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A ADDITIONAL THEORETICAL RESULTS AND PROOFS OF THE COVARIATE
SHIFT CASE

A.1 THEORETICAL MODEL SETUP OF THE COVARIATE SHIFT CASE

In this section, we will extend our theoretical model in the main text to the covariate shift setting.
For the covariate shift setting, spurious features are independent of Y . Thus we can model the data
generation process for environment e as

Y e = Ãe
k
X1 + n1, Xe

2 = n2 + ϵe, (14)

where the definition of n1 and n2 are the same as Section 3, ϵe represents environmental spurious
features. ϵei (each dimension of ϵe) is a random variable that are independent for i = 1, ..., Ne.
We assume the intra-environment expectation of the environment spurious variable is Eϵi∼pe

[ϵi] =
µe ∈ R since spurious features are consistent in a certain environment. We further assume the cross-
environment expectation Ee[ϵ

e] = 0 and cross-environment variance Ee[ϵ
e
i ] = σ2, i = 1, ..., Ne for

simplicity. This is consistent with the covariate shift case that p(X) can arbitrarily change across
different domains, and the support set of X may vary. Note that different from the concept shift
setting, we only require L ≥ k to ensure the predictiveness of the network.

A.2 THEORETICAL RESULTS OF THE COVARIATE SHIFT CASE

In this subsection, we will present the failure case of VREx and IRMv1, and the success case of
CIA under covariate shift (which is a different setting from the results of the concept shift case in
the main text). The proofs are in Appendix E.2.

A.2.1 THE FAILURE CASE OF VREX UNDER COVARIATE SHIFT

Proposition A.1. (VREx will use spurious features) The objective minΘ Ve[R(e)] has non-unique
solutions, and when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (15)

0 < s < L is some positive integer, θ1 and θ2 have four sets of solutions of the quadratic equation:{
c1σ

2(2θ1θ2 + (θ2)
2 − 2c2σ

2θ2) + c3 − Ee[N
e]c1σ

2θ1θ2 + Ee[N
e]c2σ

2θ2 = 0[
c3 − Ee[N

e]c1σ
2θ1θ2 + Ee[N

e]c2σ
2θ2
]
c4 − c5(θ2)

2 = 0
. (16)

where c1 = E[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = E[(Ãe

s
X1)

⊤(Ãe
k
X1)],

c3 = Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]σ

2,c4 = Ee

[
(Ãe

k
X1)

⊤1Ne

]
σ2, c5 =

Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
.

Remark. For the covariate shift setting, θ2 = 0 is still not a solution to the VREx objective in
node-level OOD tasks. Therefore it will also rely on spurious features.

A.2.2 THE FAILURE CASE OF IRMV1 UNDER COVARIATE SHIFT

Proposition A.2. (IRMv1 will use spurious features) The objective minΘ Ee[∥∇w|w=1.0R(e)∥2]
has a solution that the invariant parameter θ1 will produce inaccurate predictions,

θ1 =
Ee[(Ãe

k
X1)

⊤(Ãe
2k
X1)]

Ee[(Ãe
2k
X1)⊤(Ãe

2k
X1)]

(17)

12



Under review as a conference paper at ICLR 2024

and there will be no constraints on the spurious parameter θ2, when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take
the special values for some 0 < s < L:

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

. (18)

A.2.3 THE SUCCESSFUL CASE OF CIA UNDER COVARIATE SHIFT

Proposition A.3. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1
θ2 = 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (19)

A.3 ADDITION DISCUSSION ON THE SPECIAL FAILURE VALUE

B DETAILED EXPERIMENTAL SETUP

B.1 BASIC SETTINGS

All experimental results were averaged over three random runs. Following (Gui et al., 2022), we
use an OOD validation set for model selection and use a 3-layer GCN (Kipf & Welling, 2016) as the
backbone GNN, except that Mixup uses a modified GCN. The settings for learning rate, batch size,
and training epochs also follow (Gui et al., 2022).

B.2 HYPERPARAMETER SETTINGS

Most hyperparameter settings are adopted from (Gui et al., 2022), except that for EERM we reduce
the number of generated environments from 10 to 7 and reduce the number of adversarial steps from
5 to 1 for memory and computing complexity concerns. For each parameter of the methods, we
conduct a grid search for about 3∼4 values.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 PARAMETER ANALYSIS

In this section, we analyze the effect of λ and the number of adjacent hops of LoRe-CIA. From
Figure 2, we can see clearly that adding LoRe-CIA regularization is beneficial for generalization
since the test accuracy increases with λ. Note that most of the parameter combinations outperform
the baseline methods (ERM: 55.78/60.24, IRM: 55.77/61.23, VREx: 55.97/60.69), indicating that
our method leads to consistently superior performance.

On Cora degree covariate shift, we can observe the positive effect of localized alignment: with the
decrease of t, the accuracy rate increases gradually. However, the trend is not clear in the covariate
shift. On covariate shift, the accuracy rate varies differently with t for different λ, indicating that
there is a synergistic effect on the accuracy rate. How to better balance these two parameters is a
direction worth exploring in the future.

C.2 REPRESENTATION VISUALIZATION

We visualize the representation of CIA and LoRe-CIA in Figure 3 to show that LoRe-CIA can
alleviate feature collapse caused by overalignment.
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Table 4: Hyperparameter setting of the experiments.

Algorithm Search Space

IRM 0.1, 1, 10, 100

VREx 1, 10, 100, 1000

GroupDRO 0.001, 0.01, 0.1

DANN 0.001, 0.01, 0.1

Deep Coral 0.01, 0.1, 1

Mixup 0.4, 1.0, 2.0

EERM

β=0.5, 1, 3
number of generated environments k=7
adversarial training steps t=1
numbers of nodes for each node should be modified the link with s=5
subgraph generator learning rate r=0.0001, 0.001, 0.005, 0.01

SRGNN 0.000001, 0.00001, 0.0001

CIA λ=0.0001, 0.001, 0.005, 0.01, 0.05, 0.1

LoRe-CIA λ= 0.001, 0.005, 0.01, 0.05, 0.1
hops t=2, 3, 4, 5

(a) Cora degree concept (b) Cora degree covariate

Figure 2: Effect of λ and the number of hops on OOD test accuracy (%).
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(a) CIA λ = 0.001 (b) LoRe-CIA λ = 0.001

(c) CIA λ = 0.01 (d) LoRe-CIA λ = 0.01

(e) CIA λ = 0.1 (f) LoRe-CIA λ = 0.1

Figure 3: Visualization of the learned representations of nodes. LoRe-CIA can prevent the features
of each class from being too concentrated.
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C.3 VALIDATION OF THE TRUE FEATURE GENERATION DEPTH

For the theoretical model in section 3, we assume L ≥ k. To empirically find out how large k really
is, we use GCN with different layer to predict the ground-truth label Y on Cora and Arxiv dataset
respectively (results are in Table 5 and 6). As mentioned above, since a GCN with layer l will
aggregate features from l-hop neighbors for prediction, if the depth of the GCN is equal to the true
generation depth, then the performance should be close to optimal. Suppose the empirical optimal
layer number is L∗ for prediction, we have: L∗ = k We find that the L∗

s ≤ 4 in most cases (even
on large-scale graphs in Arxiv). This indicates that our assumptions holds easily.

Table 5: OOD accuracy (%) of GCN with different numbers of layers on Cora.

Dataset Shift L = 1 l = 2 L = 3 L = 4

Cora (degree) covariate 59.04(0.15) 58.44(0.44) 55.78(0.52) 55.15(0.24)

concept 62.88(0.34) 61.53(0.48) 60.24(0.40) 60.51(0.17)

Cora (word) covariate 64.05(0.18) 65.81(0.12) 65.07(0.52) 64.58(0.10)

concept 64.76(0.91) 64.85(0.10) 64.61(0.11) 64.16(0.23)

Table 6: OOD accuracy on causal prediction (%) of GCN with different numbers of layers on Arxiv.

Dataset Shift l = 2 L = 3 L = 4 L=5

Arxiv (degree) covariate 57.28(0.09) 58.92(0.14) 60.18(0.41) 60.17(0.12)

concept 63.32(0.19) 62.92(0.21) 65.41(0.13) 63.93(0.58)

Arxiv (time) covariate 71.17(0.21) 70.98(0.20) 71.71(0.21) 70.84(0.11)

concept 65.14(0.12) 67.36(0.07) 65.20(0.26) 67.49(0.05)

C.4 DISCUSSION AND VALIDATION OF THE ASSUMPTION ON THE RATE OF CHANGE OF
CAUSAL AND SPURIOUS FEATURES W.R.T SPATIAL POSITION

To verify the intuition used in Section 4.2 that the change rate of node’s spurious features w.r.t
spatial location is faster than that of the causal/invariant features within a certain range of hops, we
conduct experiments on GOOD-Arxiv and GOOD-Cora, both are real-world citation networks. To
extract invariant features, we use a pretrained VREx model and take the output of the last layer as
invariant features3. To obtain spurious features, we train a ERM model to predict the environment
label and also take the output of the last layer as spurious features. For each class, we randomly
sample 10 nodes and generate corresponding 10 paths using Breadth-First Search (BFS). We extract
invariant and spurious features of the nodes on each paths, and plot the distances between the node
representations on the paths and the starting node. The results of Cora are in Figure 4 and 5, and
the results of Arxiv are in Figure 6 and 7. (we choose some of the classes to avoid excessive paper
length, the results for the other classes are similar).

We can see that within about 5∼10 hops, the changes of spurious features grow more rapidly than
invariant ones. Hence we propose to align the representations of adjacent nodes to better elimi-
nate spurious features and avoid the collapse of the invariant features. And this explains we add a
weighting term d(i, j) in our loss function to assign smaller weight node pairs farther apart.

This assumption is similar to the ones adopted by a series of previous works on causality and in-
variant learning (Chen et al., 2022; Burshtein et al., 1992; Schölkopf, 2022; Schölkopf et al., 2021).

3though we reveal in our theory that VREx could rely on spurious features, we still use VREx here to
approximately extract invariant features as many previous graph OOD works did since VREx already gains
some advantages.
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They assume causal features are more well-clustered than spurious features. In node-level graph
OOD scenario, we observe this phenomenon only within local parts of a graph. In some cases, when
two nodes are too far away from each other, their causal features can also vary more than the spuri-
ous features, as can been seen in Figure 7 (a) path 1,2,4,6,9 and 10. Therefore, choosing to match
the representations in a local region can help to alleviate the feature collapse problem.

(a) class 16 of Cora

(b) class 17 of Cora

Figure 4: Visualization of the rate of change of invariant features and spurious features on Cora (part
1).
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(a) class 39 of Cora

(b) class 41 of Cora

Figure 5: Visualization of the rate of change of invariant features and spurious features on Cora (part
2).
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(a) class 25 of Arxiv

(b) class 29 of Arxiv

Figure 6: Visualization of the rate of change of invariant features and spurious features on Arxiv
(part 1).
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(a) class 13 of Arxiv

(b) class 17 of Arxiv

Figure 7: Visualization of the rate of change of invariant features and spurious features on Arxiv
(part 2).
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C.5 DISCUSSION AND VALIDATION OF THE ASSUMPTION ON THE FEATURE DISTANCE AND
NEIGHBORING LABEL DISTRIBUTION DISCREPANCY

C.5.1 CLASS-DIFFERENT NEIGHBORING LABELS REFLECT SPURIOUS FEATURE
DISTRIBUTION

In this section, we will empirically validate the key intuition of LoRe-CIA: the label distribution of
the neighbors from different classes (which we call Heterophilous Neighboring Label Distribution
(HNLD) in the following contents) reflects the spurious feature of the centered node. This idea is
similar to the observation in Song & Wang (2022): heterophily is a main source of node distribution
shift. Moreover, as recommended by Ye et al. (2022), we will further investigate the impact of
HNLD on spurious feature distribution under two types of OOD shift: concept shift (or correlation
shift in (Ye et al., 2022)), where p(Y |X) varies across environments, and covariate shift (or diversity
shift in (Ye et al., 2022)), where p(X) changes with environments, respectively. We will show that
HNLD affect the spurious features of the centered node in different manners under concept shift and
covariate shift.

Spurious features represent features that have no predictive power for labels, and spurious features
of a node come from two sources: (1) the environmental spurious feature, i.e. features determined
by environments that contain no invariant and predictive information about labels, (2) class-different
(heterophilous) neighboring features. The first source of spurious features is mentioned all the time
in OOD and Domain Generalization (DG) topics, and many recent works have revealed that het-
erophilous neighbors harm node classification performance (Ma et al., 2021; Huang et al., 2023). In
the follow part, we will first point out how to approximately measure spurious features for covariate
and concept shift, and empirically validate our intuition.

Covariate shift. For covariate shifts on graphs, since spurious features are not necessarily correlated
with labels, the environmental spurious features cannot be reflected by HNLD. However, we can still
measure the distribution of the spurious features caused by heterophilous neighbors. To extract spu-
rious features induced by class-different labels, we train a 1-layer GCN that aggregates neighboring
features and discards the features of the centered node. The reason why we use features from all
neighbors rather than only heterophilous neighbors is we want to simulate message-passing as au-
thentically as possible, that is, we hope to observe whether the gap of HNLD accurately reflects the
distance of heterophilous neighboring feature in the presence of both homophilous and heterophilous
neighbors. To ensure that the discrepancy in the aggregated neighboring feature is caused solely by
heterophilous neighbors, we only use point pairs with the same number of homophilous neighbors.
Specifically, we compute the L2 distance between the neighbor representations of two nodes with
the same number of class-same neighbors, and plot its trend w.r.t. the distance of HNLD (according
to the definition of Qdiff

i,j in Equation 13). We run experiments on Cora to verify this. We evaluate
on both word shifts (node feature shifts) and degree (graph structure shifts) for a comprehensive un-
derstanding. We show the results of first 30 classes of Cora. The results in Figure 8 and 9 show a
clear positive correlation between the spurious feature distance and HNLD discrepancy under
covariate shifts.

Concept shift. As for concept shift, spurious features are correlated with labels, thus the label of a
node contains information about spurious features correlated with this class. Moreover, due to the
massage-passing mechanism of GNNs, the spurious features of a centered node are also affected
by neighboring nodes. Assuming that most adjacent nodes are from the same environment, the
spurious features of same-class neighbors will not change that of the centered node since the spurious
distribution is fixed given the class and the environment (Yi et al., 2022). Hence, by observing
HNLD, we can measure the distribution of the spurious feature. For concept shift, we train a GNN
to predict environment labels to obatin spurious representations. Table 10 and 11 also show a clear
positive correlation between spurious featured distance and HNLD discrepancy on concept
shift.

C.5.2 CLASS-SAME NEIGHBORING LABELS REFLECT INVARIANT FEATURE DISTRIBUTION

Now will validate that the label distribution of the neighbors from the same class as the centered node
reflects the invariant feature of the centered node. We use VREx to approximate invariant features,
and compute the their distance w.r.t. the discrepancies of the neighboring label distribution of the
same class. We evaluate on 4 splits of Cora: word+covariate, word+concept, degree+covariate
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Figure 8: The relationship between the distance of spurious features induced by class-different
neighbors and distance of HNLD on Cora word domain, covariate shift. Each sub-figure is a class,
and each dot in the figure represents a node pair in the graph. The red line is obtained by linear
regression. The positive correlation is clear.

Figure 9: The relationship between the distance of spurious features induced by class-different
neighbors and distance of HNLD on Cora degree domain, covariate shift. The positive correlation
is clear.
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Figure 10: The relationship between the distance of environmental spurious features and distance of
HNLD on Cora word, concept shift. The positive correlation is clear.

Figure 11: The relationship between the distance of environmental spurious features and distance of
HNLD on Cora degree, concept shift. The positive correlation is clear.

23



Under review as a conference paper at ICLR 2024

Figure 12: The relationship between the distance of invariant features and discrepancy of class-same
neighboring labels on Cora degree, concept shift. Line 1 to 4 are results of Cora word+covariate,
word+concept, degree+covariate and degree+concept, respectively. There is a positive correlation
between the invariant feature distance and difference in neighboring labels of the same class as the
centered node.

and degree+concept. For each data split, we randomly choose 5 classes that have node pairs with
difference of larger than 5 in class-same neighboring labels. The results in Table 12 also show a
positive correlation trend.

D DETAILED TRAINING PROCESS

Table 1 show the detailed training process of LoRe-CIA.

E PROOFS

E.1 PROOFS OF THE CONCEPT SHIFT CASE PRESENTED IN THE MAIN TEXT

In this section, we give proof of the propositions of the concept shift model presented in the main
text.

E.1.1 PROOF OF THE FAILURE CASE OF VREX UNDER CONCEPT SHIFT

Proposition E.1. (VREx will use spurious features) The objective minΘ Ve[R(e)] has non-unique
solutions, and when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (20)

for some 0 < s < L, θ1 and θ2 have four sets of solutions of the cubic equation:{
(3c1θ1θ2 + c1(θ2)

2 − 2c6θ2)σ
2 − Ee[N

e(2c1(θ1 + θ2)− c6)]σ
2θ2 + c7 = 0

(Ee[N
e(2c1(θ1 + θ2)− c6)]σ

2θ2 − c7)(c3θ2 − c4)− [c2(θ1 + θ2)− c5](θ2)
2 = 0

. (21)
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Algorithm 1 Detailed Training Procedure of LoRe-CIA

Require:
A labeled training graph G = (A,X, Y ).
The number of hops t, LoRe-CIA weight λ, the number of classes C, total iterations T , model
learning rate r.

Ensure:
Updated model fΘ with parameter Θ.

1: for iterations in 1, 2, ..., T do
2: Initialize LLoRe = 0
3: for c in 1, 2, ..., C do
4: Calculate the node representations ϕ(A,X)
5: Calculate At

c, where the (i, j)-th element of At
c equals the length of the shortest path from

node i to j if the length is less than t else infinity.
6: Use At

c to screen for pairs of nodes not exceeding a distance of t hops Ωc(t).
7: Compute LoRe-CIA loss of class c: Lc

LoRe according to Equation (13) using Ωc(t), At
c and

ϕ(A,X).
8: LLoRe = LLoRe + Lc

LoRe
9: end for

10: Compute final loss L = Lce(fΘ(A,X), Y ) + λLLoRe, Lce is the cross entropy loss.
11: Update model parameters Θ = Θ− r∇ΘL
12: end for

where c1 = Ee[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = Ee[Ne(Ãe

s
X1)

⊤Ãe
s
X1], c3 = Ee[(Ãe

s
X1)

⊤1],

c4 = Ee[((Ãe
k
X1)

⊤1], c5 = Ee[Ne((Ãe
k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) + Ne(1 + σ2))],

c6 = Ee[(Ãe
s
X1)

⊤(Ãe
k
X1)], c7 = Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)].

Proof. We will use some symbols to simplify the expression of the toy GNN. Denote Ãmn1+n2+ϵe

as η. Use the following notations to represent the components of the L-layer GNN model:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2

=
[
θ11

(L−1)
Ā
(
...θ11

(3)
(
θ11

(2)
Ā(θ11

(1)
Ā+ θ21

(1)
Ī)X1 + θ21

(2)
(θ11

(1)
Ā+ θ21

(1)
Ī)X1

)
+ ...

)]
︸ ︷︷ ︸

C1

θ1

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)ÃsX1 + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)ÃsX1

)
+ ...

)]
︸ ︷︷ ︸

C2

θ2

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)η + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)η
)
+ ...

)]
︸ ︷︷ ︸

Z

θ2

= C1θ1 + (C2 + Z)θ2.
(22)

C1, C2, Z ∈ RN×1. We use Ce
1 , Ce

2 , and Ze to denote the variables from the corresponding envi-
ronment e. We further denote Ce

2 = Ce
2
′Ãe

s
X1, Ze = Ce

2
′η.

Using these notations, the loss of environment e is

R(e) = En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]
= En1,n2

[∥∥∥Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

(23)

Denote the inner term Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1 as le.
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The variance of loss across environments is:

Ve[R(e)] = Ee[R
2(e)]− E2

e[R(e)]

= Ee

[(
En1,n2

∥∥∥Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

)2
]

− E2
e

[
En1,n2

∥∥∥Ce
1θ1 + (Ce

2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

= Ee

[
En1,n2

[
(l⊤e le)

2
]]

− E2
e

[
En1,n2

[
l⊤e le

]]
.

(24)

Take the derivative of Ve[R(e)] with respect to θ1:

∂Ve[R(e)]

∂θ1
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e C

e
1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e C

e
1

]] (25)

Calculate the derivative by terms:

En1,n2 [l
⊤
e le] = En1,n2 [C

e
1
⊤Ce

1(θ1)
2 + Ce

1
⊤Ce

2θ1θ2 + Ce
1
⊤Zeθ1θ2 − Ce

1
⊤Ãe

k
X1θ1 − Ce

1
⊤n1θ1

+ Ce
2
⊤Ce

1θ1θ2 + Ce
2
⊤Ce

2(θ2)
2 + Ce

2
⊤Zeθ1θ2 − Ce

2
⊤Ãe

k
X1θ2 − Ce

2
⊤n1θ2

+ Ze⊤Ce
1θ1θ2 + Ze⊤Ce

2(θ2)
2 + Ze⊤Ze(θ2)

2 − Ze⊤Ãe
k
X1θ2 − Ze⊤n1θ2

− (Ãe
k
X1)

⊤(Ce
1θ1 + Ce

2θ2)− (Ãe
k
X1)

⊤Zeθ2 + (Ãe
k
X1)

⊤Ãe
k
X1

+ (Ãe
k
X1)

⊤n1 − n⊤
1 (C

e
1θ1 + Ce

2θ2)− n⊤
1 Z

eθ2 + n⊤
1 Ã

e
k
X1 + n⊤

1 n1]
(26)

Since n1 and n2 are independent standard Gaussian noise, we have En1,n2 [n1] = En1,n2 [n2] = 0,
En1,n2 [n

⊤
1 n2] = En1,n2 [n

⊤
2 n1] = 0 and En1,n2 [n

⊤
1 n1] = En1,n2 [n

⊤
2 n2] = Ne if it is the noise

from e. Also, since ϵe and n1, n2 are independent, we have En1,n2 [n
⊤
1 ϵ

e] = En1,n2 [n
⊤
2 ϵ

e] = 0.

When 
θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (27)

we have Ce
2
′ = INe ∈ RNe×Ne

and Ce
1 = Ãe

s
X1. Consequently, we get En1,n2

[Ze⊤n1] =

tr(Ce
2
′Ãe

k
) = tr(Ãe

k
), En1,n2

[Ze⊤Ze] = tr
(
(Ãe

k
)⊤(Ãe

k
)
)
+Ne + ϵe⊤ϵe.

Use the above conclusions and rewrite Equation (26) as (here we only plug in the value of Ce
2
′):

En1,n2 [l
⊤
e le] =

Ce
1
⊤Ce

1(θ1)
2 + Ce

1
⊤Ce

2θ1θ2 − Ce
1
⊤Ãe

k
X1θ1 + Ce

2
⊤Ce

1θ1θ2 + Ce
2
⊤Ce

2(θ2)
2 − Ce

2
⊤Ãe

k
X1θ2

+tr
(
(Ãe

k
)⊤(Ãe

k
)
)
(θ2)

2 − (Ãe
k
X1)

⊤(Ce
1θ1 + Ce

2θ2) + (Ãe
k
X1)

⊤Ãe
k
X1 +Ne

(
1 + (θ2)

2
)

−2tr(Ãe
k
)

 (∗)

+[Ce
1
⊤ϵe + Ce

2
⊤ϵe + ϵe⊤Ce

1 ]θ1θ2 + ϵe⊤ϵe(θ2)
2 − 2(Ãe

k
X1)

⊤ϵeθ2

}
(∗∗),

(28)

(∗) and (∗∗) represent terms that are independent and associated with ϵe, respectively. Additionally,

En1,n2
[2l⊤e C

e
1 ] = 2

[
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

1θ2 + (Ce
2
′ϵe)⊤Ce

1θ2 − (Ãe
k
X1)

⊤Ce
1

]
= 2

[
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

1θ2 + ϵe⊤Ce
1θ2 − (Ãe

k
X1)

⊤Ce
1

]
.

(29)
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Multiplying Equation (28) and (29) and take the expectation on e, using the assumption that
Ee[(ϵ

e
i)

2] = σ2 (ϵei is the i-th element of ϵe):

Ee

[
2En1,n2

[l⊤e le]En1,n2

[
2l⊤e C1

]]
= 4Ee

[
(∗)
(
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

2
′θ2 − (Ãe

k
X1)

⊤Ce
1

)]
+ 4Ee

[
(Ãe

s
X1)

⊤Ãe
s
X1(3θ1θ2 + (θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
θ2σ

2

+ 4Ee[N
eϵe⊤ϵeϵe⊤(Ãe

s
X1)]θ2.

(30)

Next target is to compute 2Ee[En1,n2
[l⊤e le]] and Ee[En1,n2

[2l⊤e C1]] Since ϵe has zero mean, we
have:

2Ee[En1,n2
[l⊤e le]] = Ee[(∗)] + 2Ee[N

e](θ2)
2σ2 (31)

and

Ee[En1,n2 [2l
⊤
e C

e
1 ]] = 2Ee

[
Ce

1
⊤Ce

1θ1 + Ce
2
⊤Ce

1θ2 − (Ãe
k
X1)

⊤Ce
1

]
. (32)

Use Equation (30) (31) and (32) and let ∂Ve[R(e)]
∂θ1

= 0, we have:

Ee

[
3(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1θ2 +

1

3
(θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
σ2 + Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)]

−Ee[N
e]Ee

[
2(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1 + θ2)− (Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 = 0.

(33)

Now we start calculating the expression of ∂Ve[R(e)]
∂θ2

:

∂Ve[R(e)]

∂θ2
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e (C2 + Ze)

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e (C

e
2 + Ze)

]]
.

(34)

Let ∂Ve[R(e)]
∂θ2

= 0:

Ee

[
(Ce

1
⊤Ce

2
′ + Ce

2
⊤Ce

2
′ + Ce

2
′⊤Ce

1
⊤)θ1θ2 + (Ce

2
′)⊤Ce

2
′(θ2)

2 − 2(Ãe
k
X1)

⊤Ce
2
′θ2

]
Ee

[
(Ce

2
′⊤Ce

2θ2 − (Ãe
k
X1)

⊤Ce
2
′)
]
σ2

− Ee

[
Neσ2

(
Ce

1
⊤Ce

2θ1 + Ce
2
⊤Ce

2θ2 − (Ãe
k
X1)

⊤Ce
2 + tr((Ãe

k
)⊤Ãe

k
) +Ne + Ce

2
′⊤Ce

2
′σ2
)
(θ2)

2
]

= 0.
(35)

Plug Equation (33) in (35), we reach:[
Ee

[
Ne(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1 + θ2)− (Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 − Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]

]
Ee

(
(Ãe

s
X1)

⊤1Neθ2 − (Ãe
k
X1)

⊤1Ne

)
− Ee

[
Ne
(
(Ãe

s
X1)

⊤Ãe
s
X1(θ1 + θ2)− (Ãe

k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
(θ2)

2

= 0.
(36)

Let c1 = Ee[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = Ee[Ne(Ãe

s
X1)

⊤Ãe
s
X1], c3 = Ee[(Ãe

s
X1)

⊤1],

c4 = Ee[((Ãe
k
X1)

⊤1], c5 = Ee[Ne((Ãe
k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) + Ne(1 + σ2))],

c6 = Ee[(Ãe
s
X1)

⊤(Ãe
k
X1)], c7 = Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)],
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we conclude that

{
(3c1θ1θ2 + c1(θ2)

2 − 2c6θ2)σ
2 − Ee[N

e(2c1(θ1 + θ2)− c6)]σ
2θ2 + c7 = 0

(Ee[N
e(2c1(θ1 + θ2)− c6)]σ

2θ2 − c7)(c3θ2 − c4)− [c2(θ1 + θ2)− c5](θ2)
2 = 0

. (37)

As for the derivative respect to θ11
(l), θ21

(l), θ12
(l),θ22

(l), when they take the special value in (27), we
have ∂Ve[R(e)]

∂θ1
⇒ θ11

(l)
= θ21

(l)
= 0 and ∂Ve[R(e)]

∂θ2
⇒ θ12

(l)
= θ22

(l)
= 0, l = 1, ..., L So we conclude

the solution induced by 37 is the solution of the objective.

E.1.2 PROOF OF THE FAILURE CASE OF IRMV1 UNDER CONCEPT SHIFT

Proposition E.2. (IRMv1 will use spurious features) The objective minΘ Ee[∥∇w|w=1.0R(e)∥2]
has a solution that uses spurious features: θ1 =

Ee

{
(Ães

X1)
⊤(Ãek

1)
[
1⊤Ães

X1+(Ãek
X1)

⊤(Ãek
1)

]
+(1+σ2)(Ães

X1)
⊤1(Ãek

X1)
⊤1

}
(2+σ2)(Ee[Ães

]X1)⊤1

θ2 =
Ee

{
(Ães

X1)
⊤(Ães

X1)[1
⊤(Ãek

1)]+(Ães
X1)

⊤(Ãek
1)(1⊤Ães

X1)
}

(2+σ2)(Ee[Ães
]X1)⊤1

. (38)

when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the special values for some 0 < s < L:

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

. (39)

Proof.
LIRMv1 = Ee

[
∥∇w|w=1.0En1,n2 [L(fΘ(Ae, Xe), Y e)]∥22

]
= Ee

[
2En1,n2

[(Ŷ e − Y e)⊤ϕ(Ae, Xe)]
]

= Ee

[
2En1,n2

[(
Ce

1θ1 + (Ce
2 + Ze)θ2 − Ãe

k
X1 − n1

)⊤
(Ce

1θ1 + (Ce
2 + Ze)θ2)

]]
= Ee

[
2En1,n2

[
Ce

1
⊤Ce

1(θ1)
2 + 2Ce

1
⊤(Ce

2 + Ze)θ1θ2 + Ce
2
⊤Ce

2(θ2)
2
]]

− Ee

[
2En1,n2

[
(Ãe

k
X1 + n1)

⊤Ce
1θ1 − ((Ãe

k
X1) + n1)

⊤(Ce
2 + Ze)θ2

]]
.

(40)
Take the derivative of LIRMv1 w.r.t. θ1 and θ2:{

∂LIRMv1
∂θ1

= Ee[2En1,n2
[Ce

1
⊤Ce

1θ1 + 2Ce
1
⊤(Ce

2 + Ze)θ2 − ((Ãe
k
X1) + n1)

⊤Ce
1 ]]

∂LIRMv1
∂θ2

= Ee[2En1,n2
[Ce

2
⊤Ce

2θ2 + 2Ce
1
⊤(Ce

2 + Ze)θ1 − ((Ãe
k
X1) + n1)

⊤(Ce
2 + Ze)e]]

.

(41)
For brevity, let a = Ce

1
⊤Ce

1θ1, b = Ce
1
⊤(Ce

2 + Ze), c = ((Ãe
k
X1) + n1)

⊤Ce
1 , d = Ce

2
⊤Ce

2 ,

e = ((Ãe
k
X1) + n1)

⊤(Ce
2 + Ze)e. By letting {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values of Θ0, let
the derivative w.r.t. θ1 and θ2 to be zero, we have{

∂LIRMv1
∂θ1

= ac−be
2(a2−b2)

∂LIRMv1
∂θ2

= ae−bc
2(a2−b2)

. (42)

Also, when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values of Θ0, we have
∂LIRMv1

∂θ1
=

∂LIRMv1

∂θ11
(l)

=
∂LIRMv1

∂θ21
(l)

= 0

∂LIRMv1

∂θ2
=

∂LIRMv1

∂θ12
(l)

=
∂LIRMv1

∂θ22
(l)

= 0

(43)
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E.1.3 PROOF OF THE SUCCESSFUL CASE OF CIA UNDER CONCEPT SHIFT

Proposition E.3. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (44)

Proof. For brevity, denote a node representation of Ce
1c as Ci

1 and the one of Ce′

1 c as Cj
1 . The same

is true for Ci
2 and Cj

2 . In this toy model, we need to consider the expectation of the noise, while
in real cases such noise is included in the node features so taking expectation on e will handle this.
Therefore, we add En1,n2 in this proof, and this expectation is excluded in the formal description of
the objective in the main paper.

LCIA = E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′

[
D(ϕΘ(A

e, Xe)[c][vi], ϕΘ(A
e, Xe′)[c][vj ])

]
= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′
∥Ci

1θ1 + (Ci
2 + Ze)θ2 − Cj

1θ1 − (Cj
2 + Ze′)θ2∥22

(45)

∂LCIA

∂θ1
= E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′

[
Ci

1θ1 + (Ci
2 + Ze)θ2 − Cj

1θ1 − (Cj
2 + Ze′)θ2

]⊤
(Ci

1−Cj
1)

(46)
Let ∂LCIA

∂θ1
= 0, we have:

E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci

1 − Cj
1)

⊤(Ci
1 − Cj

1)θ1 + (Ci
2 − Ck

2 )
⊤(Ci

1 − Cj
1)θ2

]
= 0 (47)

Also, we have:

∂LCIA

∂θ2
= E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci

1 − Cj
1)

⊤(Ci
2 − Cj

2)θ1 +
[
(Ci

2 − Ck
2 )

⊤(Ci
2 − Cj

2) + (Ze − Ze′)⊤(Ze − Ze′)
]
θ2

]
(48)

Further let ∂LCIA
∂θ2

= 0, combining Equation (47), we get{
θ1 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ11

(l)
= θ21

(l)
= 0

θ2 = 0
. (49)

or, if θ1 ̸= 0 and ∀l ∈ {1, ..., L − 1}, the parameters of that layer l of the invariant branch of the
GNN are not all zero: θ11

(l) ̸= 0 or θ21
(l) ̸= 0 , then we get

θ2 E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
− [(Ci

1 − Cj
1)

⊤(Ci
2 − Cj

2)]
2

(Ci
1 − Cj

1)
⊤(Ci

1 − Cj
1)

+ (Ci
2 − Cj

2)
⊤(Ci

2 − Cj
2) + (Ze − Ze′)⊤(Ze − Ze′)

]
︸ ︷︷ ︸

F

= 0

(50)
Due to the property of the inner product, F > 0 unless ∃l ∈ {1, ..., L− 1} s.t. θ12

(l)
= θ22

(l)
= 0. To

ensure ∂LCIA
∂θ2

, we conclude that θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0.

In conclusion, to satisfy the constraint of CIA, no matter whether the invariant branch has zero
output, the spurious branch must have zero parameters, i.e.,

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0 (51)

Thus, CIA will remove spurious features.
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Now we show that when CIA objective has been reached (the spurious branch has zero outputs), the
objective of minΘ Ee[L(fΘ(Ae, Xe), Y e)] will help to learn predictive paramters of the invariant
branch θ1, θ11

(
l) and θ21

(
l). When Equation (51) holds,

∂Ee[L(fΘ(Ae, Xe), Y e)]

∂θ1
= 2EeEn1,n2

[(
Ce

1θ1 − Ãe
k
X1 − n1

)⊤
Ce

1

]
= 2Ee

[(
Ce

1θ1 − Ãe
k
X1

)⊤
Ce

1

] (52)

Let ∂Ee[L(fΘ(Ae,Xe),Y e)]
∂θ1

= 0, we get the predictive parameters
θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (53)

Plug the final solution back in ∂LCIA

∂θ1
1
(l) , ∂LCIA

∂θ2
1
(l) , ∂LCIA

∂θ1
2
(l) , ∂LCIA

∂θ2
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
1
(l) ,

∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
1
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
2
(l) , we can verify that these

terms are all 0.

E.2 PROOF OF THE COVARIATE SHIFT CASE

E.2.1 PROOF OF THE FAILURE CASE OF VREX UNDER COVARIATE SHIFT

Proof. We will use some symbols to simplify the expression of the toy GNN. Denote n2 + ϵe as η.
Use the following notations to represent the components of the L-layer GNN model:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2

=
[
θ11

(L−1)
Ā
(
...θ11

(3)
(
θ11

(2)
Ā(θ11

(1)
Ā+ θ21

(1)
Ī)X1 + θ21

(2)
(θ11

(1)
Ā+ θ21

(1)
Ī)X1

)
+ ...

)]
︸ ︷︷ ︸

C1

θ1

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)η + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)η
)
+ ...

)]
︸ ︷︷ ︸

Z

θ2

= C1θ1 + Zθ2.
(54)

C1, Z ∈ RN×1. We use Ce
1 and Ze to denote the variables from the corresponding environment e.

We further denote Ze = Ce
2
′η.

Using these notations, the loss of environment e is

R(e) = En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]
= En1,n2

[∥∥∥Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1

∥∥∥2
2

]
.

(55)

Denote the inner term Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1 as le.

The variance of loss across environments is:

Ve[R(e)] = Ee[R
2(e)]− E2

e[R(e)]

= Ee

[(
En1,n2

∥∥∥Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1

∥∥∥2
2

)2
]

− E2
e

[
En1,n2

∥∥∥Ce
1θ1 + Zeθ2 − Ãe

k
X1 − n1

∥∥∥2
2

]
.

= Ee

[
En1,n2

[
(l⊤e le)

2
]]

− E2
e

[
En1,n2

[
l⊤e le

]]
.

(56)
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Take the derivative of Ve[R(e)] with respect to θ1:

∂Ve[R(e)]

∂θ1
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e C

e
1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e C

e
1

]] (57)

Calculate the derivative by terms:

En1,n2
[l⊤e le] = En1,n2

[Ce
1
⊤Ce

1(θ1)
2 + Ce

1
⊤Zeθ1θ2 − Ce

1
⊤Ãe

k
X1θ1 − Ce

1
⊤n1θ1

+ Ze⊤Ce
1θ1θ2 + Ze⊤Ze(θ2)

2 − Ze⊤Ãe
k
X1θ2 − Ze⊤n1θ2

− (Ãe
k
X1)

⊤Ce
1θ1 − (Ãe

k
X1)

⊤Zeθ2 + (Ãe
k
X1)

⊤Ãe
k
X1

+ (Ãe
k
X1)

⊤n1 − n⊤
1 C

e
1θ1 − n⊤

1 Z
eθ2 + n⊤

1 Ã
e
k
X1 + n⊤

1 n1]

(58)

Since n1 and n2 are independent standard Gaussian noise, we have En1,n2
[n1] = En1,n2

[n2] = 0,
En1,n2

[n⊤
1 n2] = En1,n2

[n⊤
2 n1] = 0 and En1,n2

[n⊤
1 n1] = En1,n2

[n⊤
2 n2] = Ne if it is the noise

from e. Also, since ϵe and n1, n2 are independent, we have En1,n2
[n⊤

1 ϵ
e] = En1,n2

[n⊤
2 ϵ

e] = 0.

When 
θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (59)

we have Ce
2
′ = INe ∈ RNe×Ne

and Ce
1 = Ãe

s
X1. Consequently, we get En1,n2

[Ze⊤n1] = 0,
En1,n2 [Z

e⊤Ze] = Ne + ϵe⊤ϵe.

Use the above conclusions and rewrite Equation (58) as (here we only plug in the value of Ce
2
′):

En1,n2
[l⊤e le] =

Ce
1
⊤Ce

1(θ1)
2 − Ce

1
⊤Ãe

k
X1θ1

−(Ãe
k
X1)

⊤Ce
1θ1 + (Ãe

k
X1)

⊤Ãe
k
X1 +Ne

(
1 + (θ2)

2
)} (∗)

+[Ce
1
⊤ϵe + ϵe⊤Ce

1 ]θ1θ2 + ϵe⊤ϵe(θ2)
2 − 2(Ãe

k
X1)

⊤ϵeθ2

}
(∗∗),

(60)

(∗) and (∗∗) represent terms that are independent and associated with ϵe, respectively.

Additionally,
En1,n2 [2l

⊤
e C

e
1 ] = 2

[
Ce

1
⊤Ce

1θ1 + ϵe⊤Ce
1θ2 − (Ãe

k
X1)

⊤Ce
1

]
.

(61)

Multiplying Equation (60) and (61) and take the expectation on e, using the assumption that
Ee[(ϵ

e
i)

2] = σ2 (ϵei is the i-th element of ϵe):

Ee

[
2En1,n2 [l

⊤
e le]En1,n2

[
2l⊤e C1

]]
= 4Ee

[
(∗)
(
Ce

1
⊤Ce

1θ1 − (Ãe
k
X1)

⊤Ce
1

)]
+ 4Ee

[
(Ãe

s
X1)

⊤Ãe
s
X1(2θ1θ2 + (θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
θ2σ

2

+ 4Ee[N
eϵe⊤ϵeϵe⊤(Ãe

s
X1)]θ2.

(62)

Next target is to compute 2Ee[En1,n2
[l⊤e le]] and Ee[En1,n2

[2l⊤e C1]] Since ϵe has zero mean, we
have:

2Ee[En1,n2 [l
⊤
e le]] = E[(∗)] + E[2Ne]σ2(θ2)

2 (63)
and

Ee[En1,n2
[2l⊤e C

e
1 ]] = 2Ee

[
Ce

1
⊤Ce

1θ1 − (Ãe
k
X1)

⊤Ce
1

]
. (64)
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Use Equation (62) (63) and (64) and let ∂Ve[R(e)]
∂θ1

= 0, we have:

Ee

[
2(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1θ2 +

1

2
(θ2)

2)− 2(Ãe
s
X1)

⊤(Ãe
k
X1)θ2

]
σ2 + Ee[ϵ

e⊤ϵeϵe⊤(Ãe
s
X1)]

−Ee[N
e]Ee

[
(Ãe

s
X1)

⊤(Ãe
s
X1)θ1 − (Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 = 0.

(65)

Now we start calculating the expression of ∂Ve[R(e)]
∂θ2

:

∂Ve[R(e)]

∂θ2
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e Z

e
]]

− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee

[
En1,n2

[
2l⊤e Z

e
]]

.

(66)

Let ∂Ve[R(e)]
∂θ2

= 0:

Ee

[
(Ce

1
⊤Ce

2
′ + Ce

2
′⊤Ce

1
⊤)θ1θ2 + (Ce

2
′)⊤Ce

2
′(θ2)

2 − 2(Ãe
k
X1)

⊤Ce
2
′θ2

]
Ee

[
(−(Ãe

k
X1)

⊤Ce
2
′)
]
σ2

− Ee

[
Neσ2

(
tr((Ãe

k
)⊤Ãe

k
) +Ne + Ce

2
′⊤Ce

2
′σ2
)
(θ2)

2
]

= 0.
(67)

Plug Equation (65) in (67), we reach:[
Ee

[
Ne(Ãe

s
X1)

⊤(Ãe
s
X1)θ1 −Ne(Ãe

k
X1)

⊤Ce
1

]
θ2σ

2 − Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]

]
Ee

(
−(Ãe

k
X1)

⊤1Ne

)
− Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
(θ2)

2

= 0.
(68)

Let c1 = E[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = E[(Ãe

s
X1)

⊤(Ãe
k
X1)],

c3 = Ee[ϵ
e⊤ϵeϵe⊤(Ãe

s
X1)]σ

2,c4 = Ee

[
(Ãe

k
X1)

⊤1Ne

]
σ2, c5 =

Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
,

we conclude that{
c1σ

2(2θ1θ2 + (θ2)
2 − 2c2σ

2θ2) + c3 − Ee[N
e]c1σ

2θ1θ2 + Ee[N
e]c2σ

2θ2 = 0[
c3 − Ee[N

e]c1σ
2θ1θ2 + Ee[N

e]c2σ
2θ2
]
c4 − c5(θ2)

2 . (69)

As for the derivative respect to θ11
(l), θ21

(l), θ12
(l),θ22

(l), when they take the special value in (59), we
have ∂Ve[R(e)]

∂θ1
⇒ θ11

(l)
= θ21

(l)
= 0 and ∂Ve[R(e)]

∂θ2
⇒ θ12

(l)
= θ22

(l)
= 0, l = 1, ..., L So we conclude

the solution induced by 69 is the solution of the objective.

E.2.2 PROOF OF THE FAILURE CASE OF IRMV1 UNDER COVARIATE SHIFT

Proof.
LIRMv1 = Ee

[
∥∇w|w=1.0En1,n2

[L(fΘ(Ae, Xe), Y e)]∥22
]

= Ee

[
2En1,n2 [(Ŷ

e − Y e)⊤ϕ(Ae, Xe)]
]

= Ee

[
2En1,n2

[(
Ce

1θ1 + Zeθ2 − Ãe
k
X1 − n1

)⊤
(Ce

1θ1 + Zeθ2)

]]
= Ee

[
2En1,n2

[
Ce

1
⊤Ce

1(θ1)
2 + 2Ce

1
⊤Zeθ1θ2

]]
− Ee

[
2En1,n2

[
(Ãe

k
X1 + n1)

⊤Ce
1θ1 − (Ãe

k
X1 + n1)

⊤Zeθ2

]]
.

(70)
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Take the derivative of LIRMv1 w.r.t. θ1:

∂LIRMv1

∂θ1
= Ee[2En1,n2 [C

e
1
⊤Ce

1θ1 + 2Ce
1
⊤Zeθ2 − ((Ãe

k
X1) + n1)

⊤Ce
1 ]], (71)

Let it be zero, we get θ1 = Ee[(Ãek
X1)

⊤(Ãe2k
X1)]

Ee[(Ãe2k
X1)⊤(Ãe2k

X1)]

Take the derivative of LIRMv1 w.r.t. θ2:

∂LIRMv1

∂θ2
= Ee[2En1,n2 [2C

e
1
⊤Zeθ1 − ((Ãe

k
X1) + n1)

⊤Ze]] ≡ 0 (72)

Also, when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values of Θ0, we have

∂LIRMv1

∂θ1
=

∂LIRMv1

∂θ11
(l)

=
∂LIRMv1

∂θ21
(l)

= 0

∂LIRMv1

∂θ2
=

∂LIRMv1

∂θ12
(l)

=
∂LIRMv1

∂θ22
(l)

= 0

(73)

E.3 PROOF OF THE SUCCESSFUL CASE OF CIA UNDER COVARIATE SHIFT

Proof. For brevity, denote a node representation of Ce
1c as Ci

1 and the one of Ce′

1 c as Cj
1 . The same

is true for Ci
2 and Cj

2 . In this toy model, we need to consider the expectation of the noise, while
in real cases such noise is included in the node features so taking expectation on e will handle this.
Therefore, we add En1,n2

in this proof, and this expectation is excluded in the formal description of
the objective in the main paper.

LCIA = E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′

[
D(ϕΘ(A

e, Xe)[c][vi], ϕΘ(A
e, Xe′)[c][vj ])

]
= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′
∥Ci

1 + Ze − Cj
1 − Ze′∥22

(74)

∂LCIA

∂θ1
= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′

[
Ci

1θ1 + Zeθ2 − Cj
1θ1 − Ze′θ2

]⊤
(Ci

1 − Cj
1) (75)

Let ∂LCIA
∂θ1

= 0, we have:

E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci

1 − Cj
1)

⊤(Ci
1 − Cj

1)θ1

]
= 0 (76)

Thus, we get two possible solutions of the invariant branch. The first valid solution is the optimal
one: 

θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (77)

The second valid solution is a trivial one:{
θ1 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ11

(l)
= θ21

(l)
= 0 . (78)

Take the derivative of the objective w.r.t. θ2:

∂LCIA

∂θ2
= E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[[
(Ze − Ze′)⊤(Ze − Ze′)

]
θ2

]
= 2(1 + σ2)θ2 (79)

Let ∂LCIA
∂θ2

= 0, we get θ2 = 0. Thus, CIA will remove spurious features.
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Now we show that when CIA objective has been reached (the spurious branch has zero outputs), the
objective of minΘ Ee[L(fΘ(Ae, Xe), Y e)] will help to learn predictive parameters of the invariant
branch θ1, θ11

(
l) and θ21

(
l). When θ2 = 0:

∂Ee[L(fΘ(Ae, Xe), Y e)]

∂θ1
= 2EeEn1,n2

[(
Ce

1θ1 − Ãe
k
X1 − n1

)⊤
Ce

1

]
= 2Ee

[(
Ce

1θ1 − Ãe
k
X1

)⊤
Ce

1

] (80)

Let ∂Ee[L(fΘ(Ae,Xe),Y e)]
∂θ1

= 0, we get the predictive parameters
θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (81)

Plug the final solution back in ∂LCIA

∂θ1
1
(l) , ∂LCIA

∂θ2
1
(l) , ∂LCIA

∂θ1
2
(l) , ∂LCIA

∂θ2
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
1
(l) ,

∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
1
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ1
2
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ2
2
(l) , we can verify that these

terms are all 0.
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