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A APPENDIX

A.1 THEORETICAL ANALYSIS ON THE PARALLELIZATION OF AUGLOCAL

To analyze the parallelization, we compare the training time of AugLocal with that of BP. For
simplicity, we assume the forward time tf and backward time tb of each layer to be the same. We
denote the maximum depth of the auxiliary networks as d and the depth of the primary network as
L+ 1, consistent with the notations in our paper. N denotes the number of training iterations.

For BP training, the time to train N iterations can be calculated as (L+ 1)(tf + tb)N .

In AugLocal, we define a local layer as a hidden layer along with its associated auxiliary networks.
The training time for any local layer ℓ per iteration can be represented as (ℓ−1)tf+(d+1)(tf+tb). By
parallelizing the training of these local layers once their inputs are available, the time of (d+1)(tf+tb)
can be shared among all local layers. Furthermore, starting from the second iteration, the forward pass
of the (ℓ− 1)th hidden layer can be parallelized with the backward pass of the ℓth auxiliary network.
Based on these considerations, the training time of AugLocal for N iterations can be calculated as
tfL+ (d+ 1)(tf + tb)N , which is approximated to (d+ 1)(tf + tb)N after omitting the constant
term.

Consequently, the ratio of the training time between AugLocal and BP is approximately d+1
L+1 . This

suggests that as the maximum depth of the auxiliary network d decreases, AugLocal demonstrates
higher parallelization and faster training speed compared to BP. It is worth noting that to achieve the
theoretical training speed-up, we need the customized parallel implementation that we consider as
future work.

A.2 IMPLEMENTATION DETAILS

Our experiments are based on four widely used benchmark datasets (i.e., CIFAR-10 (Krizhevsky et al.,
2009), SVHN (Netzer et al., 2011), STL-10 (Coates et al., 2011), and ImageNet (Deng et al., 2009)).
We compare our proposed AugLocal method with the end-to-end backpropagation (BP) (Rumel-
hart et al., 1985) algorithm and three state-of-the-art supervised local learning methods, including
DGL (Belilovsky et al., 2020), PredSim (Nøkland & Eidnes, 2019), and InfoPro (Wang et al., 2021).
We re-implement all of these methods in PyTorch using their official implementations 1. We utilize
consistent training configurations across all learning methods. All experiments are conducted on a
machine equipped with 10× NVIDIA RTX3090.

Datasets CIFAR-10 (Krizhevsky et al., 2009) dataset consists of 60K 32× 32 colored images that
are categorized into 10 classes with 50K images for training and 10K images for test. We use the
standard data augmentation (He et al., 2016; Nøkland & Eidnes, 2019; Wang et al., 2021) in the
training set, where 4 pixels are padded on each side of samples followed by a 32 × 32 crop and
a random horizontal flip. SVHN (Netzer et al., 2011) dataset contains 32 × 32 digit images, each
with a naturalistic background in RGB format. The standard split of 73,257 images for training and
26,032 images for test is adopted. Following Tarvainen & Valpola (2017); Wang et al. (2021), we
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DGL.
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Table 1: Auxiliary networks in local learning methods for the three stages of ResNet-110. ‘/’ is used
to separate two auxiliary networks for two local losses in both PredSim and InfoPro. The former
network is used for the cross-entropy loss, and the latter one serves another loss function.
Stage PredSim InfoPro DGL AugLocal (d = 2)

1 AP-10FC / 16C3 32C3-AP-128FC-10FC / 12C3-3C3 AP-16C1-16C1-16C1-
AP-64FC-64FC-10FC 64R-AP-10FC

2 AP-10FC / 32C3 64C3-AP-128FC-10FC / 12C3-3C3 AP-32C1-32C1-32C1-
AP-128FC-128FC-10FC 64R-AP-10FC

3 AP-10FC / 64C3 64C3-AP-128FC-10FC / 12C3-3C3 AP-64C1-64C1-64C1-
AP-256FC-256FC-10FC 64R-AP-10FC

Table 2: Comparison of computational costs including FLOPs, GPU memory and computational
overhead among PredSim, DGL, InfoPro and our proposed AugLocal method as well as BP and
gradient checkpoint (Chen et al., 2016) on CIFAR-10 using the ResNet-110 architecture.

BP Gradient Checkpoint PredSim DGL InfoPro

FLOPs (G) 0.25 0.25 0.25 0.26 0.34
GPU Memory (GB) 9.27 3.03 1.54 1.61 3.98

Computational Overhead
(Wall-clock Time)

- 34.1% 65.9% 76.2% 292.3%

Acc. 94.61±0.18 94.61±0.18 74.95±0.36 85.69±0.32 86.95±0.46

AugLocal (d = 2) AugLocal (d = 3) AugLocal (d = 4) AugLocal (d = 5) AugLocal (d = 6)

FLOPs (G) 0.63 0.69 0.80 0.98 1.13
GPU Memory (GB) 1.71 1.62 1.70 1.71 1.72

Computational Overhead
(Wall-clock Time)

87.2% 115.9% 135.6% 180.8% 214.6%

Acc. 90.98±0.05 92.62±0.22 93.22±0.17 93.75±0.20 93.96±0.15

augment training samples by padding 2 pixels on each side of images followed by a 32× 32 crop.
STL-10 (Coates et al., 2011) provides 5K labeled images for training and 8K labeled images for test.
The size of each image is 96 × 96. Data augmentation is performed by 4 × 4 random translation
followed by random horizontal flip (Wang et al., 2021). ImageNet (Deng et al., 2009) is a 1,000-class
dataset with 1.2 million images for training and 50,000 images for validation. Following He et al.
(2016); Huang et al. (2017); Wang et al. (2021), a 224 × 224 random crop followed by random
horizontal flip is adopted for training samples, and a 224× 224 resize and a central crop are applied
for test samples.

Training setups For CIFAR-10, SVHN, and STL-10 experiments using ResNet-32 (He et al.,
2016), ResNet-110 (He et al., 2016), and VGG19 (Simonyan & Zisserman, 2014), we use the SGD
optimizer with a Nesterov momentum of 0.9 and the L2 weight decay factor of 1e-4. We adopt a
batch size of 1024 on CIFAR-10 and SVHN and a batch size of 128 on STL10. We train the networks
for 400 epochs, setting the initial learning rate to 0.8 for CIFAR-10/SVHN and 0.1 for STL-10, with
the cosine annealing scheduler (Loshchilov & Hutter, 2019). For ImageNet experiments, we train
VGG13 (Simonyan & Zisserman, 2014) with an initial learning rate of 0.1 for 90 epochs, and train
ResNet-34 (He et al., 2016) and ResNet-101 (He et al., 2016) with initial learning rates of 0.4 and 0.2
for 200 epochs, respectively. We set batch sizes of VGG13, ResNet-34, and ResNet-101 to 256, 1024,
and 512, respectively. We keep other training configurations consistent with the ones on CIFAR-10. It
is worth noting that, to reduce the computational costs of auxiliary networks, we change the number
of hidden neurons in each auxiliary network’s classifier from 4096 to 512 on VGG13.

A.3 COMPARISON OF COMPUTATIONAL COSTS AMONG LOCAL LEARNING METHODS

Auxiliary networks We keep the original configurations as stated in their respective papers for the
auxiliary networks of DGL, PredSim, and InfoPro in our experiments. The auxiliary networks in
these local learning baselines and AngLocal (d = 2) are provided in Table 1. For clarity, we show the
auxiliary nets based on the three stages of ResNet-110, each stage with the same number of output
channels. We use the following notations: R denotes a residual block, C is a convolutional layer, AP
signifies average pooling, and FC indicates a fully-connected layer. C1 and C3 refer to 1×1 and 3×3
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convolutional kernel sizes, respectively. The value preceding C, R, and FC denotes the number of
output channels.

Computational costs We compare the computational costs including FLOPs, GPU memory, and
wall-clock time among BP, PredSim, DGL, InfoPro and our proposed AugLocal method. Note that
the wall-clock time across all local learning methods is measured specifically under the sequential
implementation setting, where each hidden layer is trained sequentially after receiving a batch of
samples. Table 2 demonstrates that AugLocal achieves significantly higher accuracy at slightly higher
computational costs than the other methods using the ResNet-110 architecture on CIFAR-10. The
accuracy of AugLocal can be further improved by employing deeper auxiliary networks and larger
computational costs. Additionally, we further compare AugLocal with gradient checkpointing (Chen
et al., 2016). Our results in Table 2 demonstrate that AugLocal can achieve a much lower GPU
memory footprint than gradient checkpoint, albeit accompanied by a moderate increase in wall-clock
time. It is worth noting that the actual memory overhead of AugLocal does not follow a perfect linear
growth due to the PyTorch backward implementation has been optimized for e2e BP training. In our
future work, we will explore more efficient CUDA implementation to address this issue.

A.4 GENERALIZATION TO DIFFERENT CONVNETS

To evaluate the generalization ability of AugLocal across different convolutional networks (Con-
vNets), we conduct experiments on three popular ConvNets: MobileNet (Sandler et al., 2018),
EfficientNet (Tan & Le, 2019), and RegNet (Radosavovic et al., 2020).

Network architectures MobileNetV2 (Sandler et al., 2018) is a lightweight architecture and com-
prises two types of building blocks. One is the inverted bottleneck residual block with a stride of
1, and another is the variant with a stride of 2 for downsizing. Each block contains 3 convolutional
layers, including two point-wise convolution and one depth-wise convolution. EfficientNetB0 (Tan &
Le, 2019) employs a compound scaling strategy to jointly scale network’s depth, width, and resolution,
offering a superior performance in terms of efficiency. The building block of EfficientNetB0 is the
inverted residual block with an additional squeeze and excitation (SE) layer. RegNetX_400MF (Ra-
dosavovic et al., 2020) is derived from a low-dimensional network design space consisting of simple
and regular networks. The standard residual bottleneck blocks with group convolution are adopted
as its building blocks, each of which comprises a 1 × 1 convolution, followed by a 3 × 3 group
convolution and a final 1× 1 convolution.

Training setups As the minimal indivisible units, the building blocks in the three architectures are
their local layers, which are independently trained with local learning rules. For AugLocal, the down-
sampling operation in auxiliary networks is performed by changing the stride of the corresponding
auxiliary layer to 2. Other training configrations are the same as the previous ones on CIFAR-10.

Our experimental results in Table 3 demonstrate that AugLocal consistently obtains comparable
accuracy to BP, regardless of the network structure, highlighting the potential of AugLocal to
generalize across different network architectures.

Table 3: Performances of AugLocal on different ConvNets. The experiments are conducted on
CIFAR-10.

BP AugLocal (d = 3) (d = 4) (d = 5) (d = 6)
MobileNetV2 (L = 19) 94.89±0.15 92.16±0.24 93.94±0.23 94.43±0.04 94.52±0.08
EfficientNetB0 (L = 17) 93.52±0.15 92.70±0.14 92.84±0.15 93.03±0.16 93.13±0.08
RegNetX_400MF (L = 23) 95.70±0.12 94.42±0.11 94.72±0.01 94.96±0.12 95.09±0.10

A.5 COMPARISON OF LOCAL LEARNING METHODS WITH COMPARABLE FLOPS

This experiment compares AugLocal to other local learning methods with comparable FLOPs. We
scale up the auxiliary networks of DGL by using 3×3 convolutions with the same network depth and
a multiplier to scale up the channel numbers of the convolutional layers to ensure similar FLOPs as
AugLocal. We further implement PredSim and InfoPro, which incorporate additional local losses
and auxiliary networks, resulting in higher FLOPs than DGL. The ResNet-110 architecture on the
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Table 4: Comparison of local learning methods with comparable FLOPs on ResNet-110.
Method (d = 2) (d = 3) (d = 4) (d = 5) (d = 6)

AugLocal 90.98±0.05 92.62±0.22 93.22±0.17 93.75±0.20 93.96±0.15
DGL 83.03±0.24 85.82±0.08 87.84±0.46 89.19±0.20 90.01±0.05

PredSim 72.06±0.63 80.16±0.47 86.00±0.56 88.27±0.72 88.34±0.34
InfoPro 83.71±0.20 89.14±0.17 90.75±0.22 91.45±0.05 92.10±0.17

CIFAR-10 dataset is adopted in this experiment. Our results in Table 4 consistently demonstrate that
AugLocal outperforms the other methods with similar FLOPs, reaffirming the effectiveness of our
approach in constructing auxiliary networks for improved performance in supervised local learning.

A.6 ABLATION STUDY OF AUGLOCAL’S AUXILIARY NETWORKS

We conduct ablation experiments to investigate the impact of altering the auxiliary architecture on
AugLocal’s performance. In this ablation study, we focus on AugLocal with a depth (d) of 6, which
equals the depth of DGL Belilovsky et al. (2020). We use the ResNet-110 architecture that has
three stages, each having the same number of output channels. To align with DGL, which uses the
same auxiliary networks for layers in the same stage, we gradually modify AugLocal’s auxiliary
architectures to match those of DGL.

Initially, we replace the auxiliary networks in the second stage with a repetitive selection strategy
combined with downsampling while keeping the other two stages unchanged. This modification
results in a 1.21% accuracy drop. Subsequently, we remove the downsampling operation, leading to
a further accuracy drop of 1.02%. Based on these modified auxiliary architectures, we replace the
first stage layers with the repetitive auxiliary networks and downsampling, resulting in an accuracy
degradation of around 1.5%. Finally, we replace all residual blocks in the auxiliary networks with
3× 3 convolutional layers while maintaining the same number of channels. This change significantly
affects the accuracy, resulting in a drop to 88.28%. It is worth noting that DGL further adopts
convolutional 1× 1 layers and fully-connected layers, which achieve a baseline accuracy of 85.69%.

These ablation experiments clearly demonstrate the important role of each component in the auxiliary
networks of AugLocal. The results highlight the effectiveness of our approach in constructing
auxiliary networks for improved performance in local learning.

We provide the details of auxiliary networks in the ablation experiment in Table 5. For consistency, we
adopt the same notations as A.3, with the addition of s2 representing a stride of 2 for downsampling.

Table 5: Results of the ablation study for AugLocal by gradually modifying auxiliary networks to
match those of the baseline.
Method Acc. Stage 1 Stage 2 Stage 3

AugLocal (d = 6) 93.96±0.15 Uniform Selection Uniform Selection Uniform Selection

Replace with repe. and
downsampling (ds.) in Stage 2 92.75±0.09 Uniform Selection 32Rs2-32R-32R-

32R-32R-AP-10FC Uniform Selection

Replace with repe. in Stage 2 91.73±0.11 Uniform Selection 32R-32R-32R-
32R-32R-AP-10FC Uniform Selection

Replace with repe. and ds.
in both Stage 1 and 2 91.40±0.08 16Rs2-16R-16R-

16R-16R-AP-10FC
32Rs2-32R-32R-

32R-32R-AP-10FC Uniform Selection

Replace with repe. and ds. in
Stage 1 and with repe. in Stage 2 89.92±0.37 16Rs2-16R-16R-

16R-16R-AP-10FC
32R-32R-32R-

32R-32R-AP-10FC Uniform Selection

Replace with 3×3 convlutional layers
and downsampling in all stages 88.28±0.24 AP-16C3-16C3-16C3

-16C3-16C3-AP-10FC
AP-32C3-32C3-32C3
-32C3-32C3-AP-10FC

AP-64C3-64C3-64C3
-64C3-64C3-AP-10FC

DGL 85.69±0.32 AP-16C1-16C1-16C1-
AP-64FC-64FC-10FC

AP-32C1-32C1-32C1-
AP-128FC-128FC-10FC

AP-64C1-64C1-64C1-
AP-256FC-256FC-10FC

A.7 RESULTS OF AUGLOCAL ON DOWNSTREAM TASKS

To evaluate the generalization ability of AugLocal on downstream tasks, we conduct experiments
on the challenging COCO dataset (Lin et al., 2014) for object detection and instance segmentation.
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Table 6: Influence of pyramidal depth on computational efficiency. This complements Figure ?? with
explicit values of FLOPs (G). The FLOPs for BP is 0.25G.

τ = 1 τ = 0.9 τ = 0.8 τ = 0.7 τ = 0.6

d = 5 0.79 0.83 0.87 0.89 0.93
d = 6 0.90 0.95 0.99 1.03 1.09
d = 7 0.99 1.06 1.11 1.17 1.22
d = 8 1.09 1.16 1.22 1.29 1.36
d = 9 1.18 1.26 1.35 1.41 1.49

Table 7: Results of AugLocal on the COCO object detection and instance segmentation benchmarks.

Method AP b AP b
50 AP b

75 APm APm
50 APm

75

BP 36.3 56.4 39.4 33.8 53.9 36.1
AugLocal 36.2 56.0 39.1 33.4 53.2 35.7

Following the common practice, we use the pre-trained ResNet-34 on ImageNet as a backbone and
integrate it with the Mask R-CNN detector (He et al., 2017). To ensure fair comparisons, we maintain
consistent training configurations for both AugLocal and BP. Specifically, we utilize the AdamW
optimizer, a 1× training schedule consisting of 12 epochs and a batch size of 16. The results in
Table 7 show that AugLocal consistently achieves comparable performance to BP across all average
precision (AP) metrics, suggesting that AugLocal can effectively generalize pre-trained models for
downstream tasks.

A.8 CONVERGENCE SPEED

In this experiment, we aim to investigate the convergence speed of our proposed AugLocal method
by comparing it with BP and other local learning rules. To this end, we visualize the learning curves
of these methods on ResNet-32 and ResNet-110. As shown in Figure 1, AugLocal achieves a faster
decrease in the network output loss as compared to other local learning rules. Moreover, as the
depth of auxiliary networks increases, the convergence speed of AugLocal improves and gradually
approaches the one of BP. This finding reconfirms the efficacy of our AugLocal method in optimizing
networks to achieve high performance.
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Figure 1: Learning curves of different learning rules on ResNet-32 and ResNet-110. The y-axis is in
log scale.

A.9 SYNERGY BETWEEN AUGLOCAL AND INFOPRO

Our proposed AugLocal method is orthogonal to existing supervised local learning works (Nøkland
& Eidnes, 2019; Wang et al., 2021) that propose advanced local loss functions. In this part, we
investigate the potential benefits of combining AugLocal with InfoPro (Wang et al., 2021). Specifi-
cally, each hidden layer additionally incorporates a reconstruction loss with an auxiliary network.
Following (Wang et al., 2021), we adopt the auxiliary network containing two convolutions and
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Table 8: Performance of AugLocal with the InfoPro loss (Wang et al., 2021) on ResNet-110. The
results of AugLocal with the cross-entropy (CE) loss are provided as a baseline.
Loss (d = 2) (d = 3) (d = 4) (d = 5) (d = 6) (d = 7) (d = 8) (d = 9)
CE 90.98±0.05 92.62±0.22 93.22±0.17 93.75±0.20 93.96±0.15 94.03±0.13 94.01±0.06 94.30±0.17
InfoPro 91.59±0.11 92.75±0.50 93.71±0.14 94.11±0.19 94.02±0.09 94.17±0.13 94.29±0.07 94.08±0.18

up-sampling operations. It is worth noting that the original augmented auxiliary network with the
cross-entropy loss in each hidden layer keeps unchanged.

The results in Table 8 demonstrate that incorporating the additional reconstruction loss can lead to
accuracy improvements in most cases. This suggests that AugLocal can generalize and synergize
with advanced local objectives to improve performance further.
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