0.009 0.159± 0.029 0.007± 0.000 0.014± 0.001

Energy 0.016± 0.000 0.017± 0.002 0.013± 0.000 0.013± 0.001
Boston 0.100± 0.013 0.103± 0.013 0.091± 0.007 0.089± 0.008
Kin8nm 0.094± 0.002 0.096± 0.005 0.079± 0.001 0.077± 0.000

Figure 31: Group Batching Ablation: Check Score. This table shows mean test check score and
their standard error with and without group batching for both Cali and SQR. The best mean for each
dataset has been bolded for Cali and SQR separately. While the general pattern is that group batching
worsens the check score, this is expected because group batching tends to worsen sharpness and the
check score favors sharpness (Proposition 1 in main paper). Still, the change in the mean of the check
score tends to be insignificant when considering the standard errors (except for Naval dataset).
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Cali SQR
Random Batch Group Batch Random Batch Group Batch

Concrete 1.498± 0.083 1.465± 0.086 1.254± 0.120 1.079± 0.066
Power 0.667± 0.025 0.699± 0.019 0.603± 0.016 0.615± 0.014
Wine 2.495± 0.130 2.498± 0.135 2.325± 0.107 2.362± 0.117
Yacht 0.276± 0.040 0.298± 0.063 0.177± 0.033 0.164± 0.029
Naval 0.479± 0.098 1.560± 0.268 0.069± 0.003 0.144± 0.014

Energy 0.218± 0.009 0.204± 0.018 0.191± 0.006 0.172± 0.012
Boston 1.437± 0.255 1.449± 0.259 1.284± 0.151 1.217± 0.152
Kin8nm 1.102± 0.031 1.121± 0.072 0.914± 0.016 0.871± 0.011

Figure 32: Group Batching Ablation: Interval Score. This table shows mean test interval score
and their standard error with and without group batching for both Cali and SQR. The best mean for
each dataset has been bolded for Cali and SQR separately. The general pattern is that the interval
score worsens for Cali and improves for SQR. However, the change tends to be insignificant when
considering the standard errors (except for Naval dataset).

Cali SQR
Random Batch Group Batch Random Batch Group Batch

Concrete 0.102± 0.014 0.096± 0.013 0.188± 0.029 0.127± 0.014
Power 0.033± 0.003 0.037± 0.002 0.040± 0.008 0.047± 0.006
Wine 0.072± 0.007 0.065± 0.007 0.057± 0.005 0.055± 0.005
Yacht 0.139± 0.018 0.129± 0.016 0.128± 0.027 0.119± 0.020
Naval 0.048± 0.006 0.034± 0.002 0.114± 0.032 0.066± 0.009

Energy 0.146± 0.013 0.090± 0.011 0.171± 0.018 0.104± 0.020
Boston 0.142± 0.032 0.138± 0.028 0.195± 0.021 0.173± 0.027
Kin8nm 0.061± 0.004 0.067± 0.005 0.079± 0.003 0.069± 0.009

Figure 33: Group Batching Ablation: Centered Interval Calibration. This table shows mean
test centered interval calibration (measured by ECE for centered intervals) score and their standard
error with and without group batching for both Cali and SQR. The best mean for each dataset has
been bolded for Cali and SQR separately. The general pattern is that group batching improves
centered interval calibration for both Cali and SQR. While the change tends to be insignificant when
considering the standard errors, the improvement is significant in numerous cases (e.g. Naval and
Energy for both methods, Concrete with SQR).
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G Considerations for Epistemic Uncertainty

G.1 Sources for Epistemic Uncertainty

The primary focus of this paper is on learning a quantile model. For any single setting of the
parameters of the quantile model, the model outputs the current best estimate of the true underlying
distribution of the dataset. Following the notation laid out in Section 2, the learned quantile model Q̂
is a best approximation to Q, the quantile function of the true distribution.

Meanwhile, epistemic uncertainty refers to the uncertainty in making the distributional prediction,
Q̂. Pearce et al. [49] provides one method of decomposing the sources of epistemic uncertainty in a
regression setting:

• Model misspecification: Q̂ may lack the flexibility to accurately model Q, leading to
systematic bias.

• Data uncertainty: Q̂ may not be estimated using a representative sample {xi, yi} from the
assumed underlying distribution.

• Parameter uncertainty: Q̂ may not be estimated using a large enough quantity of samples,
leading to uncertainty about the estimated quantity.

Pearce et al. [49] has argued that, given the rich class of function approximators at hand today (NN,
deep trees, ensembles), model misspecification can be ignored, which we believe is reasonable.
In modeling the remaining sources of uncertainties in Q̂, we can incorporate common standard
methods to quantify epistemic uncertainty, including boostrapping the data, creating an ensemble
of estimates for Q̂ with random parameter initializations, or fitting a residual process [38]. Here,
we describe one combination of these methods: an ensemble of estimates of the learned quantile
function {Q̂(1), Q̂(2), ...} each trained with random initialization (to address parameter uncertainty),
on a bootstrapped sample of the training data (to address data uncertainty). The uncertainty over this
set of models is the epistemic uncertainty.

G.2 Expressing and Utilizing Epistemic Uncertainty

Once we decide on methods to quantify the epistemic uncertainty, the next question is how to express
the epistemic uncertainty, especially when combining it with the current prediction of the aleatoric
uncertainty. This is still an open research question, especially in the regression setting, and methods
of combining aleatoric with epistemic uncertainty will differ for how the uncertainty is represented
(e.g. density estimates, quantiles, prediction intervals).

One method of combination is to consider the utility of quantifying epistemic uncertainty. Intuitively,
for a given input, if we have high epistemic uncertainty, the combined uncertainty should be higher
(i.e. less confident prediction), and vice versa. If we consider a single quantile, it is unclear
whether lower confidence (due to epistemic uncertainty) would equate to a lower or higher quantile
estimate. However, if we consider constructing a centered prediction interval for total uncertainty, it
is straightforward to see that lower confidence should widen the interval, by raising the upper bound
(quantile level above 0.5) and lowering the lower bound (quantile level below 0.5). This conservative
upper and lower bound can be constructed with the bootstrap distribution of each quantile according
to each ensemble member prediction. This is also the method utilized in Pearce et al. [49].

Suppose we have an ensemble of M quantile models: {Q̂(1), Q̂(2), . . . , Q̂(M)}. For any test point x∗
and test coverage level (1− α∗), the total uncertainty represented by a centered prediction interval
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with upper bound û and lower bound l̂ is constructed as:

l̂ = µ̄(x∗, α∗/2)− z s(x
∗, α∗/2)√
M

û = µ̄(x∗, 1− α∗/2) + z
s(x∗, 1− α∗/2)√

M

µ̄(x∗, p∗) =
1

M

M∑
i=1

Q̂(i)
p∗ (x∗)

s(x∗, p∗) =

√√√√ 1

M − 1

M∑
i=1

(Q̂(i)
p∗ (x∗)− µ̄(x∗, p∗))2

and z is the chosen critical value (e.g. 1.96 for a conservative bound that takes the 95% confidence
interval of the bootstrap distribution). In words, the construction of û, l̂ equates to constructing
a conservative prediction interval that depends on how dispersed or concentrated each ensemble
member’s predictions are.

G.3 Metrics for Total Uncertainty Evaluation

After choosing a method to express epistemic uncertainty and combining it with aleatoric uncertainty
for a prediction of total uncertainty, next comes the question of how to evaluate the combined
uncertainty.

The critical point here is that the calibration, sharpness and proper scoring rule metrics we have
discussed thus far are not applicable here. This is because these metric only judge how close the
prediction is to the true underlying distribution. In fact, ECE (a measure of average calibration) can be
shown to be identical to the Wasserstein distance between distributions under the L1 distance metric
[65]. In a hypothetical setting where we have very few datapoints and hence very high epistemic
uncertainty throughout the whole data support, if one distributional prediction was extremely lucky
and predicted a distribution that adheres exactly to the true underlying distribution, the aforementioned
metrics will consider this prediction a perfect prediction – however, a lucky guess is not at all a useful
UQ, and to a practitioner, a less confident prediction (by quantifying high epistemic uncertainty)
is much more useful, rather than a very confident prediction that can be correct if it is lucky, but
confidently very incorrect otherwise.

We also emphasize here that, while standard evaluation experiments and metrics exist for the clas-
sification setting (e.g. by training an image classifier on the MNIST dataset and testing on the
Non-MNIST dataset to assess the entropy of the predicted class probabilities or the output of a trained
out-of-distribution detector), there does not exists standard experiments and metrics to evaluate
epistemic uncertainty in the regression setting.

Therefore, we propose one evaluation metric to assess combined total uncertainty, which is sharpness
subject to sufficient coverage and we will refer to this metric as “epistemic coverage”. Epistemic
coverage measures average calibration of a centered prediction interval, but the difference in observed
probabilities from expected probabilities is penalized only when the observed probability is less than
the expected probability (i.e. do not penalize the prediction if the observed probability is higher than
the expected probability), and if this sufficient coverage condition is met, then we evaluate sharpness.

By this metric, only over-confidence is penalized and under-confidence is considered acceptable.
However, since infinitely wide prediction intervals are also not useful, we also consider sharpness
after sufficient coverage is met.

G.4 Demonstrating Effect of Bootstrap Ensembling and the Epistemic Coverage Metric

We design an “epistemic experiment” to show the effect of incorporating epistemic uncertainty via
bootstrapped ensembles. In this experiment, we swap the train and test sets, such that the training set
is much smaller than the test set (roughly 1

7 of test set size), hence, the model should have very high
epistemic uncertainty in making predictions on the test set. It is expected that by not incorporating
epistemic uncertainty in such a setting, the model will produce overconfident predictions that are
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too sharp. This overconfidence will be penalized heavily by the epistemic coverage metric we
described above in Appendix G.3, and sharpness should also indicate that the predictions are too
tight. Producing conservative distributional predictions via the bootstrapped ensembling technique
described above in Appendix G.2 is expected to mitigate these overconfidence issues by incorporating
epistemic uncertainty.

We show the effect on one of our methods, Interval, because the same effect can be observed for any
of the quantile methods, including the baseline algorithms. The results are shown in Figure 34.

When a conservative PI is constructed with the bootstrapped ensemble (labelled Interval Boot-Ens),
the epistemic coverage error decreases significantly to or near zero, which is expected given that the
conservative bounds only work to widen the PI, and the epistemic coverage error only penalizes PI
that are not wide enough. The increase in width is also evident in the increase in sharpness with
bootstrap ensembling.

Therefore, the ensembling technique does work to incorporate epistemic uncertainty from a practical
standpoint by imbuing more underconfidence into the distributional predictions. Still, quantifying
and evaluating epistemic uncertainty in a regression setting is an open problem, and we leave for
future work developing alternative methods of quantifying epistemic uncertainty in regression.
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Figure 34: Epistemic Experiments on UCI Datasets. We evaluate epistemic coverage in the
epistemic experiment setting where the train set is much smaller than the test set. Epistemic coverage
only penalizes overconfidence. Sharpness is the average width of the 95% PI.
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H Additional Discussions

Potential negative social impacts This work proposes methods in uncertainty quantification (UQ),
with a focus on the notion of calibration. UQ is a field that is becoming more and more important
as many autonomous systems are being deployed in various real-life applications (self-driving cars,
security devices, object recognition systems). While we believe the development of robust and
accurate methods in UQ will accelerate deployment of autonomous systems and expand real-world
use-cases, we also acknowledge the potential disruptive effects such change can have in the relevant
industries.

Futher, calibration is a relevant notion in fairness [29]. Though we propose methods to achieve better
calibration when making probabilistic forecasts, we note the potential for using such information
with ill intent, e.g. to intentionally avoid calibrated (or fair) decisions.

Assets used in this work In implementing our work, we have referenced the implementation
of one of the baseline methods (SQR), which is publicly available under the Creative Commons
Attribution-NonCommercial 4.0 International Public License.

We also state that no data from human subjects were used in this work and thus there is no personal
identifying information.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See summary of contributions in the introduction
(Section 1).

(b) Did you describe the limitations of your work? [Yes] See first paragraph in Section 3.2,
see last paragraph in Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss
potential negative impacts of our work in the Appendix.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have made sure our work conforms to the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All Theorem

and Proposition statements (Sections 2.2, 3.1, 3.2) state the full set of assumptions.
(b) Did you include complete proofs of all theoretical results? [Yes] Appendix has proofs

for all theoretical statements.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Code and its
instructions are included in supplemental materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Full details of experimental setup are included in Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All experiments have been repeated with 5 random seeds,
and all error bars are reported in Section 4 and the Appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We discuss experimental setup and
compute resources in the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the source of

the nuclear fusion dataset in Section 4.1, we cite code used in the Appendix.
(b) Did you mention the license of the assets? [Yes] We mention license of assets in the

Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

No new assets are included in the supplemental materials or as a URL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We mention data usage consent in the Appendix.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] We discuss in the Appendix how the data
contains no PII.
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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