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1. Introduction
In the past decade, the demand for new inorganic

materials to improve energy technologies has led
to the emergence of powerful, data-driven materi-
als design. However, processes for realizing ma-
terials designed in silico through inorganic synthe-
sis remain in their infancy and lag behind organic
synthesis due to the absence of a general mecha-
nistic model for solid-state reactions[1, 2]. Current
state-of-the-art atomisticmodeling of solid state syn-
thesis describes reaction behavior in terms of bulk
thermodynamic properties from high-throughput
databases of density functional theory (DFT) cal-
culations such as the Materials Project (MP) [3].
Prominent examples include reaction networks [4]
which produce thermodynamically favorable reac-
tion pathways linking products and reactants and ac-
tive learning algorithms [5] which propose recipes
based on thermodynamics and then update the
recipes according to experimental results. While
thermodynamics defines the possible reaction prod-
ucts, predictions based solely on reaction energet-
ics can be inaccurate — especially for systems with
competing product phases that have similar forma-
tion energies [6]. In such cases, limited transport
of essential constituents may prevent the formation
of globally stable products, hindering attainment of
thermodynamic equilibrium. Prior attempts to un-
derstand sucheffects in solid-state reactionshave led
to the use of empirical rate expressions [7, 8], which
fit an effective rate constant from the degree of con-
version of the reactants. Although useful, suchmod-
els cannot be applied to predict solid-state reaction
products a priori. A truly predictive synthesis frame-
work necessitates developing a mechanistic under-
standing of solid-state reaction kinetics.

2. Our Approach
We hypothesize that the phase evolution of prod-

ucts in powder synthesis reactions can be described
as an optimization of the local energy under the
time-dependent constraint of available ionic fluxes
through a defective, liquid-like interphase with the
same stoichiometry as candidate product phases. To
showcase our approach and specifically, the effects

of diffusive fluxes on product selectivity, we study
product selectivity in the Ba-Ti-O chemical space,
which is particularly challenging due to the sheer
number of ternary phases which are on or very close
to the convex hull of stability. Prior work has shown
transport of ionic constituents through such amor-
phous interphases is highly correlated [9], leading
us to compute the full ionic transport tensor as per
the Onsager transport framework from molecular
dynamics (MD) trajectories [10, 11].

3. Why has no one attempted this?
Computing reliable estimates of atomistic trans-

port coefficients, especially the cross-ion transport
coefficients, requires long nanosecond scaleMD tra-
jectories, which are out of reach for ab initiomolecu-
lar dynamics (AIMD). Using machine learning inter-
atomic potentials (MLIP) alleviates some of the com-
putational cost of such simulations, however, MLIPs
often lack information of atomic configurations far
from equilibrium, and hence perform poorly when
simulating the evolution of amorphous interphases
through MD [12]. In addition, no framework exists
for linking the atomistic transport of ions to the com-
plex spatio-temporal evolution of product phases
seen in a solid-state reaction.

4. Our Solution
To address the computational cost associatedwith

long AIMD simulations, we train an Atomic Cluster
Expansion (ACE) [13] basedMLIP for the Ba-Ti-O sys-
tem. Wechose this potential due to its simplicity, and
because it has shown success in recent literature on
modeling a wide range of tasks in a variety of mate-
rial systems [14, 15]. We train the MLIP through the
framework shown in Figure 1. Initially, we ranAIMD
on both crystalline and amorphous configurations
of compositions found on the thermodynamic hull
of stability of the Ba-Ti-O system to generate data
to train a baseline ACE-based MLIP. We then per-
form several rounds of high temperature machine-
learning driven MD as a sampling strategy to active
learn the far from equilibrium configurations typ-
ically encountered when simulating the evolution
of amorphous interphases. This approach encour-
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Fig. 1: Our strategy to train an ACE potential capa-
ble of performing MD on amorphous interphases:
we explicitly provide amorphous configurations
of target compositions in the initial training data
and active learn amorphous configurations that
are out of distribution (OOD) for the model, which
are sampled throughhigh temperatureMLMD.We
quantify the degree of OOD of a configuration by
the extrapolation grade of the ACE potential [12].

ages the MLIP to accurately capture both equilib-
rium and out-of-equilibrium interactions between
ions, thereby producing a potential suitable for the
task at hand. We implemented the workflow using
the atomate2[16], Jobflow[17], FireWorks[18] and
pacemaker[14] python packages to allow for prob-
ing atomistic transport during solid-state reactions
in a high-throughput manner on high-performance
computing resources. To address the second chal-
lenge, we recently developed a discrete cellular au-
tomaton model (ReactCA) [19] capable of simulat-
ing the evolution of precursor powders placed in
cells through pairwise reactions, mimicking a pow-
der synthesis reaction. This approach allows us
to link first-principles thermodynamics and atom-
istic transport coefficients to macroscopic reaction
rates, thereby providing a comprehensive frame-
work for understanding diffusion-limited solid-state
reactions.

5. Our Findings
Our approach produces fitted cross-ion transport

coefficients that explain the selectivity towards spe-
cific phases when reactions are diffusion-limited. In

particular, our results explain the absence of the
Ba2TiO4 phase from experiments performed at ele-
vated temperatures. Additionally, we simulate phase
evolution over the course of a series of solid-state
reactions using ReactCA and a fixed set of precur-
sors to study the changes in reaction outcome as a
function of varying precursor ratios and the heat-
ing profiles. We find that our simulation outcomes
accurately map onto prior experimental results for
these reactions, and we capture the correct order
andquantities of elusive intermediates phaseswhich
are crucial in determining the final phase distri-
bution of reaction products. Through these simu-
lations, we observe that an interplay between dif-
fusion and thermodynamics dictates the composi-
tions of phases that are allowed to grow over time.
This is the first work that presents a general pre-
dictive framework for solid-state synthesis outcomes
that integrates rigorously computed ionic transport
coefficients (enabled by machine-learning molecu-
lar dynamics), first-principles thermodynamics and
a cellular automaton model to predict the spatio-
temporal evolution of phases over the course of the
synthesis reaction. We anticipate that this work will
serve as a stepping stone towards a full mechanistic
model of solid-state reaction kinetics, with immedi-
ate applications in the context of digital twins and
autonomous synthesis labs.
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