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APPENDIX
This appendix is organized as follows:

• Additional visualized examples with detailed illustrations are
presented to supplement the main paper. (§A)

• We provide additional results on other kinds of deteriorated
conditions, i.e., quantitative results on degraded edges. (§B)

• More discussions are provided, including the difference be-
tween our work and Layout-to-Image generation. (§C)

• We give a brief discussion about future works. (§D)

ID Reference
(main paper) Brief Illustration

Fig.S1 §1, Line 147
More examples of ControlNet
and T2I-adapter to illustrate
their contour-following ability.

Fig.S2 §4.2, Line 385
Visualization of the inductive
bias of dilation radius 𝑟 .

Fig.S3 §4.3, Line 431, 492
Visual results for tuning
hyperparameters.

Fig.S4 §6.2, Line 677
More comparison examples of
our method and ControlNet.

Fig.S5 §6.3, Line 695
Error analysis for the
deterioration estimator.

Fig.S6 §6.5, Line 848 Generation with TikZ sketches.

Fig.S7 §6.5, Line 848 Generation with user scribbles.

Fig.S8 §6.5, Line 848
Examples for modifying
shape priors.

Fig.S9 §6.5, Line 848
Examples for composable
shape-controllable generation.

Tab.S2 §6.4, Line 822
Quantitative results of our method
on degraded edges.

Table S1: Quick overview of figures and tables in the Appendix.

A ADDITIONAL QUALITATIVE EXAMPLES
We provide additional qualitative results to supplement the main
paper. Tab. S1 gives a quick overview of all figures presented in the
Appendix and indicates where they are referenced in the main paper
for supplementary. Details are as follows.

Implication of dilation radius 𝑟 . We further visualize examples of
ControlNet-𝒎𝑟 with conditional masks 𝒎𝑟 of varying deterioration
degrees in Fig. S2. Note that ControlNet-𝒎𝑟 is trained with dilated
masks 𝒎𝑟 . As depicted in Fig. S2, ControlNet-𝒎𝑟 implicitly assumes
the presence of dilation in the provided masks, even for precise
masks. For instance, the zebra generated by ControlNet-𝒎𝑟 with
conditional mask 𝒎𝑟 (in red boxes) shares similar size and shape

with the precise mask 𝒎0, which explains the high CR scores in
Fig.3 in our main paper. In contrast, our Shape-aware ControlNet
robustly interprets all deteriorated conditions thanks to additional
control over the shape priors.

Visualized examples of tuning hyperparameters. Fig. S3 presents
visualized results of the vanilla ControlNet under different hyper-
parameter settings, including the CFG scale 𝜔 , conditioning scale
𝜆, and condition injection strategy in our main paper. The CFG
scale 𝜔 exhibits minimal impact on the contour-following effect but
enhances image fidelity with higher saturation. Lowering the condi-
tioning scale 𝜆 and omitting conditions in the early reverse sampling
stages alleviate the strong contour instructions. However, because
of the significant performance gaps between explicit and inexplicit
conditions, bridging this gap and obtaining satisfactory results solely
through hyperparameter tuning is challenging. Moreover, sudden
appearance changes usually occur when we adjust hyperparameters,
making it tricky to find the optimal setting. Therefore, it is necessary
to develop a method to robustly interpret inexplicit masks.

More visualized comparison with the vanilla ControlNet. In Fig. S4,
we provide more examples of our Shape-aware ControlNet compared
with the vanilla ControlNet. Our method not only achieves competi-
tive results with ControlNet on precise masks but also demonstrates
an enhanced capability to interpret object shape and pose from inex-
plicit masks of varying deterioration degrees.

Full results of error analysis for the deterioration estimator.
Fig. S5 reports the full results of the estimation error for the pro-
posed deterioration estimator. The overall averaged 𝐿1 error under
different dilation radius 𝑟 is 5.47%. We confirm that this error has
little impact on the performance including CLIP-score and FID due
to the robustness of the shape-prior modulation block, as discussed
in the main paper § 6.3.

More application examples. We showcase additional examples of
our method in three application scenarios, including robust genera-
tion with TikZ sketches (Fig. S6) following Control-GPT [7], human
scribbles (Fig. S7) converted from Sketchy [5] dataset, modifica-
tion of shape priors (Fig. S8), and composable shape-controllable
generation (Fig. S9). These examples verify that our method helps
extend ControlNet to creative applications with more flexible control
signals, owing to controllable shape priors.

B QUANTITATIVE RESULTS WITH
DETERIORATED EDGES

Though we mainly focus on one representative condition, i.e., object
masks, in the main paper for illustration, our method can be applied
to other kinds of degraded conditions with little effort as discussed
in the main paper § 6.4.

Here we provide quantitative results for supplementary to fur-
ther prove the effectiveness of our method on more condition types,



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Metric Method
𝒓

AVG
0 20 40 80 100 ∞

CLIP-
Score

ControlNet 26.77 26.22 25.77 25.53 25.49 25.49 25.88
Ours 26.83 26.85 26.88 26.85 26.87 26.87 26.86

FID
ControlNet 13.51 16.54 19.45 21.84 22.50 22.97 19.48

Ours 13.80 14.52 15.05 15.84 15.92 16.01 15.19

LC
ControlNet 0.521 0.429 0.361 0.310 0.299 0.279 0.367

Ours 0.510 0.494 0.476 0.456 0.452 0.434 0.509

SR
ControlNet 0.607 0.533 0.496 0.477 0.474 0.469 0.470

Ours 0.599 0.582 0.572 0.563 0.563 0.556 0.572

Table S2: Performance comparison of our method and the
vanilla ControlNet, under the condition of degraded edges of
different dilation radius 𝒓 . The results prove the effectiveness of
our method in other kinds of degraded conditions besides masks.

i.e., deteriorated edges. Tab. S2 reports the CLIP-score, FID, Lay-
out Consistency (LC), and Semantic Retrieval (SR) following the
same setting as the main paper § 6.1. Compared with the vanilla
ControlNet, our method not only obtains competitive results with
accurate edges but also exhibits robust performance with degraded
edges of varying degrees. These results demonstrate the advance of
our method in handling diverse kinds of inexplicit conditions. More
types of conditions are left for future works.

C MORE DISCUSSIONS
Difference with the Layout-to-Image Generation. One may notice

that when the dilation radius 𝑟 = ∞, our Shape-aware ControlNet
addresses a similar problem to Layout-to-Image (L2I) generation.
But we claim that there exist subtle differences between L2I and our
work. For a better understanding, explanations are as follows.

Layout-to-Image generation works, such as GLIGEN [2], Lay-
outDifuse [1], LayoutDiffusion [8], etc., aim to generate objects
conforming to the pre-defined layouts. Generally, L2I assigns fine-
grained object positions in a tuple format of (𝑥,𝑦,𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑙𝑎𝑏𝑒𝑙),
thereby associating each object to the specific bounding box. How-
ever, in our setting, only prompts and binary masks are available,
which makes it hard to achieve fine-grained position control over
each object like L2I. Fig. S10 compares our method with LayoutD-
iffuse [1] for illustrations. While our method adheres to the global
layout provided by bounding-box masks, the exact positions of each
object are not fixed. A recent work [3] explores adapting ControlNet
to L2I generation, thus it is promising to extend our method to fine-
grained layout control. However, as this is not the main topic of this
paper, we leave it for future work. Our main purpose is to visit the
contour-following ability of ControlNet, and we reveal a solution to
adapt ControlNet to deteriorated masks at varying precision levels.

D FUTURE WORKS
By far, we have demonstrated the effectiveness of our method in im-
proving ControlNet in dealing with inexplicit conditions, which is an
essential topic in applying ControlNet to practical usage. Moreover,
we have noted that the dramatic performance degradation caused by
inexplicit conditions is a common issue among methods that inject

spatially aligned control signals for spatially controllable T2I gener-
ation. The results of T2I-Adapter [4] are shown in Fig. S1, where
large deterioration in the control masks would pose challenges in
correctly understanding the spatial control signals. Since our method
takes no assumption about the network that injects control signals
into the generation process, it has the potential to extend to other
adapter-based methods like T2I-Adapter to avoid deviation of spatial
control brought by inexplicit conditions of varying deterioration
degrees. We leave this as our future work.
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Figure S1: More examples of ControlNet and T2I-adapter illustrating spatially controllable generation with deteriorated masks of
varying degrees. Both methods exhibit strong preservation of contours during the generation process. Green denotes the recalled
contours and blue denotes the missing ones. Moreover, inexplicit masks with inaccurate contours would cause severe degradation of
image fidelity and realism.
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Figure S2: Visualized examples to illustrate the inductive bias, where ControlNet-𝒎𝑟 implicitly learns the dilated radius 𝑟 from the
data. Therefore, it always assumes a dilation in the provided mask. The ControlNet-𝒎𝑟 conditioned on 𝒎𝑟 (in red boxes) produces
objects with similar shapes and sizes of mask 𝒎0. While ControlNet-𝒎∞ also breaks the inductive bias, our method surpasses it in
terms of image fidelity and additional control over the shape priors.
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Figure S3: Visualized examples under different hyperparameter settings, i.e., CFG scale, conditioning scale, and condition injection
strategy. Though the CFG scale shows little impact on the contour-following ability, reducing conditioning scales and discarding
conditions at early reverse sampling stages help to relieve contour instructions, resulting in better results with inexplicit conditional
masks. However, it is still tricky and hard to achieve satisfactory results through hyperparameter tuning, especially for deteriorated
control masks.
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Figure S4: More examples of our Shape-aware ControlNet compared with the vanilla ControlNet, i.e., ControlNet-𝒎0 and ControlNet-
𝒎∞ given the conditional mask 𝒎𝑟 . Our method exhibits robust performance on inexplicit masks of varying deterioration degrees.
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Figure S5: Error analysis of our deterioration estimator at different dilation radius 𝑟 . The overall average 𝐿1 error is 5.47%. Notably,
such errors show little impact on the performance of our Shape-aware ControlNet, referring to our main paper § 6.3.
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Figure S6: More examples of our method on TikZ sketches compared with the vanilla ControlNet. Though our Shape-aware ControlNet
is only trained with dilated masks, it generalizes well to abstract programmatic masks with inaccurate contours and exhibits advanced
performance.
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exhibits advanced and robust performance on realistic user-provided masks with inaccurate contours.
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Figure S8: More examples of controlling object shape via the deterioration ratio 𝜌 . The value of 𝜌 is depicted on the top row. Despite
training with 𝜌 ∈ [0, 1], we empirically find it generalizes well to other values and offers additional control over the shape of generated
objects. A small |𝜌 | encourages generated objects to adhere more tightly to the outlines, and vice versa. Moreover, note that adjusting 𝜌

has little impact on image fidelity.
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Figure S9: More examples of composable shape-controllable generation with our method. Leveraging a Multi-ControlNet structure [6],
we can assign different priors to each part of the control masks. This enables strict shape control over specific masks, while simultane-
ously allowing T2I diffusion models to unleash creativity in imagining objects of diverse shapes within inexplicit masks.
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Figure S10: Comparison with L2I method, i.e., LayoutDiffuse [1]. While our method achieves spatial control over the global layout, it
may confuse the fine-grained layout for each object, which differs from the Layout-to-Image generation tasks.
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