When ControlNet Meets Inexplicit Masks: A Case Study
of ControlNet on its Contour-following Ability
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ABSTRACT

ControlNet excels at creating content that closely matches precise
contours in user-provided masks. However, when these masks con-
tain noise, as a frequent occurrence with non-expert users, the output
would include unwanted artifacts. This paper first highlights the
crucial role of controlling the impact of these inexplicit masks with
diverse deterioration levels through in-depth analysis. Subsequently,
to enhance controllability with inexplicit masks, an advanced Shape-
aware ControlNet consisting of a deterioration estimator and a shape-
prior modulation block is devised. The deterioration estimator as-
sesses the deterioration factor of the provided masks. Then this
factor is utilized in the modulation block to adaptively modulate
the model’s contour-following ability, which helps it dismiss the
noise part in the inexplicit masks. Extensive experiments prove
its effectiveness in encouraging ControlNet to interpret inaccurate
spatial conditions robustly rather than blindly following the given
contours, suitable for diverse kinds of conditions. We showcase
application scenarios like modifying shape priors and composable
shape-controllable generation. Codes are soon available.
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1 INTRODUCTION

Text-to-Image (T2I) generation techniques [5, 23, 25, 26, 29, 31]
have greatly changed the content creation area with high-fidelity
synthesized images. By generating content following user-provided
guidance like contours and shapes, ControlNet [37] stands out for its
prominent capability of spatial control over T2I diffusion models and
has become an indispensable tool for creation. The shape guidance
always takes the format of segmentation masks, where the details of
the contours and positions are perfectly reserved as shown in Fig. 1.
However, such good contour-following ability1 of ControlNet may
cause artifacts when there exists noise in the mask, especially for
non-expert users that have difficulty in providing accurate masks.
Unfortunately, its performance on inexplicit masks with inaccurate
contours remains under-explored, and studies on how to employ

I'The contour-following ability refers to the ability to preserve the contours of conditional
inputs in this paper.
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Prompt: A brown cow grazing on a patch of lush green grass

Figure 1: ControlNet tends to preserve contours for spatial
controllable generation over multi-modal control inputs, where
denotes recalled contours and blue denotes missing ones.
However, inexplicit masks cause catastrophic degradation of im-
age fidelity and realism. This paper largely enhances its robust-
ness in interpreting inexplicit masks with inaccurate contours.

inexplicit masks are ignored in current works. This issue hinders
non-expert users from creating better images through ControlNet.

To better assist non-expert users in generating satisfactory images,
this paper focuses on utilizing inexplicit masks during the genera-
tion process. We first analyze the most important property, i.e., the
contour-following ability, on the inexplicit mask-guided generation
process through deteriorating masks and tuning hyperparameters.
Specifically, we study this property quantitatively and reveal prelim-
inary analyses on two key areas: 1) its performance on conditional
masks of varying deterioration degrees, and 2) the influence of hyper-
parameters on this property. One of the main findings is that masks
with inaccurate contours would cause artifacts due to strong contour
instructions (§ 4.2). In other words, the contour-following ability
implicitly assumes that the conditional inputs align with the shape
priors of specific objects. Otherwise, it would cause artifacts or vi-
olate the spatial control in synthesized images as shown in Fig. 1.
Given that precise conditional images are typically image-oriented
(e.g., human annotation or those extracted from reference images by
offline detectors) or expert-provided (e.g., artists), it constrains cre-
ation within the boundaries of existing images and experts. However,
obtaining precise control inputs can be cumbersome and challenging
for non-experts. This fact largely restricts creation through human
scribbles, thus hindering broad applications of ControlNet.

While an intuitive solution is to adjust hyperparameters to achieve
satisfactory results, finding the optimal setting can be challenging
(§ 4.3). Besides, this strategy usually entails a trade-off between
image fidelity and spatial control. Based on this observation, we
improve ControlNet with the awareness of shape priors, namely
Shape-aware ControlNet (§ 5), which alleviates the impact of strong
contour instructions and shows advances in robust interpretation
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of inexplicit masks (§ 6). Specifically, our improvements comprise
a deterioration estimator and a shape-prior modulation block to
automatically adjust the model’s contour-following ability. The dete-
rioration estimator assesses the deterioration ratio that depicts the
similarity of the provided masks to explicit masks. Features from
the Stable Diffusion (SD) [27] encoders are utilized during the es-
timation, as SD effectively encodes the shape priors of different
objects. Then, we modulate this shape prior to the zero-convolution
layers of ControlNet through the proposed shape-prior modulation
block. This design enables extra control over the strength of contour
instructions and adapts the model to the guidance of inaccurate con-
tours. As Fig. 1 shows, our method follows object position and poses
guided by inexplicit masks, keeping high fidelity and spatial control
over T2I generation. It also adapts to other conditions beyond masks
(§ 6.4). Moreover, though we only employ dilated masks for training,
our method generalizes well to more realistic masks including user
scribbles and programmatic TikZ sketches (§ 6.5).

This paper primarily focuses on ControlNet for two reasons.
Firstly, ControlNet is the most representative and widely adopted
method for spatially controllable T2I generation. It prevails over
concurrent works for higher image quality and better preservation
of outlines owing to the inherited powerful SD encoder and exten-
sive training data. ControlNet is influential and has been widely
incorporated in tasks including image animation [34, 36], video
generation [8, 19], and 3D generation [4], efc. Secondly, Control-
Net shares fundamental ideas and similar structures with existing
adapter-based methods like T2I-Adapter [22]. Moreover, these meth-
ods exhibit similar properties (i.e., the contour-following ability) and
face similar issues (i.e., performance degradation with inaccurate
contours). More examples of ControlNet and T2I-Adapter are pro-
vided in Appendix Fig. S1. Therefore, our conclusions and methods
can be potentially extended to these methods.

To summarize, our contributions are as follows:

o We study the contour-following ability of ControlNet quantita-
tively by examining its performance on deteriorated masks of
varying degrees under different hyperparameter settings. We
reveal inexplicit masks would severely degrade image fidelity
for strong shape priors induced by inaccurate contours.

e We propose a novel deterioration estimator and a shape-prior
modulation block to integrate shape priors into ControlNet,
namely Shape-aware ControlNet, which realizes robust inter-
pretation of inexplicit masks.

e Our method adapts ControlNet to more flexible conditions
like scribbles, sketches, and more condition types beyond
masks. We showcase its application scenarios like modify-
ing object shapes and creative composable generation with
deteriorated masks of varying degrees.

2 RELATED WORKS

Training with Spatial Signals. An intuitive solution to introduce
spatial control is training models with spatially aligned conditions
from scratch. Make-A-Scene [6] employs scene tokens derived from
dense segmentation maps during generation, enabling complex scene
generation and editing. SpaText [1] extends it to open-vocabulary
scenarios and introduces spatio-textual representations for sparse
scene control. Composer [16] decomposes images to representative
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factors like edges and then trains a model to recompose the input
from these factors. However, training models from scratch requires
large-scale training data and high computational costs.

Adapters for Spatial Control. Another kind of work focuses on
the utilization of adapters to inject spatial control into the pre-
trained T2I models. For example, GLIGEN [18] involves gated
self-attention layers to control the spatial layout during generation.
T2I-adapter [22] and ControlNet encode the spatial guidance via
lightweight adapters or duplicated UNet encoders, which are then fed
into the decoder to inject spatial structures like shapes and contours.
Uni-ControlNet [39], UniControl [24], and Cocktail [15] consoli-
date multi-modal conditions within a single framework. Since the
base models are always frozen, these methods obtain better compu-
tational and data efficiency while retaining the generation ability of
the base models. Despite these appealing characteristics, the impact
of inexplicit masks is overlooked in these works, which may cause
significant artifacts in generated images. Our proposed method can
also be extended to these approaches to address this limitation.

3 PRELIMINARY

ControlNet [37] introduces a network as the adapter to control T21I
generation models, i.e., Stable Diffusion (SD), with extra spatially
localized, task-specific conditional images including Canny edges,
Hough lines, fake scribbles, key points, segmentation masks, shape
normals, depths, and so on. Supposing one encoder block F(-; §)
of SD parameterized by 0, it accepts the input feature x and output
y = F(x;60). ControlNet freezes the block and makes a trainable
copy F(-;0”) with parameter 6’ to inject additional condition ¢ with
zero convolution, formulated as,

Y = F(x;0) + A% Z(F(x + Z(c; w1);0"); wa), )

where Z(-;wy) and Z(-; wp) are two 1 X 1 zero convolution layers
with parameters wi, wy initialized with zeros for stable training.
y. is the output feature modulated by spatial control signals. A,
namely conditioning scale, is introduced during inference to adjust
condition strength. Since features are additive, it allows compositions
of multiple conditions, also known as Multi-ControlNet [37].

Classifier-free Guidance (CFG) [14] is a widely employed tech-
nique in generative diffusion models to increase image quality. Given
a latent noise z, CFG is conducted through mixing samples generated
by an unconditional model €y(-) and a jointly trained conditional
model €y (-, c), which is computed as,

€g(z,c) = €g(z,¢) + w x (€g(z,¢) — €9(2)), 2

where €g(z, ¢) represents the final output under condition ¢. w is a
scaling factor for a trade-off between image quality and diversity,
namely CFG scale. In this paper, the spatial conditions are injected
into both €4 (+) and €y (-, ¢) when conducting classifier-free guidance
with ControlNet.

4 VISITING THE CONTOUR-FOLLOWING
ABILITY

This section studies the contour-following ability from two aspects,
including the performance on deteriorated masks of varying degrees
and its interaction with hyperparameters, i.e., CFG scale, condition-
ing scale, and condition injection strategy.
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Figure 2: The metric curves of ControlNet-m, on masks of varying deterioration degrees. The vanilla ControlNet, i.e., ControlNet-m,,
suffers from dramatic degradation on CLIP-Score and FID on deteriorated masks, but keeps adhered to the contours of provided
masks. ControlNet-m, (r > 0) exhibits more robust performance on deteriorated masks as the dilation radius r becomes larger.

4.1 Setup

We utilize the most common real-world control signal, i.e., object
mask for experiments. The object mask is simple but effective in
covering shape information. For simplicity, we focus on plain binary
masks in experiments, which are the most straightforward user-
provided signals in real-world applications. This choice also helps
to exclude the impacts of color and occlusion.

Datasets. Following Control-GPT [38], our experiments involve
COCO images [20] and corresponding captions [3]. We utilize in-
stance masks from LVIS [9], which offers sparse and precise human-
annotated object masks of COCO images with over 1,200 object
classes. We filter out images containing empty annotations, resulting
in 114k image-caption-mask triplets for training and 4.7k for testing,
namely the COCO-LVIS dataset.

Implementation Details. We adopt SD v1.5 [28] as the base
model, and ControlNet is trained from scratch on COCO-LVIS for
ten epochs with a learning rate of 1e — 5 for all experiments. We
take 50% prompt dropping for classifier-free guidance while keep-
ing the SD parameters frozen. We use UniPC [40] sampler with 50
sampling steps. To evaluate, we take ground-truth masks for control
and generate four images per caption. CFG scale and conditioning
scale are set to 7.5 and 1.0 if there is no extra illustration.

Metrics. For evaluation, CLIP-Score (ViT-L/14) [11] and FID [12]
are adopted as two basic metrics to measure the text-image alignment
and image fidelity. In addition, as ControlNet tends to preserve all
contour structures provided in the conditional images, we calculate
the number of edge pixels retained in the generated images, namely
Contour-Recall (CR), to measure the contour-following effects quan-
titatively. Supposing a conditional image ¢ and generated images
X = {xi}ﬁ\i 1» CR is defined as the recall of edge pixels in the control
inputs, formulated as,

1 Y, [MaxPool(D(x;),5) N (D(¢))|
CR= ; 3)

ID(c)l ’

where D(+) is an edge detector that returns binary edge maps. We
employ a max-pooling function MaxPool(-, o) to tolerate an edge
detection error of o-pixels. In our implementation, we utilize the

Canny edge detector as D(-) and set a tolerance as o = 2. A higher
CR score indicates stronger contour-following ability.

4.2 Impact of Inexplicit Masks

To clarify concerns about ControlNet’s performance on inexplicit
masks, we first imitate inaccurate control signals by dilating object
masks m with progressively increasing radius r(r > 0). The dilated
mask is denoted as m,, where m, represents masks with precise
contours. Considering that bounding-box masks only convey object
position and size without identifiable contours, we take an intersec-
tion over the dilated mask m, and the bounding-box mask denoted
as b, to construct inexplicit masks of various degrees, formulated as,

m, = Dilate(m,r) N b, 4

where the bounding-box mask b can also be expressed as the extreme
case mq (b C my). In the rest of the paper, we use m to denote
the bounding-box mask. As r grows large, the masks lose detailed
shape information gradually.

We use the notation ControlNet-m, to denote ControlNet trained
with deteriorated masks m,, where the vanilla ControlNet trained
with precise masks is ControlNet-mg. We test these models on masks
of varying deterioration degrees to explore the performance of Con-
trolNet with inexplicit masks and its contour-following ability. Fig. 2
presents the experimental results. Here are two main observations.

@ The vanilla ControlNet, i.e., ControlNet-m,, strictly ad-
heres to the provided outlines, where inexplicit masks would
cause severe performance degradation. As shown in Fig. 1, the
generated images are faithful to the contours of the control inputs
under various control modalities, which is the key to excellent spatial
controllable generation. One underlying reason is supposed to be
that edges provide a shortcut to reconstruct the input images. There-
fore, it exhibits strong contour instructions during the controllable
text-to-image generation process of ControlNet.

However, we notice that such a contour-following ability is blind,
which takes no account for inaccurate contours and maintains a
high average CR of over 60% in Fig. 2. While it allows minor
editing by manipulating masks to some extent, this property imposes
severe problems on image realism when inaccurate contours (e.g.
user scribbles) are provided. Similar observations are also noted in
[2, 32, 33], but an in-depth analysis of this fact is neglected. For
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Figure 3: Illustration of the inductive bias of ControlNet-m, con-
ditioned on m,., where high CR on m indicates models implicitly
learn the dilation radius r.

example, ControlNet tends to interpret rectangle masks as boards
rather than animals specified in the prompt, causing incorrect spatial
layouts and distorted objects. It is also reflected in a degradation of
1.35 CLIP-score and 8.62 FID in Fig. 2. Thus, precise masks with
accurate contours are necessary for high-quality image generation.
However, obtaining masks with accurate contours is challenging,
especially for non-expert users.

® Training ControlNet with deteriorated masks also con-
verges and exhibits high robustness on masks of varying dete-
rioration degrees with a sacrifice of contour instructions. We
further train a series of ControlNet, i.e. ControlNet-m,, on progres-
sively dilated masks m,. Surprisingly, ControlNet converges with all
conditions, even on the extreme bounding-box masks. As depicted
in Fig. 2, training with deteriorated masks consistently improves
ControlNet’s robustness in interpreting inexplicit masks with better
CLIP-score and FID at the cost of weak contour-following ability.

However, ControlNet trained with dilated masks implicitly as-
sumes the presence of dilation in the provided mask, even for precise
masks. Fig. 3 reports the CR referring to precise mask my when
ControlNet-m, is conditioned on dilated masks m,.. ControlNet-m,
keeps a CR on mg over 0.5 until r > 20, suggesting that models
infer and follow precise contours based on m,. Visualized examples
are provided in Appendix Fig. S2. This inductive bias diminishes
as the radius r increases, and ControlNet-m, (r > 40) shows weak
contour-following ability and prompts object positions via masks.

Moreover, training ControlNet with severely deteriorated masks,
e.g., bounding-box masks, yields poorer CLIP-score and FID with
precise masks as shown in Fig. 2. Examples in Fig. 7 illustrate
that ControlNet-m«, probably misinterprets one whole object mask
into multiple small objects. This reminds us that too weak contour
instructions can also cause problematic images and deviate from
user intentions. So, it is worthwhile to develop a method to make
contour-following ability more controllable, thereby fulfilling robust
interpretation with inexplicit masks of varying degrees.

4.3 Impact of Hyperparameters

As a common practice, adjusting hyperparameters like CFG scales
is a useful tool to achieve satisfactory generation results in T2I
applications. Therefore, we investigate how hyperparameters impact
the contour-following ability, especially when the conditional inputs
are inexplicit, and reveal several guidelines.

Specifically, we test the vanilla ControlNet (i.e., ControlNet-
my), under two extreme condition cases, i.e., precise mask mg and
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Figure 4: Metric curves of (a) CFG scale, (b) conditioning scale,
and (c) condition injection strategy for the vanilla ControlNet.
Red denotes the performance on the precise mask m, and blue
denotes the bounding-box mask m.

bounding-box mask m. Three core hyperparameters are consid-
ered, i.e., CFG scale A, conditioning scale w, and condition injection
strategy. Quantitative results are revealed in Fig. 4. For page limita-
tions, visualized examples are presented in Appendix Fig. S3.

Effects of Classifier-free Guidance w. Under both conditions,
ControlNet maintains high CR scores under all CFG-scale settings,
showing little impact on contour-following ability. This is because
conditioning signals are added to both €g(-) and €y(-, c) in Eq. 2.
Moreover, performance on precise mask mg always surpasses that
on me, indicating precise control inputs improve image quality.
The trends of CLIP-Score and FID curves align with common sense,
where a relatively higher  brings better fidelity and text faithfulness.

Effects of Conditioning Scale A. The conditioning scale decides
the strength of control signals as Eq. 1. A higher A imposes stronger
instructions, consistent with increasing CR scores under both condi-
tions. However, the behavior diverges on CLIP-Score and FID curves
when increasing A. While both CLIP-Score and FID almost consis-
tently increase on my, its performance on me, increases slightly
at the very beginning but then declines dramatically, showing a
large performance gap with my. This reveals a trade-off between
image quality and spatial control with bounding-box masks, where
A € [0.5,0.7] are recommended. Finding suitable A for masks of
varying deterioration degrees usually requires tens of attempts.

Effects of Condition Injection Strategy. We divide the sampling
steps into ten stages during the reverse sampling phase for exper-
iments. As shown in Fig. 4(c), all stages contribute to contour in-
structions during the generation process in both cases. The first
10% ~ 40% steps hold the key, consistent with observations in T2I-
Adapter [22]. In addition, a similar divergence of CLIP-Score and
FID curves is observed between the two conditions, further declaring
the performance gap between explicit and inexplicit masks.

In summary, while the CFG scale  has little impact on the
contour-following ability, a smaller conditioning scale A and dis-
carding conditions at early reverse sampling stages help to relieve
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(b) Computation of Deteriorate Ratio p
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Figure 5: The overall architecture of Shape-aware ControlNet. It contains 1) a deterioration estimator to assess the deterioration ratio
of inexplicit masks, and 2) a shape-prior modulation block to modulate this ratio to ControlNet to adjust the contour-following ability

for robust spatial control with inexplicit masks.

contour instructions. These strategies help to relieve the degrada-
tion of image fidelity and text faithfulness for inexplicit masks and
achieve a trade-off between image quality and spatial control. How-
ever, subtle changes to such hyperparameters may lead to dramatic
changes in image appearance (see Appendix Fig. S3). Hence, it is
still tricky to search for the ideal combination of hyperparameters
for each image, and it also takes risks of violating spatial control.

4.4 Empirical Analysis

To clarify the difference between explicit and inexplicit mask con-
trols, we compare ControlNet-mg with ControlNet-m«, on precise
masks m( and bounding-box masks m, in Fig. 6.

By removing textual prompts, we find that the strong contour-
following ability of vanilla ControlNet derives intense shape priors
from contours, thus it tends to infer specific objects from the mask
directly. Since inexplicit masks introduce incorrect shape priors,
they will cause conflicts with textual prompts or violations of spa-
tial control for generation. For example, bounding-box masks are
misinterpreted as the door in Fig. 6. This is why the vanilla Control-
Net fails to interpret inaccurate contours with the correct content.
VisorGPT [35] also validates that conditional generative models
implicitly learn visual priors from the data, such as size and shape.
If spatial conditions deviate from that prior, it would lead to artifacts
and incorrect contents. In contrast, ControlNet-m, relies less on the
shape priors from the conditional mask and prompts object locations
for spatial control. This leads to improved text alignment and robust-
ness on inexplicit masks. However, ControlNet-m, exhibits weak
control with precise masks. So, it is necessary to develop a method
to adapt ControlNet to deteriorated masks of varying degrees.

5 SHAPE-AWARE CONTROLNET

To enhance ControlNet’s ability to interpret inexplicit masks robustly
instead of blindly adhering to contours, we introduce a novel deteri-
oration estimator and a shape-prior modulation block to ControlNet,

A cow standing outside

of o white building o prompt

with a blue entrance

bunch of surfboards

LA -
Condition /¢ ate in the sand W/O prompt Condition

ControlNet - mq

ControlNet - m,

Figure 6: Illustrations on the difference between explicit and in-
explicit masks for control. The contour-following ability induces
strong priors from contours, which causes conflicts with textual
prompts and misinterprets conditional inputs.

namely Shape-aware ControlNet, as depicted in Fig. 5. Our main
insight is to introduce the shape prior explicitly to the model for
better controllability.

5.1 Deterioration Estimator
We first introduce the deterioration ratio p, which depicts the gap

between the inexplicit masks and explicit shape priors of specific
objects, formulated as,

_ I5(my) - Smo)
|S(meo) = S(mo)|’
where S(+) returns the area of masks, and p € [0, 1]. Eq. 5 measures

the shape priors of masks, where p = 0 indicates the exact object
shape and p = 1 means no identifiable shape.
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While computing the deterioration ratio p based on precise object
masks is straightforward, estimating p from inexplicit masks is non-
trivial. This motivates us to train an extra deterioration estimator.
Since ControlNet-m, can imply the dilation radius r (refer to § 4.2),
we suppose ControlNet implicitly learns shape priors from deterio-
rated masks. So, we construct a deterioration estimator with stacked
convolutional and linear layers with batch normalization, to predict
the ratio from encoder features {F;;}, where F;; denotes the j-th
feature from the i-th encoder block. Such a design proves to provide
accurate estimation as discussed in § 6.3. We train the estimator
separately with an L2 loss and detach the gradients from the encoder
to avoid negative effects on the convergence of ControlNet.

5.2 Shape-prior Modulation Block

Taking the shape prior p as an extra condition, we design a shape-
prior modulation block inspired by StyleGAN [17]. Specifically,
we encode p into Fourier embedding. Then, we employ a hypernet-
work [10] to modulate shape priors to zero convolution layers in
ControlNet as illustrated in Fig. 5(c). Supposing a zero convolution
Z(+; w) parameterized by w and ControlNet encoder feature F;j, the
modulated feature F; g is computed as,

Fl; = Z(Fij; (1+ AW) - w), (6)

where AW = H(p), and H(-) is a hypernetwork constructed by
multiple linear layers with normalization.

6 EXPERIMENTS
6.1 Implementation Details

The baselines including ControlNet-mo and ControlNet-my, are
implemented as § 4.1. We inherit the same setting to train our shape-
prior modulation block on our COCO-LVIS dataset for 10 epochs
from scratch with a learning rate of 1e — 5. The dilation radius r
is uniformly sampled from 0 to 80. The deterioration estimator is
trained for another 10 epochs individually with gradient-detached
features from ControlNet.

Metrics. We employ CLIP-Score and FID for evaluation. As
the proposed CR metric would fail when the strict alignment of
contours is violated, we propose two additional metrics inspired by
SOA [13], namely Layout Consistency (LC) and Semantic Retrieval
(SR). Definitions are as follows.

Definition 6.1 (Layout Consistency, LC). LC measures the spa-
tial alignment between conditional masks and generated images.
Supposing detected bounding boxes {ai}?;[l and those of control
masks {bj }j‘]: » LC is computed as follows:

(UM ai) n (U bj)l
C= J
- M . N’
I(U;" ai) U (Uj b))
Definition 6.2 (Semantic Retrieval, SR). SR is a retrieval mea-
surement to verify whether the semantic objects assigned in the

prompt are generated. Supposing M detected object categories
S = {si}?il over confidence threshold t and N assigned labels

L= {lj}?]:l, SR is formulated as,

SNL
spe SN
IL|

)

®
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Metri Meth AV
etrie ethod 0 20 40 80 100 o @

ControlNet-mo | 26.82 26.15 25.66 25.46 2543 2547 | 25.83
ControlNet-mo, | 26.69 26.80 26.85 26.88 26.89 26.86 | 26.83
Ours 26.88 26.87 26.89 26.89 2687 26.83 | 26.87

CLIP-
Score

ControlNet-mo | 13.50 15.55 18.24 2097 21.53 22.12 | 18.65
FID | ControlNet-mo, | 15.08 1542 1574 16.07 1620 16.35 | 15.81
Ours 13.20 13.62 14.07 14.72 14.78 15.12 | 14.25

ControlNet-mo | 0.522 0.440 0.374 0.327 0.320 0.303 | 0.381
LC ControlNet-mo, | 0.401 0.430 0.438 0444 0.445 0.446 | 0434
Ours 0.513 0.503 0.495 0.482 0.477 0.462 | 0.489

ControlNet-mo | 0.605 0.531 0.489 0.469 0.466 0.465 | 0.504
SR ControlNet-mo, | 0.534 0.551 0.555 0.555 0.555 0.553 | 0.551
Ours 0.601 0.586 0.577 0.569 0.567 0.561 | 0.577

Table 1: Performance comparison of our method and baselines,
i.e., the vanilla ControlNet (ControlNet-m,) and ControlNet-m
that trained with bounding-box masks, under different dilation
radius r. Our method exhibits advances in interpreting deterio-
rated masks and achieves the best average performance.

Specifically, we utilize an open-vocabulary object detector, i.e.,
OWL-VIiT [21] following VISOR [7]. We set the confidence thresh-
old t = 0.1 and use instance labels as prompts.

6.2 Comparisons with the Vanilla ControlNet

As Tab. 1 depicts, our method achieves competitive or better perfor-
mance on all metrics, demonstrating robustness under all dilation
radius. Visualized results in Fig. 7 further illustrate the effectiveness
of our method. ControlNet-my tends to blindly follow the outlines
of control inputs, thus suffering from unnatural images or viola-
tion of user intentions, especially when it is conditioned on largely
deteriorated masks. On the other hand, ControlNet-m struggles
with precise masks with fine details like misinterpreting a single
instance mask into multiple objects. In contrast, our method excels
in understanding object orientations and shapes according to inex-
plicit masks, thanks to additional guidance of shape priors. More
visualized examples are available in Appendix Fig. S4.

6.3 Ablation Studies

Comparison with random dilation augmentation. As augmenta-
tion with random dilated masks serves as an intuitive and straight-
forward solution to improve the robustness of deteriorated masks,
we first compare this strategy with our Shape-aware ControlNet in
Tab. 2. While this data augmentation strategy is also effective, our
method achieves consistently higher performance on all metrics.
Moreover, we highlight that our method provides users with the
additional convenience of modifying the shape of generated objects
through additional control over shape priors as presented in § 6.5.

Accuracy of deterioration estimator. We validate the accuracy of
our proposed deterioration estimator in Fig. 8. The overall average
L1 error under all dilation radius is 5.47%. Owning to the robustness
of the modulation block, such an error shows minimal impact on
the image fidelity as validated in Tab. 3. For page limitations, the
complete error curves are presented in Appendix Fig. S5.
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ControlNet Condition Mask
(my) m, my

ControlNet
(meo)

Ours

A sheep standing on Some oranges are sitting A motorcycle parked near
top of a rock . on some wood . a fence by a beach

A polar bear with his chin A person jumping a A balloon elephant sits in the

- raised lies on a rock . horse over a box . middle of a park area

Figure 7: Visualized comparison between the vanilla ControlNet and our Shape-aware ControlNet with masks at varying deterioration
degrees. Our method not only follows explicit masks but also interprets inexplicit masks robustly.

Robustness on shape priors. We further examine the robustness
of our method on different shape priors. We take dilation radius
r = 20 and manually adjust shape prior p to (p+Ap) € [0, 1], where
Ap € [0,1]. As shown in Fig. 9, changing p reveals little impact on

Method | CLIP FID| LCT(%) SR1(%)

ControlNet-my | 25.83 18.65  0.504 0.381
+ Random Aug | 26.76 1528  0.565 0.475

Ours ‘ 26.87 14.25 0577 0.489

Table 2: Comparison with random dilation for augmentation.

Ratio | CLIPf FID| LCT(%) SR7(%)

p 26.88 14.21 0.576 0.489
p 26.87 1425  0.577 0.489

Table 3: Performance comparison between p and predicted p.

Prediction Error (r = 20)

Figure 8: Prediction error of deterioration estimator (r = 20).

CLIP-Score FID

L S e

CLIP-Score

Ap Ap
Layout Consistency Semantic Retrieval

o520 061

o510

Layout Consistency
Semantic Retrieval

s 06 04 0z 00 02 04 06 08 Ge o6 04 -02 00 o0z 04 06 08

ap Ap

Figure 9: The variation of metrics under (p + Ap) when r = 20.

the text faithfulness and image quality. But lower p encourages better
adherence to conditional masks, resulting in slightly higher LC with
the assigned control masks, and vice versa. Visualized examples of
tuning p can be found in Fig. 12.

6.4 Extensive Results with More Conditions

It should also be noted that although the proposed method is designed
for inexplicit masks, it can effortlessly adapt to other degraded
conditions, demonstrating the versatility of our method in dealing
with control signal deterioration. Here is an example with degraded
edges and we leave other condition types for future works.
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Specifically, we take the deteriorated edges from masks in Eq. 4
for condition. The experimental settings are the same as § 6.1 and the
only change is the condition used for training. As depicted in Fig. 10,
the vanilla ControlNet keeps adhering to the provided deteriorated
edges blindly and struggles to generate high-quality images with
inexplicit conditions, which are consistent with the observations on
conditional masks. In contrast, our proposed method adapts well
to degraded edges of varying degrees, proving its effectiveness in
dealing with other types of degraded conditions. For page limitations,
quantitative results are provided in Appendix Tab. S2.

%

ControlNet
(Canny)

Prompt: A very cute giraffe making a funny face

Figure 10: Comparison of ControlNet and our method with
deteriorated edges. Our method can effortlessly adapt to diverse
kinds of deteriorated conditions.

6.5 Applications

Here we showcase several applications of our method. For page
limitations, additional examples are included in Appendix §A.

Generation with TikZ sketches and scribbles. While our model
is only trained with dilated masks, we find it generalizes well to
other types of realistic inexplicit masks and exhibits robust perfor-
mance. Fig. 11 shows the effectiveness of our method in handling
programmatic sketches and human scribbles. Our method generates
reasonable images under abstract or inexplicit mask conditions while
keeping high fidelity and spatial control. Here we follow Control-
GPT [38] to prompt GPT-4 to produce TikZ codes for object sketches.
Human scribbles are converted from Sketchy [30] dataset.

Shape-prior modification. While the deterioration estimator pro-
vides the deterioration ratio p for reference, we can manually set p to
control the shape prior. It determines how much the generated objects
conform to the provided conditional masks as shown in Fig. 12. We
notice it is possible to extend p to a large range of other values, even
though p € [0, 1] for training. A lower |p| empirically encourages
stronger adherence to the contours of the provided masks.

Composable shape-controllable generation. We realize compos-
able shape control via a multi-ControlNet structure [37], where we
generate images by assigning different priors to each part of control

Anonymous Authors

ControlNet Ours

TikZ Sketch  ControlNet Ours

B
£

Scribble

A skateboard A hot dog
below a truck and a cup

A skis to the
right of a clock

A photo of castle A photo of bear A photo of dog

Figure 11: Performance comparison between our method and
ControlNet on TikZ sketches and scribbles.

Figure 12: Shape-prior control via deterioration ratio p.

Condition A parrot with a hat in the park Condition A parrot with a hat in the park

parrat with a hat in the park

ControlNet
(mo)
» ControlNet
= (m.,)

Ours
(Multi-Control)

Figure 13: Examples of composable generation with explicit and
inexplicit masks, showing flexible control with diverse results.

masks. This enables strict shape control over specifically assigned
masks while allowing T2I diffusion models to unleash creativity
in imagining objects of diverse shapes within inexplicit masks. A
vivid example is presented in Fig. 13, where the parrots share fixed
contours but hats are diverse in shapes, and vice versa.

7 CONCLUSION

In this paper, we reveal several insights into the core traits of Con-
trolNet, i.e., the contour-following ability. We quantitatively validate
this property by distorting conditional masks and tuning hyper-
parameters, where we uncover severe performance degradation
caused by inexplicit masks. In light of this, we propose a novel
deterioration estimator and a shape-prior modulation block to endow
ControlNet with shape-awareness to robustly interpret inexplicit
masks with an extra shape-prior control. This exhibits the poten-
tial of employing ControlNet in more creative scenarios like user
scribbles and diverse degraded condition types.
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