
A Pseudocode of LIAM

Algorithm 1 shows the pseudocode of LIAM.

Algorithm 1 Pseudocode of LIAM’s algorithm

for m = 1, ...,M episodes do
Reset the hidden state of the encoder LSTM
Sample E fixed policies from Π
Create E parallel environments and
gather initial observations
a1
−1 ← zero vectors

for t = 0, ...,H − 1 do
for every environment e in E do

Get observations o1
t and o−1

t
Compute the embedding zt = fw(o1

t , a
1
t−1)

Sample action a1
t ∼ π(a1

t |o1
t , zt)

Sample modelled agent’s action a−1
t

Perform the actions and get o1
t+1, o

−1
t+1, r

1
t+1

end for
if t mod update_frequency = 0 then

Gather the sequences of all E environments in a single batch B
Perform a gradient step to minimise LED (Equation (2)) using B
Perform a gradient step to minimise LA2C (Equation (3)) using B

end if
end for

end for

B Fixed Policies

Double Speaker-Listener: Each policy consists of two sub-policies: the communication message
policy and the navigation action policy. For the communication message policy, we manually
created constant five-dimensional one-hot communication messages that correspond to different
colours. We manually select different fixed policies that communicate the same colours with different
communication messages. For the navigation policies, we then created five pairs of agents and we
trained each pair to learn to navigate using the MADDPG algorithm [Lowe et al., 2017]. Each agent
on the pair learns to navigate based on the communication messages of the other agent in the pair.

Level-Based Foraging: The fixed policies in level-based foraging consist of four heuristic policies,
three policies trained with IA2C and three policies trained with MADDPG. All modelled agent
policies condition their policies to the state of the environment. The heuristic agents were selected
to be as diverse as possible, while still being valid strategies. We used the strategies from Albrecht
and Stone [2017], which are: (i) going to the closest food, (ii) going to the food which is closest to
the centre of visible players, (iii) going to the closest compatible food, and (iv) going to the food
that is closest to all visible players such that the sum of their and the agent’s level is sufficient to
load it. We also trained three policies with MADDPG by training two pairs of agents and extracting
the trained parameters of those agents. For the policies trained with MADDPG, we circumvent the
instability caused by deterministic policies in Level-based Foraging by enabling dropout in the policy
layers [Gal and Ghahramani, 2016] both during exploration and evaluation. We observe that by
creating stochastic policies the agents perform significantly better.

Predator-Prey: The fixed policies in the predator-prey consist of a combination of heuristic and
pretrained policies. First we created four heuristic policies, which are: (i) going after the prey, (ii)
going after one of the predators, (iii) going after the agent (predator or prey) that is closest, (iv)
going after the predator that is closest. Additionally, we create another six pretrained policies, by
training two sets of three agents using RL: one with the MADDPG algorithm and one with the IA2C
algorithm. To create the ten fixed policies, where each fixed policy consists of three sub-policies (one
for each predator), we randomly combine the four heuristic and the six pretrained policies.

14



C Baselines

C.1 Contrastive Agent Representation Learning (CARL)

CARL extracts representations about the modelled agent in the environment without reconstruction
from the local information provided to the controlled agents, the locally available observation, and
the action that the controlled agent previously performed. CARL has access to the trajectories of all
the other agents in the environment during training, but during execution only to the local trajectory.

To extract such representations, we use self-supervised learning based on recent advances on con-
trastive learning [Oord et al., 2018, He et al., 2020, Chen et al., 2020a,b]. We assume a batch
B of M number of global episodic trajectories B = {τglo,m}M−1

m=0 , where each global trajectory
consists of the trajectory of the controlled agent 1 and the trajectory of all the modelled agent −1,
τglo,m = {τ1,m, τ−1,m}. The positive pairs are defined between the trajectory of the controlled
agent and the trajectory of the modelled agent at each episode m in the batch. The negative pairs are
defined between the trajectory of the controlled agent at the specific episode m and the trajectory of
the modelled, in all other episodes l 6= m in the batch, expect episode m.

pos = {τ1,m, τ−1,m}
neg = {τ1,m, τ−1,l}

(4)

We assume the existence of two encoders: the recurrent encoder that receives sequentially the
trajectory of the controlled agent fw : τ1 → Z and at each time step t generates the representation z1

t ,
and the recurrent encoder that receives sequentially the trajectory of the modelled agent fu : τ−1 → Z
and at each time step t generates the representation z−1

t . The representation z1
t is used as input in the

actor and the critic of A2C. During training and given a batch of episode trajectories we construct the
positive and negative pairs following Equation (4) and minimise the InfoNCE loss [Oord et al., 2018]
that attracts the positive pairs and repels the negative pairs.

LCARL = −
H−1∑
t=0

log
exp{cos(z1,m

t , z−1,m
t )/τtemp}∑M−1

j=0 exp{cos(z1,m
t , z−1,j

t )/τtemp}
(5)

where cos is the cosine similarity and τtemp the temperature of the softmax function.

C.2 LIAM-VAE

Following the work of Chung et al. [2015] we can write the lower bound in the log-evidence of the
modelled agent’s trajectory as:

log p(τ−1) ≥ Ez∼q(z|τ1
)
[
∑
t

[log p(τ−1
t |zt, τ−1

:t−1)−DKL(q(zt|z:t−1, τ
1
:t)‖p(zt|τ1

:t−1, z:t−1)] (6)

We assume the following independence τt|zt |= τ:t−1. This practically means that the latent variables
should hold enough information to reconstruct the trajectory at time step t. We deliberately make
this assumption that will lead to worse reconstruction but more informative latent variables. Since
the goal of LIAM-VAE is to learn representation about the modelled agent we prioritise informative
representations over good reconstruction. More specifically, consider that we want to reconstruct
modelled agent’s observation o−1

t at time step t, using the latent variable zt. The observation of the
modelled agent o−1

t−1 has as information the colour of the controlled agent. If we condition the decoder
both on the latent variable and the previous observation to reconstruct the current observation, then
the reconstruction of the colour of the controlled agent can be achieved by the decoder by looking at
the observation o−1

t−1. As a result, the latent variables will not encode this type of information that is
necessary to successfully solve this environment. Additionally, we assume that τt|τ:t−1 |= zt−1. This
assumption holds because zt−1 is generated from a distribution conditioned on τ:t−1 and zt−1 holds
the same information as τ:t−1. As a result, we can write the lower bound as:

log p(τ−1) ≥ Ez∼q(z|τ1)[
∑
t

[log p(τ−1
t |zt)−DKL(q(zt|τ1

:t)‖p(zt|τ:t−1)] (7)

15



To optimise this lower bound, we define:

• The encoder qw with parameters w, which a recurrent network that receives as input the
observations and actions of the controlled agent sequential and generates the statistics (the
mean and the logarithmic variance) of a Gaussian distribution.

• The decoder pu with parameters u that receives the latent variable zt and reconstructs the
modelled agent’s trajectory at each time step t. The implementation of the decoder is the
same as the decoder of LIAM described in Equation (2).

• The prior pφ with parameters φ that models the temporal relationship between the latent
variables. We evaluated two different models for the prior: one that receives the hidden state
of the recurrent network of the encoder as input and outputs a Gaussian distribution, and
one that considers that the prior at each time step t is equal to the posterior at each time step
t− 1. Both prior choices led to similar episodic returns. In Figure 5 we present the average
returns for the later choice of prior.

We train LIAM-VAE similarly to LIAM. In the actor and the critic network we input the mean of the
Gaussian posterior.

D Implementation Details

All feed-forward neural networks have two hidden layers with ReLU [Maas et al., 2013] activation
function. The encoder consists of one LSTM [Schmidhuber and Hochreiter, 1997] and a linear layer
with ReLU activation function. All hidden layers consist of 128 nodes. The action reconstruction
output of the decoder is passed through a Softmax activation function to approximate the categorical
modelled agent’s policy. For a continuous action space, a Gaussian distribution can be used. For
the advantage computation, we use the Generalised Advantage Estimator [Schulman et al., 2015]
with λGAE = 0.95. We create 10 parallel environments to break the correlation between consecutive
samples. The actor and the critic share all hidden layers in the A2C implementation. We use the
Adam optimiser [Kingma and Ba, 2015] with learning rates 3× 10−4 and 7× 10−4 for the A2C and
the encoder-decoder loss respectively. We also clip the gradient norm to 0.5. We subtract the policy
entropy from the actor loss [Mnih et al., 2016] to ensure sufficient exploration. The entropy weight β
is 10−2 in double speaker-listener and the predator-prey and 0.001 in the level-based foraging. We
train for 40 million time steps in the double speaker-listener environment and for 10 million time steps
in the rest of the environments. During the hyperparameter selection, we searched: (1) learning rates
in the range [10−4, 7× 10−4] and [3× 10−4, 10−3] for the parameters of RL and LIAM respectively,
(2) hidden size between 64 and 128, and (3) entropy regularisation in the range of [10−3, 10−2]. The
hyperparameters were optimised in the double speaker-listener environment and were kept constant
for the rest of the environments, except the entropy regularisation in level-based foraging, where we
saw significant gains in the performance of all algorithms.

For the MPE environments, we use the version that can be found in this link: https://github.
com/shariqiqbal2810/multiagent-particle-envs. This version allows for better
visualisation of the communication messages in the double speaker-listener environment, as well as
seeding the environments. Our A2C implementation is based on the following well-known repos-
itory: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/tree/
master/a2c_ppo_acktr.

E Different Learning Rates

In this Section, we evaluate the final achieved returns of LIAM with respect to different learning rates
for the RL and the encoder-decoder optimisation. Figure 7 presents a heat-map of LIAM’s achieved
returns in the double speaker-listener environment with respect to different combinations of the two
learning rates. We observe that LIAM’s achieved returns are close to the returns achieved by the best
configuration for most of the evaluated learning rate configurations.

16

https://github.com/shariqiqbal2810/multiagent-particle-envs
https://github.com/shariqiqbal2810/multiagent-particle-envs
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/tree/master/a2c_ppo_acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/tree/master/a2c_ppo_acktr


0.0001 0.0003 0.0005 0.0007

ED Learning Rate
0.

00
01

0.
00

02
0.

00
03RL

 L
ea

rn
in

g 
Ra

te

Double Speaker Listener

−35

−30

−25

−20

−15

Figure 7: Heat-map with different learning rates for the RL and the encoder-decoder optimisation.

F Scalability in the Number of Fixed Policies

In this section we evaluate LIAM with respect to 100 different fixed policies. Instead of combining
the two sub-policies in the double speaker-listener environment in one-to-one fashion, we take the
Cartesian product of the sub-policies which leads to 100 different combinations of fixed policies.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time steps 1e7

−24

−22

−20

−18

−16

−14

Re
tu

rn
s

Double Speaker Listener
LIAM
CBAM

Figure 8: Episodic evaluation returns and 95% confidence interval of LIAM and CBAM during
training, against 100 fixed policies.

Figure 8 presents the average returns achieved by LIAM and CBAM against 100 different fixed
policies. In Section 4.3, we observed that in the double speaker-listener environment the average
returns of CBAM were very close to the returns of LIAM. We observe that with 100 fixed policies
the difference in the returns between LIAM and CBAM increases significantly. This does not come
as a surprise, since CBAM would require a very flexible policy to successfully adapt to all 100 fixed
policies. On the other hand, as we observed in Figure 4a the embeddings of LIAM are not explicitly
clustered based on the identities of the fixed policies, but based on trajectory of the modelled agent
to encode its communication message and its observation. As long as the embeddings contain such
information, the RL procedure is able to learn a policy that achieves higher returns compared to
CBAM.

17


