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ABSTRACT

We explore the capability of transformers to address endogeneity in in-context lin-
ear regression. Our main finding is that transformers inherently possess a mech-
anism to handle endogeneity effectively using instrumental variables (IV). First,
we demonstrate that the transformer architecture can emulate a gradient-based
bi-level optimization procedure that converges to the widely used two-stage least
squares (2SLS) solution at an exponential rate. Next, we propose an in-context
pretraining scheme and provide theoretical guarantees showing that the global
minimizer of the pre-training loss achieves a small excess loss. Our extensive ex-
periments validate these theoretical findings, showing that the trained transformer
provides more robust and reliable in-context predictions and coefficient estimates
than the 2SLS method, in the presence of endogeneity.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has demonstrated remarkable in-context learning
(ICL) capabilities across various domains, such as natural language processing (Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020), computer vision (Dosovitskiy et al., 2021; Carion et al.,
2020), and reinforcement learning (Lee et al., 2022; Parisotto et al., 2020). Self-attention mecha-
nism, a core component of transformers, allows these models to capture long-range dependencies in
data, which is critical for success in these tasks. Despite their impressive performance, the theoret-
ical understanding of transformers remains limited, leaving important questions unanswered about
their true capabilities and the underlying mechanisms driving their exceptional results.

Recent efforts to theoretically understand transformers’ ICL capabilities have focused on their per-
formance in fundamental statistical tasks. Focusing on simple function classes, Garg et al. (2022)
highlighted that transformers, when trained on sufficiently large and diverse data from a specific
function class, can generalize across most functions of that class without task-specific fine-tuning.
Building on this, subsequent work by Bai et al. (2023) established that attention layers enable trans-
formers to perform gradient descent, implementing algorithms like linear regression, logistic regres-
sion, and LASSO; see also Akyürek et al. (2023); Von Oswald et al. (2023); Li et al. (2023); Fu
et al. (2023); Ahn et al. (2023); Jin et al. (2025). The learning dynamics of transformer was ana-
lyzed in Huang et al. (2024). Furthermore Zhang et al. (2024a;b) showed that trained transformers’
ICL abilities for linear regression tasks are theoretically robust under certain distributional shifts.

Existing works on analyzing the ICL ability of transformers for linear regression tasks, however,
ignore endogeneity and have mainly focused on the exogenous setup where the additive noise is un-
correlated with the explanatory variables. Ignoring endogeneity in linear regression leads to biased
and inconsistent estimates, resulting from issues like omitted variable bias, simultaneity, and mea-
surement error, which can distort causal inferences and lead to incorrect policy conclusions (Haus-
man, 2001; Wooldridge, 2015; Angrist & Pischke, 2009; Greene, 2018). Instrumental variable (IV)
regression is a widely adopted method to handle endogeneity by utilizing instruments that are corre-
lated with the endogenous variables but uncorrelated with the error term (Angrist & Krueger, 2001).
A naturally intriguing question that therefore arises is:

Can transformers leverage instrumental variables and provide reliable predictions
and coefficient estimates, in the presence of endogeneity?
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In this work, we aim to answer this question and offer new insights on in-context linear regression
tasks. Our key contributions include:

• We demonstrate that looped transformers can address endogeneity in linear regression by lever-
aging instrumental variables. Specifically, we show that transformers can implement two-stage
least squares (2SLS) regression through a bi-level gradient descent procedure, where each iter-
ation is executed by a two-layer transformer block. Moreover, the convergence rate to the 2SLS
estimator is exponential with respect to the number of blocks.

• We propose an ICL training scheme for transformers to efficiently handle endogeneity. Under
this scheme, we show that the global minimizer of the in-context pre-training loss achieves a
small excess loss compared to the global optimal expected loss.

• We evaluate the performance of the trained transformer model through extensive experiments,
finding that it not only matches the performance of the 2SLS estimator on standard IV tasks but
also generalizes effectively to more complex scenarios, including the challenging cases of weak
instruments, non-linear IV, and underdetermined IV problems.

• As part of our analysis, we derive the first non-asymptotic bound for the 2SLS estimator under
random design, providing valuable insights for future theoretical work.

1.1 RELATED WORKS

In-context Learning. Initial works by Garg et al. (2022) and Bai et al. (2023) adopted the stan-
dard multi-layer transformer architecture to conduct the experiments. Later, Giannou et al. (2023)
and Yang et al. (2024) showed that a looped architecture reduces the required depth of transform-
ers and exhibits better efficiency in learning algorithms. Gao et al. (2024) illustrated that the looped
transformer architecture with extra pre-processing and post-processing layers can achieve higher ex-
pressive power than a standard transformer with the same number of parameters. Apart from works
concerning the implementability of first-order gradient descent algorithms by transformers, other
works have also examined higher-order and non-parametric optimization methods. Specifically, Gi-
annou et al. (2024) showed that transformers can emulate Newton’s method for logistic regression.
Cheng et al. (2024) showed that transformers can implement functional gradient descent and hence
enable them to learn non-linear functions in-context. Relationship between in-context learning and
Bayesian inference is also studied in Ye et al. (2024); Falck et al. (2024).

Nichani et al. (2024) illustrated how the transformers can learn the causal structure by encoding the
latent causal graph in the first attention layer. Goel & Bartlett (2024) explored the representational
power of transformer for learning linear dynamical systems. Makkuva et al. (2024a;b); Rajaraman
et al. (2024); Edelman et al. (2024) considered ICL Markov chains with transformers, including both
landscape and training dynamics analyses. To the best of our knowledge, we are not aware of prior
works on handling endogeniety with transformers.

Instrumental Variable Regression. IV regression has been widely studied in econometrics (An-
grist & Krueger, 2001; Angrist & Pischke, 2009). Recent works in machine learning explored the
optimization based approaches for the IV regression problem. Singh et al. (2019) proposed the
kernel IV regression to model non-linear relationship between variables. Muandet et al. (2020)
proposed that a non-linear IV regression problem can be formulated as a convex-concave saddle
point problem. Della Vecchia & Basu (2023); Chen et al. (2024); Fonseca et al. (2024) proposed a
stochastic optimization algorithm for IV regression.

Notation: Throughout this paper, unless otherwise specified, lower-case letters denote random
variables or samples, while upper-case letters represent datasets (collections of samples). Bolded
letters indicate vectors or matrices, whereas unbolded letters indicate scalars. The notation X:,i

refers to the i-th column, and Xi,: refers to the i-th row of matrix X . λmin(·) denotes the minimum
eigenvalue, and σmin(·) denotes the minimum singular value of a matrix. By default, ∥ · ∥ denotes
the Euclidean norm for a vector, or the spectral norm for a matrix.
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2 ENDOGENEITY AND INSTRUMENTAL VARIABLE REGRESSION

Suppose we are interested in estimating the relationship between response variable y ∈ R and
predictor variable x ∈ Rp with endogeneity. Given instruments z ∈ Rq , we consider the model

y = β⊤x+ ϵ1, and x = Θ⊤z + ϵ2, (1)

where β ∈ Rp, and Θ ∈ Rq×p are the true model parameters, ϵ1 ∈ R and ϵ2 ∈ Rp are (centered)
random noise terms with variance σ2

1 and covariance matrix Σ2, respectively. Further, ϵ2 is an
unobserved noise correlated with ϵ1, leading to the correlation between x and ϵ1, which introduces
confounding in the model between x and y. Under this setting, the standard ordinary least squares
(OLS) estimator is a biased and inconsistent estimator of β (see Wooldridge (2015), Chapter 9).
To address this issue, instrumental variable (IV) regression is a widely used method to provide a
consistent estimate for β.

Definition 2.1 (2SLS estimator). IV regression is a regression model to provide consistent estimate
on the causal effect β for the endogeneity problem (1), by utilizing the instrument z. Given obser-
vational values (Z,X,Y ) = {(zi,xi, yi)}ni=1, the standard approach to estimate the IV regression
model is 2SLS; see, for example, Wooldridge (2015), Chapter 15.

i. First stage: Regress X on Z to obtain Θ̂

Θ̂ = (Z⊤Z)−1Z⊤X.

ii. Second stage: Regress Y on ZΘ̂ to obtain:

β̂2SLS = (Θ̂⊤Z⊤ZΘ̂)−1Θ̂⊤Z⊤Y . (2)

We introduce the standard assumptions required to show the convergence rate of the above estimator.

Assumption 1 (Instrumental variable). A random variable z ∈ Rq is a valid IV, if it satisfies the
following conditions:

i. Fully identification: q ≥ p (without loss of generality, we assume data Z,X are full rank).
ii. Correlated to x: Corr(z,x) ̸= 0.

iii. Conditional uncorrelated to y: Corr(z, ϵ1) = 0.

In particular, condition (i) above ensures the existence of unique solution for β̂2SLS. We refer to
Stock & Watson (2011, Chapter 12) for additional elaborate discussions on the above conditions. To
derive non-asymptotic convergence rates, we further assume the following regularity conditions.

Assumption 2 (Regularity conditions). Suppose instrument z is a centered random variable. We
assume the following conditions hold:

i. Bounded parameters: ∥β∥ ≤ Bβ , ∥Θ∥ ≤ BΘ.

ii. Bounded variables: ∥z∥ ≤ Bz, ∥x∥ ≤ Bx, |ϵ1| ≤ Bϵ1 , ∥ϵ2∥ ≤ Bϵ2 .

iii. Linear instrument: E [xk|z] = ⟨Θk, z⟩.

The boundedness condition in (ii) is required to invoke matrix Bernstein inequalities (Tropp, 2015) in
the analysis. We anticipate that this condition may be relaxed to subgaussian or moment conditions
by using more sophisticated matrix concentration results.

Theorem 2.1 (MSE of 2SLS estimator). Given Assumptions 1 and 2, consider clipping operation

clipBβ
(β̂) :=

{
β̂ if ∥β̂∥ ≤ Bβ
Bβ

∥β̂∥
β̂ if ∥β̂∥ > Bβ

.
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where K := λmin(Σz)
6B2

z
and K0 :=

λmin(Σz)σ
2
min(Θ)

2B2
ϵ2

, the mean squared error of the 2SLS estimate is
bounded by:

E
[
∥clipBβ

(β̂2SLS)− β∥2
]
≤ O

(
q

n

(
B2

β

K
+ C2(n)σ2

1

))
, (3)

where C(n) is defined in Equation (42), Σz := E[zz⊤], and c is an absolute constant.

Remark 2.1. We keep the slightly complicated form (3) so that the O notation only hides some
absolute constant multipliers that are independent of problem-related constants. Note that when n
is large enough, we have C(n) → BΘBz

λmin(Σz)σ2
min(Θ)

, so C(n) is also bounded. Thus the error bound

(3) decays with rate O( 1n ).

We note that although the consistency of the 2SLS estimator is a standard result in econometrics,
most existing works focus on the asymptotic properties of the estimator. Theorem 2.1 provides the
first non-asymptotic bound for estimation error ∥β̂2SLS − β∥2, under random design. The detailed
proof is provided in Appendix A.1.

3 TRANSFORMERS HANDLE ENDOGENIETY

3.1 TRANSFORMER ARCHITECTURE

Denote the input matrix as H = [h1, . . . ,hn] ∈ RD×n, where each column corresponds to one
sample vector.

Definition 3.1 (Attention layer). A self-attention layer with M heads is denoted as ATTNθ(·), with
parameters θ = {(Qm,Km,Vm)}m∈[M ] ⊆ RD×D. Given input H,

H̃ = ATTNθ(H) := H +
1

n

M∑
m=1

(VmH)× σ((QmH)⊤(KmH)) ∈ RD×n, (4)

or element-wise:

h̃i = [ATTNθ(H)]i := hi +

M∑
m=1

1

n

n∑
j=1

σ(⟨Qmhi,Kmhj⟩) · Vmhj ∈ RD, (5)

where σ(·) is the ReLU function.

Definition 3.2 (MLP layer). An MLP layer is denoted as MLPθ(·), with parameters θ =

(W1,W2) ∈ RD′×D×D×D′
. Given input H,

H̃ = MLPθ(H) := H +W2σ(W1H),

or element-wise:

h̃i = [MLPθ(H)]i := hi +W2σ(W1hi).

Definition 3.3 (Transformer). An L-layer transformer is denoted as TFθ(·), with parameters θ =

(θ
(1:L)
ATTN ,θ

(1:L)
MLP ). Given input H = H(0),

H(l) = MLP
θ
(l)
MLP

(ATTN
θ
(l)
ATTN

(H(l−1))), l = 1, . . . , L.

The output of this transformer is the final layer output: H̃ := H(L) = TFθ(H
(0)).

Definition 3.4 (Looped transformer). An L̄-looped transformer is a special transformer architecture,
denoted as LTFθ̄,L̄(·), with parameters θ̄ = (θ̄

(1:L0)
ATTN , θ̄

(1:L0)
MLP ). Given input H = H(0),

H(l) = TFθ̄(H
(l−1)), l = 1, . . . , L̄.

The output of this looped transformer is the final loop output: H̃ := H(L̄) = LTFθ̄,L̄(H
(0)).
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Previous works (e.g., Bai et al. (2023), Zhang et al. (2024a)) have shown that transformers can per-
form in-context linear regression by emulating gradient descent (GD) with in-context pretraining.
However, these studies have two key limitations. First, their analysis is based on single-level op-
timization algorithms, which is insufficient to demonstrate that transformers can efficiently learn
more complex algorithms like 2SLS (Definition 2.1). Second, most ICL-related research focuses
on the predictive performance of transformers, paying little attention to their ability to provide accu-
rate coefficient estimates. We extend the current ICL framework by showing that transformers can
implement a bi-level GD procedure (see Section 3.2) with looped transformer architecture (Defini-
tion 3.4), allowing them to efficiently emulate 2SLS and provide coefficient estimates that are at
least as accurate as 2SLS in the presence of endogeneity (as in Equation (1)).

3.2 GRADIENT DESCENT BASED IV REGRESSION

We first introduce a gradient-based bi-level optimization procedure to obtain the 2SLS estimator
in Equation (2). Given the dataset (Z,X,Y ) = {(zi,xi, yi)}ni=1, the objective function of IV
regression can be formulated as the following bi-level optimization problem:

min
β

L(β) = 1

n

n∑
i=1

(yi − z⊤
i Θ̂β)2, where Θ̂ := argmin

Θ

1

n

n∑
j=1

(xj − z⊤
j Θ)2. (6)

Consider the following gradient updates with learning rates α, η:

Θ(t+1) = Θ(t) − ηZ⊤(ZΘ(t) −X), (7a)

β(t+1) = β(t) − αΘ(t)⊤Z⊤(ZΘ(t)β(t) − Y ). (7b)

Note that the GD-2SLS updates in Equation (7) are designed to solve Equation (6). We now show
that regardless the convergence of Θ(t), the GD estimator β(t) will always converge to the 2SLS
estimator in Equation (2) with exponential rate.

Theorem 3.1 (Implementing 2SLS with gradient-based method). Given training data
(Z,X,Y ) = {(zi,xi, yi)}ni=1. Suppose the learning rates α, η satisfy the following conditions:

0 < α <
2

σ2
max(ZΘ̂)

and 0 < η <
2

σ2
max(Z)

,

where σmax(·) denotes the largest singular value of a matrix. Then, the GD updates in Equation (7)
converge to the 2SLS estimator at an exponential rate:

∥β(t) − β̂2SLS∥ ≤ O
(
Λt
)
,

where, with ρ(·) denoting the spectral radius of the matrix,

Λ := max{γ(α), κ(η)}, γ(α) := ρ(I − αΘ̂⊤Z⊤ZΘ̂), κ(η) := ρ(I − ηZ⊤Z). (8)

To the best of our knowledge, Theorem 3.1 provides the first theoretical result demonstrating that
2SLS can be efficiently implemented using a gradient-based method, with an exponential conver-
gence rate. We provide the proof in Appendix B.1 and present simulation results in Appendix C.1
to examine the convergence behavior of the optimization process.

3.3 TRANSFORMERS CAN EFFICIENTLY IMPLEMENT GD-2SLS

The looped transformer architecture (Definition 3.4), as proposed by Giannou et al. (2023), intro-
duces an efficient approach to learn iterative algorithms by cascading the same transformer block for
multiple times. With the GD updates in Equation (7), we will show that there exists a looped trans-
former architecuture that can efficiently learn the 2SLS estimator. We emphasize here that although
we can implement 2SLS by sequentially attaching two separate GD iterates (each handling OLS for
one stage), the overall convergence depends heavily on the convergence of the first stage estimate
Θ̂. Hence, significantly more number of layers are needed to ensure convergence. In addition, the
advantage of looped transformer architecture cannot be fully exploited with this approach.
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Theorem 3.2 (Implement a step of GD-2SLS with a transformer block). Suppose the embedded
input matrix takes the form:

H(2l) =



z1 · · · zn zn+1

x1 · · · xn xn+1

y1 · · · yn 0

Θ
(l)
:,1 · · · Θ

(l)
:,1 Θ

(l)
:,1

...
...

...
...

Θ
(l)
:,p · · · Θ

(l)
:,p Θ

(l)
:,p

β(l) · · · β(l) β(l)

x̂
(l)
1 · · · x̂

(l)
n x̂

(l)
n+1

1 · · · 1 1
1 · · · 1 0


∈ RD×(n+1). (9)

Given H(2l), there exists a double-layer attention-only transformer block with parameters θ =

θ
(2l+1:2l+2)
ATTN = {(Q(2l+1:2l+2)

m ,K
(2l+1:2l+2)
m ,V

(2l+1:2l+2)
m )}m∈[M(2l+1:2l+2)] ⊂ RD×D, where the

number of heads M (2l+1) = 2p, M (2l+2) = 2(p+1) and embedding dimension D = qp+3p+q+3,
that implements a 2SLS gradient update in Equation (7) with any given learning rates α, η:

H2(l+1) = TF
θ
(2l+1:2l+2)
ATTN

(H(2l)) =



z1 · · · zn zn+1

x1 · · · xn xn+1

y1 · · · yn 0

Θ
(l+1)
:,1 · · · Θ

(l+1)
:,1 Θ

(l+1)
:,1

...
...

...
...

Θ
(l+1)
:,p · · · Θ

(l+1)
:,p Θ

(l+1)
:,p

β(l+1) · · · β(l+1) β(l+1)

x̂
(l+1)
1 · · · x̂

(l+1)
n x̂

(l+1)
n+1

1 · · · 1 1
1 · · · 1 0


∈ RD×(n+1).

Our existence proof specifies an attention structure such that one layer updates only the first-stage
estimate x̂

(l)
i for all samples, followed by another layer to update the parameters Θ(l) and β(l).

Furthermore, as noted in the proof of Theorem 3.2 (ref. Appendix B.2), regardless of the initial
values of Θ(l),β(l) and x̂(l), the structures of the transformer blocks remain the same. This allows
us to exploit the looped transformer architecture to significantly reduce the number of parameters
and improve learning efficiency (Yang et al., 2024).

By cascading the transformer block L̄ times, with Theorem 3.1, one can show that transformers are
able to mimic the 2SLS estimator with exponential convergence rate, as described in the following
corollary.
Corollary 3.1 (Implementing GD-2SLS with looped transformer). For any 0 < ε < 1, given
learning rates α, η, and Λ ∈ (0, 1), as defined in Equation (8), there exists a transformer for-
mulated as TFθ(·) := TFθ′(LTFθ̄,L̄(·)), which consists of an L̄-looped transformer LTFθ̄,L̄ with

θ̄ = θ̄
(1:2)
ATTN = {(Q̄(1:2)

m , K̄
(1:2)
m , V̄

(1:2)
m )}m∈[M̄(1:2)] ⊂ RD×D, L̄ = ⌈O(logΛ(ε))⌉, and a final atten-

tion layer1 θ′ = θ′
ATTN = {(Q′

m,K ′
m,V ′

m)}m∈[M ′] ⊂ RD×D, where M̄ (1) = 2p, M̄ (2) = 2(p+1),
M ′ = 2, such that given embedded input H(0) taking the format in Equation (9), the model output
satisfies:

|ready(TFθ(H
(0)))− β̂⊤

2SLSxn+1| ≤ Bxε,

where ready(·) is a function that reads the prediction ŷn+1 from the output of the transformer.

We emphasize here that our construction differs from the implementation of Bai et al. (2023, Theo-
rem 4) for OLS in the following aspects:

1This layer updates the prediction ŷn+1 := β(L̄)⊤xn+1, which can be constructed with 2 attention heads
using the same architecture as Bai et al. (2023, Theorem 13)
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i. We apply the square loss as defined in Equation (6) to learn the 2SLS estimator, which
simplifies the loss function’s sum-of-ReLU representation.

ii. The dimension of the input embedding is D = qp+3p+q+3, where the extra dimensions
store the vectorized parameters Θ(l),β(l), and the first stage estimate x̂(l).

iii. We use a two-layer attention-only transformer block θ̄ to implement a 2SLS GD update
(7), with the first layer to update the current first-stage estimate x̂(l), and the second layer
to update the parameters Θ(l) and β(l).

iv. For each transformer block, in the first layer, we equip 2 heads to update each dimension
of x̂(l)

i ∈ Rp for all samples. In the second layer, we equip 2 heads to update each column
of Θ(l) ∈ Rq×p and β(l) ∈ Rp.

3.4 PRETRAINING AND EXCESS LOSS BOUND

With slightly abuse of notations, we denote the (formulated) training prompt as:

Hk =

[
z1,k · · · zn,k zn+1,k

x1,k · · · xn,k xn+1,k

y1,k · · · yn,k 0

]
∈ R(p+q+1)×(n+1), k = 1, . . . , N.

Note that we denote each training prompt by the subscript k = 1, . . . , N , where N is the total num-
ber of prompts. Each training prompt consists of n labeled training samples {(zi,xi, yi)}ni=1, and
one unlabeled query sample (zn+1,xn+1). Our goal is to predict yn+1 given the context provided
by the prompt.

We introduce the following ICL data generating scheme such that endogeneity occurs in the training
samples, but does not extend to the query sample. Each training prompt is generated by the in-
context distribution P , described by Algorithm 1.

Algorithm 1 In-Context Distribution P
1: Parameters: Sample size n, clipping thresholds Bz, Bx, By . Task parameters Θ,β,Φ,ϕ,

Σz,Σu,Σω , σϵ from meta distribution π.
2: Output: Training samples {(zi,xi, yi)}ni=1, query sample (zn+1,xn+1,yn+1).
3: for i = 1, . . . , n do
4: Generate: zi ∼ N (0,Σz), ui ∼ N (0,Σu), ωi ∼ N (0,Σω), ϵi ∼ N (0, σ2

ϵ ).
5: Compute: xi = Θ⊤zi +Φ⊤ui + ωi.
6: Compute: yi = β⊤xi + ϕ⊤ui + ϵi.
7: end for
8: Generate: zn+1 ∼ N (0,Σz), ωn+1 ∼ N (0,Σω), ϵn+1 ∼ N (0, σ2

ϵ ).
9: Compute: xn+1 = Θ⊤zn+1 + ωn+1.

10: Compute: yn+1 = β⊤xn+1 + ϵn+1.
11: Clip: zi = clipBz

(zi), xi = clipBx
(xi), yi = clipBy

(yi) for i = 1, . . . , n+ 1.

In Algorithm 1, u ∈ Rp is the source of endogenous error, w ∈ Rp, ϵ ∈ R are the exogenous errors.
Note that we have ϵ1,i = ϕ⊤ui + ϵi and ϵ2,i = Φ⊤ui + ωi, corresponding to the notations in
Equation (1). Θ ∈ Rq×p,β ∈ Rp,Φ ∈ Rp×p,ϕ ∈ Rp,Σz ∈ Rq×q,Σu ∈ Rp×p,Σω ∈ Rp×p, σϵ ∈
R are task-specific parameters following meta distribution π. clipB(·) is a clipping operator to bound
the norm of input within radius B. We say that the in-context samples {(zi,xi, yi)}n+1

i=1 are drawn
from the in-context distribution P , and P ∼ π if the task parameters (Θ,β,Φ,ϕ,Σz,Σu,Σω, σϵ)
are sampled from π. One can check that Assumption 1 and Assumption 2(ii)(iii) are directly satisfied
with the data generated from the in-context distribution P .

Following the theoretical framework of (Bai et al., 2023), we define the population ICL loss2:

LICL(θ) = EπEP [yn+1 − clipBy
(ready(TFR

θ (H
(0))))]2, (10)

2All the clipping operations are only for analytical purpose. In practice, the behavior of the trained trans-
former is consistent even without the clipping bounds.
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where H(0) is the embedded input as defined in Equation (9), TFR
θ is the transformer model with

parameter θ and clipping operation clipR(·) applied to each layer output. For simplicity, we denote
T̃Fθ(H) := clipBy

(ready(TFR
θ (H

(0)))).

The transformer is trained to minimize the in-context loss in Equation (10) with the following em-
pirical loss:

L̂ICL(θ) =
1

N

N∑
k=1

(yn+1,k − T̃Fθ(Hk))
2. (11)

We consider the following constrained optimization problem:

θ̂ := argmin
θ∈ϑL,M,D′,Bθ

L̂ICL(θ),

ϑL,M,D′,Bθ
:= {θ = (θ

(1:L)
Attn ,θ

(1:L)
MLP ) : max

l∈[L]
M (l) ≤ M, max

l∈[L]
D(l) ≤ D′, |||θ||| ≤ Bθ},

(12)

where |||θ||| := max
l∈[L]

{ max
m∈[M ]

{∥Q(l)
m ∥, ∥K(l)

m ∥}+
∑M

m=1 ∥V
(l)
m ∥+ ∥W (l)

1 ∥+ ∥W (l)
2 ∥}.

We now establish excess loss bound for the trained transformer model.
Theorem 3.3 (Excess loss bound for in-context pretrained transformer). Suppose condition (i) in
Assumption 2 holds and the meta distribution π satisfies the following conditions:

Eπ

[
ϕ⊤Σuϕ+ σ2

ϵ

]
≤σ̃2 and Eπ

[
σ2
ϵ

]
≤ σ̃2

ϵ . (13)

Let the in-context distribution P ∼ π such that the samples (zi,xi, yi)
n+1
i=1 are drawn independently

from P (ref. Algorithm 1). With training prompts Hk, k = 1, . . . , N , under ICL loss (10), the
trained transformer (12) with L = 2L̄+1,M = 2(p+1), D = qp+3p+ q+3, D′ = 0 (attention-
only) achieves the following excess loss with probability at least 1− ζ:

LICL(θ̂)− EπEP
[
(yn+1 − ⟨β,xn+1⟩)2

]
≤ O

(
(Λ⋆)L̄

B2
x

√√√√ q

n

(
B2

β

K
+ C2(n)σ̃2

)
+Bxσ̃ϵ


+B2

x

(
q

n

(
B2

β

K
+ C2(n)σ̃2

)
+ µ⋆

Λ,2

)
+B2

y

√
L2MD2 log(2 + max{Bθ, R,By}) + log(1/ζ)

N

)
,

where Λ⋆ := min
α,η

EπEP [Λ|H, α, η] < 1, and µ⋆
Λ,2 := EπEP [Λ

2L̄|H, α⋆, η⋆] is close to 0.

In practical training, the number of prompts N is usually large enough such that the last term of the
above bound is negligible. Thus, given a meta distribution π, the excess loss is dominated by two
factors: (i) number of attention layers, and (ii) number of in-context samples. The proof of Theorem
3.3 is provided in Appendix B.3.

3.5 EXTRACTING THE REGRESSION COEFFICIENTS

The primary goal of IV regression is to estimate the causal effect, i.e. the coefficient β under the
stated endogeneity in Equation (1). For 2SLS, the estimated causal effect is given by the coefficients
of the endogenous variable in the second stage regression (2). For transformer models, we propose
a straightforward method to extract these estimated coefficients by differentiating the output with
respect to each dimension of the endogenous variable. The specific approach is summarized in
Algorithm 2. We observe that the choice of ∆ within a reasonable range does not significantly affect
the estimation of the coefficients. In practice, usually a slightly larger ∆ (for example ∆ = 5) can
lead to a more stable estimation, which is possibly due to the elimination of rounding errors during
computation.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We conduct a simulation study to evaluate the performance of the ICL-pretrained transformer model
in handling endogeneity. We set the maximum input sample size to 51 (n = 50 training samples and
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Algorithm 2 Extracting the regression coefficients

1: Input: Trained transformer model TFθ̂, input matrix H , perturbation ∆.
2: Output: Estimated coefficient β̂.
3: Procedure:
4: Compute the output of the transformer model: Ŷ = T̃Fθ̂(H).
5: for each dimension k = 1, . . . , p do
6: Copy H∆(k) = H . Set the k-th dimension of xn+1 to be (xn+1)k +∆ for H∆(k).
7: Compute the new output value: Ŷ∆(k) = T̃Fθ̂(H∆(k)).

8: Compute the estimated coefficient: β̂k =
Ŷ∆(k)−Ŷ

∆ .
9: end for

one query sample), the dimension of endogenous variable p = 5, and the dimension of instrument
q = 10. The training prompts are generated using Algorithm 1, with task parameters Θ,β,Φ,ϕ
sampled from standard Gaussian distribution, and the covariance matrices Σz,Σu,Σω set to be
identity matrices. The noise level σϵ is set to 1. We ignore all the clipping bounds in the experiment
(Bβ , BΘ, Bz, Bx, By, Bθ, R set to infinity).

The backbone of the transformer block is initialized using GPT-2 settings, with 12 attention heads
(M = 12), 80-dimensional embedding space (D = 80) and 2 layers (L0 = 2), following the
theoretical guidelines in Theorem 3.2. We employ the looped transformer architecture, consisting
of 10 identical cascading transformer blocks. The transformer model is trained under the ICL loss
(11) with a batch size of N = 64, over a total of 300,000 training steps.

We evaluate the trained transformer model on test prompts that are not included during training. As
benchmarks, we compare the transformer’s performance against the 2SLS and the OLS estimators,
which are obtained by directly fitting the training samples {(zi,xi, yi)}ni=1 within the text prompts.
In contrast, the same trained transformer model is used without any parameter adjustments for each
task. We compare the performance of these models from two aspects: the in-context prediction error
(ICPE) on the query sample yn+1, and the mean squared error (MSE) on the coefficient β.

4.2 RESULTS

We first investigate the performance of the trained transformer model over endogeneity tasks with
varying training sample sizes from 20 to 50. The results are shown in Figure 1a. Under endogeneity,
our transformer model achieves similar performance to that of the 2SLS estimator, with only small
gaps in ICPE and MSE, both outperforming the OLS estimator.

Next, we examine the performance of the trained transformer model in handling varying levels
of IV strength. The strength of an instrument is measured by the correlation between the IV and
the endogenous variable. To vary the IV strength, we generate prompts with zi and xi following
different correlation levels. Specifically, in Algorithm 1, we adjust the IV strength by multiplying
Θ by a factor r ∈ (0, 2) when generating test prompts. The results are shown in Figure 1b.

Interestingly, the trained transformer model outperforms the 2SLS estimator in handling weaker IVs
(when IV strength < 0.5). This suggests that, beyond merely mimicking 2SLS, the ICL training
process may equip the transformer model with a more advanced mechanism for handling endogene-
ity with weak IVs than the 2SLS estimator. At the same time, when the IV is strong, the transformer
model maintains performance comparable to that of the 2SLS estimator.

This finding motivates us to further examine the performance of the trained transformer model in
non-standard endogeneity tasks. We consider two scenarios: (a) the IV has a quadratic effect on
the endogenous variable, i.e. xi,k = Θ⊤

k z
2
i,k + errori,k in Algorithm 1, and (b) the dimension of

IV is not sufficient to identify the endogenous variable3, where we set q = 3 (by zeroing out the
remaining dimensions of z in test prompts) and p = 5.

We evaluate the same trained transformer model as before, with results presented in Figure 2a and
Figure 2b, respectively. Once again, the trained transformer model consistently outperforms both

3For 2SLS estimate, the actual computation uses pseudoinverse to handle rank deficiency.
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(a) (b)

Figure 1: The ICL performance of the trained transformer model in endogeneity tasks. We compare
in-context prediction error (ICPE) and coefficient MSE versus (a) the number of in-context samples;
(b) the IV strength. The curves are averaged over 500 simulations.

2SLS and OLS estimators in handling these non-standard endogeneity tasks. All these results sug-
gest that the trained transformer can be generalized effectively to a broader range of endogeneity
tasks while still providing reliable in-context predictions and coefficient estimates. To further illus-
trate this capability, we also examine other cases including multicollinearity, complex non-linear IV,
and varying endogeneity strengths, see Appendix C.3,C.4,C.5. We suspect that, in our pretraining
scheme, although the 2SLS estimator already achieves small excess loss, a gap remains between the
2SLS estimator and the optimal predictor that the transformer model successfully bridges. Finally,
we conclude that through ICL training, the transformer model performs at least as well as 2SLS and
appears to be a promising tool for handling endogeneity in difficult scenarios.

(a) (b)

Figure 2: The ICL performance of the trained transformer model in non-standard endogeneity tasks:
(a) The IV has quadratic effect on the endogenous variable; (b) The dimension of IV is not sufficient
to identify the endogenous variable. The curves are averaged over 500 simulations.

5 CONCLUSION

This paper presents a novel perspective on the transformer model in its ability to handle endogeneity
in in-context linear regression. We have theoretically shown that the transformer model exists an
intrinsic structure that enables it to learn the 2SLS algorithm through an efficient GD procedure. We
have further provided a theoretical guarantee that the trained transformer model can achieve a small
excess loss over the optimal loss, under our proposed ICL training scheme. Our simulation study
demonstrates that the trained transformer model can achieve comparable performance to the 2SLS
estimator in handling standard endogeneity tasks. Furthermore, our investigation illustrates that it
exhibits significantly better performances in handling complex scenarios such as weak instruments,
non-linear IV, and underdetermined IV problems, compared to the 2SLS estimator. These results
suggest that the ICL pre-trained transformer model is a promising tool for making reliable in-context
predictions and coefficient estimates under endogeneity, especially when dealing with non-standard
IV problems.

10
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A PROOFS FOR SECTION 2

A.1 PROOF OF THEOREM 2.1

We first introduce the following lemmas that are used in the proof of Theorem 2.1.
Lemma A.1 (Bernstein Inequality, from Theorem 6.1.1 in Tropp (2015)). Let S1, . . . ,Sn be inde-
pendent, centered random matrices with common dimension d1 × d2, and assume that each one is
almost surely bounded:

E[Si] = 0,P(∥Si∥ ≤ b) = 1, ∀i = 1, . . . , n.

With the sum:

Ω =

n∑
i=1

Si,

and the matrix variance statistic of the sum:

ν(Ω) := max
{∥∥E(ΩΩ⊤)

∥∥ ,∥∥E(Ω⊤Ω)
∥∥} ,

then the following inequality holds:

P{∥Ω∥ ≥ ε} ≤ (d1 + d2) · exp
(

−ε2/2

ν(Ω) + bε/3

)
for any ε ≥ 0.

Lemma A.2 (Inverse Convergence, adapted from Lemma 2.1 in Jin et al. (2024)). Suppose we have
a random invertible matrix Ω and invertible matrix sequence {Ω̂(n)} such that Ω̂(n) p→ Ω. If there
exists a constant λ̃ > 0 such that σmin(Ω̂) ≥ λ̃ almost surely, then it holds that:

(Ω̂(n))−1 p→ Ω−1.

Further, given convergence rate

P
{∥∥∥Ω̂(n) −Ω

∥∥∥ ≥ ε
}
≤ ξ(n, ε),

then:

P
{∥∥∥(Ω̂(n))−1 −Ω−1

∥∥∥ ≥ ε
}
≤ ξ(n, λ̃2ε).

Proof. We have the following decomposition:

(Ω̂(n))−1 −Ω−1 = (Ω̂(n))−1(Ω− Ω̂(n))Ω−1.

It follows that: ∥∥∥(Ω̂(n))−1 −Ω−1
∥∥∥ ≤

∥∥∥(Ω̂(n))−1
∥∥∥∥∥∥Ω− Ω̂(n)

∥∥∥∥∥Ω−1
∥∥

≤ 1

λ̃2

∥∥∥Ω− Ω̂(n)
∥∥∥ .

Then

P
{∥∥∥(Ω̂(n))−1 −Ω−1

∥∥∥ ≥ ε
}
≤ P

{
1

λ̃2

∥∥∥Ω− Ω̂(n)
∥∥∥ ≥ ε

}
≤ ξ(n, λ̃2ε).

Lemma A.3 (Product Convergence). Let {Ω̂(n)
1 }, {Ω̂(n)

2 }, . . . , {Ω̂(n)
K } be K sequences of matrices

such that Ω̂(n)
1

p→ Ω1, Ω̂(n)
2

p→ Ω2, . . . , Ω̂
(n)
K

p→ ΩK , where each ∥Ω̂(n)
k ∥ is almost surely bounded

for every k = 1, . . . ,K. If the dimensions match, then it holds that:

Ω̂
(n)
1 Ω̂

(n)
2 · · · Ω̂(n)

K

p→ Ω1Ω2 · · ·ΩK .
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Further, given convergence rates:

P
{∥∥∥Ω̂(n)

1 −Ω1

∥∥∥ ≥ ε
}
≤ ξ1(n, ε),

P
{∥∥∥Ω̂(n)

2 −Ω2

∥∥∥ ≥ ε
}
≤ ξ2(n, ε),

...

P
{∥∥∥Ω̂(n)

K −ΩK

∥∥∥ ≥ ε
}
≤ ξK(n, ε),

then it holds that:

P
{∥∥∥Ω̂(n)

1 Ω̂
(n)
2 · · · Ω̂(n)

K −Ω1Ω2 · · ·ΩK

∥∥∥ ≥ ε
}
≤

K∑
i=1

ξi

(
n,

ε

K
∏K

k ̸=i Mk

)
, (14)

where Mk is an upper bound such that ∥Ω̂(n)
k ∥ ≤ Mk almost surely, ∀k = 1, . . . ,K.

Proof. We begin by showing the case of K = 2. By the triangle inequality, we have:

∥∥∥Ω̂(n)
1 Ω̂

(n)
2 −Ω1Ω2

∥∥∥ ≤
∥∥∥Ω̂(n)

1 Ω̂
(n)
2 −Ω1Ω̂

(n)
2

∥∥∥+ ∥∥∥Ω1Ω̂
(n)
2 −Ω1Ω2

∥∥∥
≤
∥∥∥Ω̂(n)

2

∥∥∥ ∥∥∥Ω̂(n)
1 −Ω1

∥∥∥+ ∥∥∥Ω̂(n)
2 −Ω2

∥∥∥ ∥Ω1∥

≤ M2

∥∥∥Ω̂(n)
1 −Ω1

∥∥∥+M1

∥∥∥Ω̂(n)
2 −Ω2

∥∥∥ .
Using the union bound, we have:

P
{∥∥∥Ω̂(n)

1 Ω̂
(n)
2 −Ω1Ω2

∥∥∥ ≥ ε
}

≤P
{
M2

∥∥∥Ω̂(n)
1 −Ω1

∥∥∥+M1

∥∥∥Ω̂(n)
2 −Ω2

∥∥∥ ≥ ε
}

≤P
{
M2

∥∥∥Ω̂(n)
1 −Ω1

∥∥∥ ≥ ε/2
}
+ P

{
M1

∥∥∥Ω̂(n)
2 −Ω2

∥∥∥ ≥ ε/2
}

≤ξ1

(
n,

ε

2M2

)
+ ξ2

(
n,

ε

2M1

)
.

For any K > 2, suppose the statement (14) holds for k = 2, . . . ,K − 1. Observe that:

∥∥∥Ω̂(n)
1 Ω̂

(n)
2 · · · Ω̂(n)

K −Ω1Ω2 · · ·ΩK

∥∥∥
≤
∥∥∥Ω̂(n)

1 Ω̂
(n)
2 · · · Ω̂(n)

K −Ω1Ω2 · · ·ΩK−1Ω̂
(n)
K

∥∥∥+ ∥∥∥Ω1Ω2 · · ·ΩK−1Ω̂
(n)
K −Ω1Ω2 · · ·ΩK

∥∥∥
≤ MK

∥∥∥Ω̂(n)
1 Ω̂

(n)
2 · · · Ω̂(n)

K−1 −Ω1Ω2 · · ·ΩK−1

∥∥∥+ K−1∏
k=1

Mk

∥∥∥Ω̂(n)
K −ΩK

∥∥∥ .
(15)
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Then it follows that:

P
{∥∥∥Ω̂(n)

1 Ω̂
(n)
2 · · · Ω̂(n)

K −Ω1Ω2 · · ·ΩK

∥∥∥ ≥ ε
}

≤ P

{
MK

∥∥∥Ω̂(n)
1 Ω̂

(n)
2 · · · Ω̂(n)

K−1 −Ω1Ω2 · · ·ΩK−1

∥∥∥+ K−1∏
k=1

Mk

∥∥∥Ω̂(n)
K −ΩK

∥∥∥ ≥ ε

}

≤ P
{
MK

∥∥∥Ω̂(n)
1 Ω̂

(n)
2 · · · Ω̂(n)

K−1 −Ω1Ω2 · · ·ΩK−1

∥∥∥ ≥ K − 1

K
ε

}
+ P

{
K−1∏
k=1

Mk

∥∥∥Ω̂(n)
K −ΩK

∥∥∥ ≥ 1

K
ε

}

≤
K−1∑
i=1

ξi

(
n,

ε

KMK

∏K−1
k ̸=i Mk

)
+ ξK

(
n,

ε

K
∏K−1

k=1 Mk

)

=

K∑
i=1

ξi

(
n,

ε

K
∏K

k ̸=i Mk

)
.

Thus, by induction, the proof is complete.

Remark A.1. In Lemma A.3, consider the special case where Ω1 = 0. Then the inequality (15)
can be simplified as follows:∥∥∥Ω̂(n)

1 Ω̂
(n)
2 · · · Ω̂(n)

K − 0
∥∥∥ ≤

K∏
k=2

Mk

∥∥∥Ω̂(n)
1

∥∥∥ .
And we have the following simplified form:

P
{∥∥∥Ω̂(n)

1 Ω̂
(n)
2 · · · Ω̂(n)

K − 0
∥∥∥ ≥ ε

}
≤ P

{
K∏

k=2

Mk

∥∥∥Ω̂(n)
1

∥∥∥ ≥ ε

}

≤ ξ1

(
n,

ε∏K
k=2 Mk

)
.

Lemma A.4 (Deviation Inequality for Minimum Eigenvalue of Projected Sample Covariance Ma-
trix). Suppose Assumption 2 holds.

When n ≥ max

{
qe

3
2

K , p2(q+1)2K
qK2

0

}
, the following inequality holds with probability at least 1 −

3qe
1
2

Kn :

λmin

(
1

n
X⊤PZX

)
≥ λz

σmin(Θ)−

√
2p(q + 1)B2

ϵ2 log(
K
q n)

λmin(Σz)n

2

:= λx̃,

where K := λmin(Σz)
6B2

z
,K0 :=

λmin(Σz)σ
2
min(Θ)

2B2
ϵ2

,Σz := E[zz⊤],PZ := Z(Z⊤Z)−1Z⊤ , and λz is

a lower bound of λmin(
Z⊤Z

n ).

Proof. Let

E∥ := PZE2,E⊥ := (I − PZ)E2.

We have the following decomposition:

X = ZΘ+ E2 = ZΘ+E∥ +E⊥ = Z(Θ+ (ZTZ)−1ZTE2) +E⊥.

Let Ψ := (Z⊤Z)−1Z⊤E2. Since PZE⊥ = 0, we have

X⊤PZX = (Z (Θ+Ψ))
⊤
PZ (Z (Θ+Ψ))

= (Θ+Ψ)
⊤
Z⊤Z (Θ+Ψ) .
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We can now write:

λmin

(
1

n
X⊤PZX

)
= λmin

(
(Θ+Ψ)

⊤ Z⊤Z

n
(Θ+Ψ)

)
. (16)

Note that in general, for a positive semi-definite matrix A, we have

λmin(A) = min
u̸=0

u⊤Au

u⊤u
,

and

λmin(B
⊤AB) = min

u̸=0

(Bu)⊤ABu

u⊤u

≥ min
u̸=0

λmin(A)
(Bu)⊤Bu

u⊤u

= λmin(A)λmin(B
⊤B).

Thus, from Equation (16), with probability at least 1− ξ, we have:

λmin

(
1

n
X⊤PZX

)
= λmin

(
(Θ+Ψ)

⊤ Z⊤Z

n
(Θ+Ψ)

)
≥ λzλmin

(
(Θ+Ψ)

⊤
(Θ+Ψ)

)
.

It now remains to bound λmin

(
(Θ+Ψ)

⊤
(Θ+Ψ)

)
= σ2

min(Θ+Ψ).

From (Hsu et al., 2014), for each k ∈ [p] and any given t > 1, with sample size satisfying

n ≥ 6B2
z (log q + t)

λmin(Σz)
, (17)

we have the following holds with probability at least 1− 3e−t:

∥Ψk∥2Σz
= ∥Θ̂k −Θk∥2Σz

≤
B2

ϵ2 (q + 2
√
qt+ 2t)

n
<

B2
ϵ2 [q + 2(q + 1)t]

n
.

Note that

∥Ψk∥2Σz
= Ψ⊤

k ΣzΨk = Ψ⊤
k UΛzU

⊤Ψk =

q∑
i=1

λz,i(U
⊤Ψk)

2
i ,

and

∥Ψk∥ = Ψ⊤
k Ψk = Ψ⊤

k UU⊤Ψk =

q∑
i=1

(U⊤Ψk)
2
i .

We have

λmin(Σz)∥Ψk∥2 ≤ ∥Ψk∥2Σz
≤ λmax(Σz)∥Ψk∥2.

Then

∥Ψ∥ ≤ ∥Ψ∥F =

√√√√ p∑
k=1

∥Ψk∥2 ≤

√√√√ p∑
k=1

1

λmin(Σz)
∥Ψk∥2Σz

<

√
pB2

ϵ2 [q + 2(q + 1)t]

λmin(Σz)n
. (18)

Hence, by Weyl’s inequality, we have

σmin(Θ+Ψ) ≥ σmin(Θ)− ∥Ψ∥ > σmin(Θ)−

√
pB2

ϵ2 [q + 2(q + 1)t]

λmin(Σz)n
, (19)

18
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where t is taken to be small enough such that the RHS ≥ 0, i.e.

1 < t ≤ K0n

p(q + 1)
− q

2(q + 1)
, (20)

where K0 :=
λmin(Σz)σ

2
min(Θ)

2B2
ϵ2

. We now rewrite inequality Equation (19) in terms of n only. From
condition Equation (17), for any given sample size n, the range for t is:

1 < t ≤ Kn− log q, (21)

where K := λmin(Σz)
6B2

z
. We take

t = log (Kn)− log q − 1

2
= log

(
K

q
n

)
− 1

2
,

So that condition Equation (21) is satisfied when n ≥ qe
3
2

K . To satisfy condition Equation (20), a
sufficient condition is:

log

(
K

q
n

)
≤ K0n

p(q + 1)
.

Note that when n ≥ qe
3
2

K , we also have:

log

(
K

q
n

)
≤

√
K

q
n.

So a sufficient condition to satisfy both Equation (20) and Equation (21) is:

n ≥ max

{
qe

3
2

K
,
p2(q + 1)2K

qK2
0

}
.

Then the bound Equation (18) can be rewritten as:

∥Ψ∥ ≤

√√√√pB2
ϵ2

[
q + 2(q + 1)

(
log
(

K
q n
)
− 1

2

)]
λmin(Σz)n

<

√√√√2p(q + 1)B2
ϵ2 log

(
K
q n
)

λmin(Σz)n
. (22)

Finally, from Equation (16),

λmin

(
1

n
X⊤PZX

)
≥ λz

σmin(Θ)−

√√√√2p(q + 1)B2
ϵ2 log

(
K
q n
)

λmin(Σz)n


2

.

Proof of Theorem 2.1. We denote the observational values (Z,X,Y ) = {(zi,xi, yi)}ni=1, and
E1 = {ϵ1,i}ni=1,E2 = {ϵ2,i}ni=1. The 2SLS estimator is given by:

β̂2SLS =
(
Θ̂⊤Z⊤ZΘ̂

)−1

Θ̂⊤Z⊤Y

=
[(
(Z⊤Z)−1Z⊤X

)⊤
Z⊤Z(Z⊤Z)−1Z⊤X

]−1 (
(Z⊤Z)−1Z⊤X

)⊤
Z⊤Y

=
(
X⊤Z(Z⊤Z)−1Z⊤X

)−1
X⊤Z(Z⊤Z)−1Z⊤Y

= β +
(
X⊤Z(Z⊤Z)−1Z⊤X

)−1
X⊤Z(Z⊤Z)−1Z⊤E1.

(23)

Define constants λz, λx̃ > 0, such that the following event A holds with probability at least 1− ξ:

A =

{
λmin

(
Z⊤Z

n

)
≥ λz, λmin

(
X⊤PZX

n

)
≥ λx̃

}
, (24)
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where λmin(·) denotes the smallest eigenvalue of a matrix, PZ := Z(Z⊤Z)−1Z⊤ denotes the pro-
jection matrix. We will first assume the existence of such λz, λx̃, with their values to be determined
later.

We first consider the case when event A is true. Let Qzz := E[zz⊤|A],Qzx := E[zx⊤|A],
Ω̄zz :=

∑n
i=1(ziz

⊤
i −Qzz), Ω̄zx :=

∑n
i=1(zix

⊤
i −Qzx),Ωzϵ1 :=

∑n
i=1 ziϵ1,i.

Let B̄zz, B̄zx, Bzx, Bzϵ1 be some upper bounds such that
∥∥ziz⊤

i −Qzz

∥∥ ≤ B̄zz,
∥∥zix⊤

i −Qzx

∥∥ ≤
B̄zx,

∥∥zix⊤
i

∥∥ ≤ Bzx, ∥ziϵ1,i∥ ≤ Bzϵ1 almost surely, for all i = 1, . . . , n. The existence of
B̄zz, B̄zx, Bzx, Bzϵ1 is guaranteed under Assumption 2(ii).

By Lemma A.1, we have:

P
{∥∥∥∥Z⊤Z

n
−Qzz

∥∥∥∥ ≥ ε

∣∣∣∣A} = P
{∥∥∥∥∑n

i=1 ziz
⊤
i

n
−Qzz

∥∥∥∥ ≥ ε

∣∣∣∣A}
= P

{∥∥∥∥∥
n∑

i=1

(ziz
⊤
i −Qzz)

∥∥∥∥∥ ≥ nε

∣∣∣∣∣A
}

≤ 2q exp

(
− n2ε2/2

ν(Ω̄zz|A) + B̄zznε/3

)
.

(25)

Similarly,

P
{∥∥∥∥Z⊤X

n
−Qzx

∥∥∥∥ ≥ ε

∣∣∣∣A} = P
{∥∥∥∥∑n

i=1 zix
⊤
i

n
−Qzx

∥∥∥∥ ≥ ε

∣∣∣∣A}
= P

{∥∥∥∥∥
n∑

i=1

(zix
⊤
i −Qzx)

∥∥∥∥∥ ≥ nε

∣∣∣∣∣A
}

≤ (p+ q) exp

(
− n2ε2/2

ν(Ω̄zx|A) + B̄zxnε/3

)
.

(26)

By Assumption 1(iii), the instrument z is uncorrelated with the error term ϵ1, which implies
E[zϵ1|A] = 0. Applying Lemma A.1 again, we have:

P
{∥∥∥∥Z⊤E1

n

∥∥∥∥ ≥ ε

∣∣∣∣A} = P
{∥∥∥∥∑n

i=1 ziϵ1,i
n

∥∥∥∥ ≥ ε

∣∣∣∣A}
= P

{∥∥∥∥∥
n∑

i=1

ziϵ1,i

∥∥∥∥∥ ≥ nε

∣∣∣∣∣A
}

≤ (q + 1) exp

(
− n2ε2/2

ν(Ωzϵ1 |A) +Bzϵ1nε/3

)
.

(27)

With Lemma A.2 and (25), we have:

P
{∥∥n(Z⊤Z)−1 −Q−1

ZZ

∥∥ ≥ ε
∣∣A} ≤ 2q exp

(
− n2(λ2

zε)
2/2

ν(Ω̄zz|A) + B̄zzn(λ2
zε)/3

)
= 2q exp

(
− λ4

zn
2ε2/2

ν(Ω̄zz|A) + λ2
zB̄zznε/3

)
.

(28)

Note that we have Θ̂ = Θ+ (Z⊤Z)−1Z⊤E2 := Θ+Ψ. Under event A,

∥Θ̂∥ = ∥Θ+Ψ∥ ≤ ∥Θ∥+ ∥Ψ∥ ≤ BΘ +BΨ := BΘ̂. (29)

With Lemma A.3 (Remark A.1), combining (27)(29), we have:

P
{∥∥∥∥ 1nX⊤Z(Z⊤Z)−1Z⊤E1 − 0

∥∥∥∥ ≥ ε

∣∣∣∣A} ≤ (q + 1) exp

(
−

n2( ε
BΘ̂

)2/2

ν(Ωzϵ1 |A) +Bzϵ1n(
ε

BΘ̂
)/3

)

= (q + 1) exp

(
− n2ε2/2

B2
Θ̂
ν(Ωzϵ1 |A) +BΘ̂Bzϵ1nε/3

)
.

(30)
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Additionally, with Lemma A.3, combining (26)(28), we have:

P
{∥∥∥∥ 1nX⊤Z(Z⊤Z)−1Z⊤X −Q⊤

zxQ
−1
zz Qzx

∥∥∥∥ ≥ ε

∣∣∣∣A}
≤ 2(p+ q) exp

(
−

n2( λzε
3Bzx

)2/2

ν(Ω̄zx|A) + B̄zxn(
λzε
3Bzx

)/3

)
+ 2q exp

(
−

λ4
zn

2( ε
3B2

zx
)2/2

ν(Ω̄zz|A) + λ2
zB̄zzn(

ε
3B2

zx
)/3

)

= 2(p+ q) exp

(
− λ2

zn
2ε2/2

9B2
zxν(Ω̄zx|A) + λzBzxB̄zxnε

)
+ 2q exp

(
− λ4

zn
2ε2/2

9B4
zxν(Ω̄zz|A) + λ2

zB
2
zxB̄zznε

)
.

Applying Lemma A.2 again, we have:

P
{∥∥∥n (X⊤Z(Z⊤Z)−1Z⊤X

)−1 − (Q⊤
ZXQ−1

zz Qzx)
−1
∥∥∥ ≥ ε

∣∣∣A}
≤ 2(p+ q) exp

(
− λ2

zn
2(λ2

x̃ε)
2/2

9B2
zxν(Ω̄zx|A) + λzBzxB̄zxn(λ2

x̃ε)

)
+ 2q exp

(
− λ4

zn
2(λ2

x̃ε)
2/2

9B4
zxν(Ω̄zz|A) + λ2

zB
2
zxB̄zzn(λ2

x̃ε)

)
= 2(p+ q) exp

(
− λ2

zλ
4
x̃n

2ε2/2

9B2
zxν(Ω̄zx|A) + λzλ2

x̃BzxB̄zxnε

)
+ 2q exp

(
− λ4

zλ
4
x̃n

2ε2/2

9B4
zxν(Ω̄zz|A) + λ2

zλ
2
x̃B

2
zxB̄zznε

)
.

(31)

Therefore, we have shown that under event A,

n
(
X⊤Z(Z⊤Z)−1Z⊤X

)−1 p→ (Q⊤
ZXQ−1

zz Qzx)
−1.

From equation (23), combining (30) and (31) with Lemma A.3 (Remark A.1), we have:

P
{∥∥∥β̂2SLS − β

∥∥∥ ≥ ε
∣∣∣A}

= P
{∥∥∥(X⊤Z(Z⊤Z)−1Z⊤X

)−1
X⊤Z(Z⊤Z)−1Z⊤E1 − 0

∥∥∥ ≥ ε
∣∣∣A}

≤ (q + 1) exp

(
− n2(λx̃ε)

2/2

B2
Θ̂
ν(Ωzϵ1 |A) +BΘ̂Bzϵ1n(λx̃ε)/3

)

= (q + 1) exp

(
− λ2

x̃n
2ε2/2

B2
Θ̂
ν(Ωzϵ1 |A) + λx̃BΘ̂Bzϵ1nε/3

)
.

For the second part of the theorem, let c :=
(

3BΘ̂ν(Ωzϵ1 |A)

λx̃Bzϵ1
n

)2
, we have:

E
[
∥clipBβ

(β̂2SLS)− β∥2
]

= E
[
∥clipBβ

(β̂2SLS)− β∥2
∣∣∣A]P {A}+ E

[
∥clipBβ

(β̂2SLS)− β∥2
∣∣∣Ac
]
P {Ac}

≤ E
[
∥β̂2SLS − β∥2

∣∣∣A]P {A}+ E
[
∥clipBβ

(β̂2SLS)− β∥2
∣∣∣Ac
]
P {Ac}

≤ E
[
∥β̂2SLS − β∥2

∣∣∣A]+ E
[
∥clipBβ

(β̂2SLS)− β∥2
∣∣∣Ac
]
· ξ,

(32)

where

E
[
∥clipBβ

(β̂2SLS)− β∥2
∣∣∣Ac
]
≤ 4B2

β , (33)
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and

E
[
∥β̂2SLS − β∥2

∣∣∣A]
=

∫ ∞

0

P
{
∥β̂2SLS − β∥2 ≥ ε

∣∣∣A} dε

=

∫ ∞

0

P
{
∥β̂2SLS − β∥ ≥

√
ε
∣∣∣A} dε

≤
∫ ∞

0

(q + 1) exp

(
− λ2

x̃n
2ε/2

B2
Θ̂
ν(Ωzϵ1 |A) + λx̃BΘ̂Bzϵ1n

√
ε/3

)
dε

≤ (q + 1)

[∫ c

0

exp

(
− λ2

x̃n
2ε/2

2B2
Θ̂
ν(Ωzϵ1 |A)

)
dε+

∫ ∞

c

exp

(
− λx̃n

√
ε/2

2BΘ̂Bzϵ1/3

)
dε

]

= (q + 1)

[
4B2

Θ̂
ν(Ωzϵ1 |A)

λ2
x̃n

2

(
1− exp

(
−9ν(Ωzϵ1 |A)

4B2
zϵ1

))
+

(
8B2

Θ̂
ν(Ωzϵ1 |A)

λ2
x̃n

2
+

32B2
Θ̂
B2

zϵ1

9λ2
x̃n

2

)
exp

(
−9ν(Ωzϵ1 |A)

4B2
zϵ1

)]

≤ (q + 1)

[
4B2

Θ̂
ν(Ωzϵ1 |A)

λ2
x̃n

2
+

8B2
Θ̂
ν(Ωzϵ1 |A)

λ2
x̃n

2
+

32B2
Θ̂
B2

zϵ1

9λ2
x̃n

2

]

=
(q + 1)B2

Θ̂

λ2
x̃n

2

[
12ν(Ωzϵ1 |A) +

32B2
zB

2
ϵ1

9

]
.

(34)

Note that we further have the following bound:

ν(Ωzϵ1 |A) = max


∥∥∥∥E[( n∑

i=1

ziϵ1,i

)⊤( n∑
j=1

zjϵ1,j

)∣∣∣A]∥∥∥∥,∥∥∥∥E[( n∑
i=1

ziϵ1,i

)( n∑
j=1

zjϵ1,j

)⊤∣∣∣A]∥∥∥∥


= max

{∥∥∥∥E[ n∑
i=1

ϵ21,iz
⊤
i zi

∣∣∣A]∥∥∥∥,∥∥∥∥E[ n∑
i=1

ϵ21,iziz
⊤
i

∣∣∣A]∥∥∥∥
}

≤ nB2
zσ

2
1 .

(35)

It now remains to determine λz, λx̃, and BΘ̂.

From Theorem 4.6.1 of (Vershynin, 2018), when n ≥ c2B4
z (
√
q +

√
t)2, with probability at least

1− 2e−t, we have:

λmin

(
1

n
Z⊤Z

)
≥ λmin(Σz)

(
1−

cB2
z (
√
q +

√
t)

√
n

)2

,

where c is an absolute constant. We rewrite the theorem by taking t = log(Kq n)−
1
2 (similar to the

proof in Lemma A.4). Then we need the following condition to be satisfied:

n ≥ c2B4
z

(
√
q +

√
log

(
K

q
n

)
− 1

2

)2

. (36)

We can bound the RHS of Equation (36) as follows:

c2B4
z

(
√
q +

√
log

(
K

q
n

)
− 1

2

)2

≤ 2c2B4
z

(
q + log

(
K

q
n

)
− 1

2

)
≤ n

2
+ 2c2B4

z

(
q + log

(
4c2B4

zK

q

)
− 3

2

)
,
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where the second line follows from the inequality log(x) ≤ x
C + log(C) − 1, with x = K

q n and

C =
4c2B4

zK
q . So a sufficient condition for Equation (36) to hold is:

n ≥ 4c2B4
z

(
q + log

(
4c2B4

zK

q

)
− 3

2

)
. (37)

With condition Equation (37), we have the following bound holds with probability at least 1− 2qe
1
2

Kn :

λmin

(
1

n
Z⊤Z

)
≥ λmin(Σz)

1−
cB2

z

(
√
q +

√
log
(

K
q n
)
− 1

2

)
√
n


2

:= λz. (38)

Furthermore, with Lemma A.4, when n ≥ max

{
qe

3
2

K , p2(q+1)2K
qK2

0

}
, we have the following holds

with probability at least 1− 5qe
1
2

Kn :

λmin

(
1

n
X⊤PZX

)

≥ λz

σmin(Θ)−

√√√√2p(q + 1)B2
ϵ2 log

(
K
q n
)

λmin(Σz)n


2

= λmin(Σz)

1−
cB2

z

(
√
q +

√
log
(

K
q n
)
− 1

2

)
√
n


2σmin(Θ)−

√√√√2p(q + 1)B2
ϵ2 log

(
K
q n
)

λmin(Σz)n


2

:= λx̃.
(39)

From Equation (22) and Equation (29), we have:

BΘ̂ = BΘ +

√√√√2p(q + 1)B2
ϵ2 log

(
K
q n
)

λmin(Σz)n
. (40)

With ξ = 5qe
1
2

Kn , putting together Equations (35)(38)(39)(40) into Equation (34), and Equations
(33)(34) into Equation (32), we have:

E
[
∥clipBβ

(β̂2SLS)− β∥2
]
≤ E

[
∥β̂2SLS − β∥2

∣∣∣A]+ 4B2
βξ

≤
(q + 1)B2

Θ̂

λ2
x̃n

2

[
12nB2

zσ
2
1 +

32B2
zB

2
ϵ1

9

]
+

20qe
1
2B2

β

Kn

≤ O

(
q

n

(
B2

β

K
+ C2(n)σ2

1

))
,

(41)

where

C(n) :=

(
BΘ +

√
2p(q+1)B2

ϵ2
log(K

q n)
λmin(Σz)n

)
Bz

λmin(Σz)

(
1−

cB2
z

(√
q+

√
log(K

q n)− 1
2

)
√
n

)2(
σmin(Θ)−

√
2p(q+1)B2

ϵ2
log(K

q n)
λmin(Σz)n

)2 ,

(42)

thus completing the proof.
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B PROOFS FOR SECTION 3

B.1 PROOF OF THEOREM 3.1

Lemma B.1. Suppose {Ω(1), . . . ,Ω(t), . . .} is a d× d-matrix sequence decaying with exponential
rate r, i.e. for some constant c > 0 and 0 < r < 1,∥∥∥Ω(t)

∥∥∥
F
≤ crt.

Then for any ε > 0, there exists a finite constant:

T0 =

⌈
logr

(1− r)(ε/d)

c (1 + (1− r)(ε/d))

⌉
,

such that ∥∥∥∥∥
∞∏

t=T0

(I +Ω(t))− I

∥∥∥∥∥
F

< ε,

and hence ∥∥∥∥∥
∞∏

t=T0

(I +Ω(t))

∥∥∥∥∥
F

<
√
d+ ε.

Proof. By definition,

∥∥∥Ω(k)
∥∥∥
F
=

√√√√ p∑
i,j=1

Ω
(k)2
ij ≤ crk,

which implies: ∣∣∣Ω(k)
ij

∣∣∣ ≤ crk, ∀i, j, k.

Consider the product of any two matrices. By sub-multiplicativity,∥∥∥Ω(k)Ω(l)
∥∥∥
F
≤
∥∥∥Ω(k)

∥∥∥
F

∥∥∥Ω(l)
∥∥∥
F
≤ c2rk+l,

which implies: ∣∣∣∣[Ω(k)Ω(l)
]
ij

∣∣∣∣ ≤ c2rk+l, ∀i, j, k, l.

Similarly, for the product of any number of matrices:∣∣∣∣[Ω(k1)Ω(k2) · · ·Ω(kn)
]
ij

∣∣∣∣ ≤ cnrk1+k2+···+kn , ∀i, j, k1, . . . , kn.

Thus ∥∥∥∥∥
t2∏

t=t1

(
I +Ω(t)

)
− I

∥∥∥∥∥
F

=
∥∥∥(I +Ω(t1)

)(
I +Ω(t1+1)

)
· · ·
(
I +Ω(t2)

)
− I

∥∥∥
F

=

∥∥∥∥∥∥
∑

t1≤k≤t2

Ω(k) +
∑

t1≤k<l≤t2

Ω(k)Ω(l) + · · ·+Ω(t1)Ω(t1+1) · · ·Ω(t2)

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥
∑

t1≤k≤t2

crk11⊤ +
∑

t1≤k<l≤t2

c2rk+l11⊤ + · · ·+ ct2−t1+1rt1+···+t211⊤

∥∥∥∥∥∥
F

.

(43)
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Note that the last inequality can be checked by comparing matrix elements of both sides. For any
ε > 0, we take T0 = ⌈logr

(1−r)(ε/d)
c(1+(1−r)(ε/d))⌉. Consider t1 = T0 and t2 → ∞ in (43). For notation

convenience, let

Ξ :=
∑
T0≤k

crk11⊤ +
∑

T0≤k<l

c2rk+l11⊤ +
∑

T0≤k<l<m

c3rk+l+m11⊤ + · · · .

Then

Ξij =
∑
T0≤k

crk +
∑

T0≤k<l

c2rk+l +
∑

T0≤k<l<m

c3rk+l+m + · · ·

< c
∑
k≥T0

rk + c2rT0

∑
k≥T0

rk + c3r2T0

∑
k≥T0

rk + · · ·

=
crT0

1− r
+

c2r2T0

1− r
+

c3r3T0

1− r
+ · · ·

=
crT0

(1− r)(1− crT0)

≤ ε

d
.

Thus ∥∥∥∥∥
∞∏

t=T0

(I +Ω(t))− I

∥∥∥∥∥
F

= ∥Ξ∥F =

√√√√ d∑
i,j=1

Ξ2
ij ≤ ε.

Hence completes the proof.

Proof of Theorem 3.1. In the following proof, we treat Z,X,Y as deterministic matrices.

We begin by checking the inner loop (7a):

Θ(t) − Θ̂ = Θ(t−1) − Θ̂− ηZ⊤
(
ZΘ(t−1) −X

)
=
(
I − ηZ⊤Z

) (
Θ(t−1) − Θ̂

)
+ ηZ⊤

(
X −ZΘ̂

)
=
(
I − ηZ⊤Z

)2 (
Θ(t−2) − Θ̂

)
+ ηZ⊤

(
X −ZΘ̂

)
+ η

(
I − ηZ⊤Z

)
Z⊤

(
X −ZΘ̂

)
...

=
(
I − ηZ⊤Z

)t (
Θ(0) − Θ̂

)
+

t−1∑
i=0

η
(
I − ηZ⊤Z

)t−1−i
Z⊤

(
X −ZΘ̂

)
=
(
I − ηZ⊤Z

)t (
Θ(0) − Θ̂

)
+ η

[
I − (I − ηZ⊤Z)t

] (
ηZ⊤Z

)−1
Z⊤

(
X −ZΘ̂

)
=
(
I − ηZ⊤Z

)t (
Θ(0) − Θ̂

)
+
[
I − (I − ηZ⊤Z)t

] [
(Z⊤Z)−1Z⊤X − Θ̂

]
=
(
I − ηZ⊤Z

)t (
Θ(0) − Θ̂

)
.

With learning rate 0 < η < 2
σ2
max(Z) , let κ(η) := ρ

(
I − ηZ⊤Z

)
, where ρ(·) denotes the spectral

radius. Then it follows that 0 < κ(η) < 1. We have:∥∥∥Θ(t) − Θ̂
∥∥∥ =

∥∥∥(I − ηZ⊤Z)t(Θ(0) − Θ̂)
∥∥∥

≤
∥∥(I − ηZ⊤Z)t

∥∥∥∥∥Θ(0) − Θ̂
∥∥∥

≤ κ(η)t
∥∥∥Θ(0) − Θ̂

∥∥∥
= O(κ(η)t).
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Thus {Θ(t)} converges to Θ̂ exponentially with rate κ(η).

For the outer loop (7b), we have:

β(t) − β̂2SLS = β(t−1) − β̂2SLS − αΘ(t−1)⊤Z⊤
(
ZΘ(t−1)β(t−1) − Y

)
=
(
I − αΘ(t−1)⊤Z⊤ZΘ(t−1)

)(
β(t−1) − β̂2SLS

)
+ αΘ(t−1)⊤Z⊤

(
Y −ZΘ(t−1)β̂2SLS

)
...

=

t−1∏
i=0

(
I − αΘ(i)⊤Z⊤ZΘ(i)

)(
β(0) − β̂2SLS

)
︸ ︷︷ ︸

∆1β(t)

+

t−1∑
i=0

α

 t−1∏
j=i+1

(
I − αΘ(j)⊤Z⊤ZΘ(j)

)Θ(i)⊤Z⊤
(
Y −ZΘ(i)β̂2SLS

)
︸ ︷︷ ︸

∆2β(t)

.

(44)

To simplify notations, let

R(t) := Θ(t) − Θ̂ =
(
I − ηZ⊤Z

)t (
Θ(0) − Θ̂

)
,

V (t) :=
(
I − αΘ̂⊤Z⊤ZΘ̂

)t
,

W (t) := R(t)⊤Z⊤ZΘ̂+ Θ̂⊤Z⊤ZR(t) +R(t)⊤Z⊤ZR(t).

With learning rates 0 < α < 2
σ2
max(ZΘ̂)

, 0 < η < 2
σ2
max(Z) , let γ(α) := ρ

(
I − αΘ̂⊤Z⊤ZΘ̂

)
.

Then it follows that 0 < γ(α) < 1. We have:

∥∥∥R(t)
∥∥∥ ≤ κ(η)t

∥∥∥Θ(0) − Θ̂
∥∥∥ , (45)

∥∥∥V (t)
∥∥∥ ≤ γ(α)t,

and

∥∥∥W (t)
∥∥∥ =

∥∥∥R(t)⊤Z⊤ZΘ̂+ Θ̂⊤Z⊤ZR(t) +R(t)⊤Z⊤ZR(t)
∥∥∥

≤ 2
∥∥∥Θ̂⊤Z⊤Z

∥∥∥ ∥∥∥R(t)
∥∥∥+ ∥∥Z⊤Z

∥∥∥∥∥R(t)
∥∥∥2

≤ 2κ(η)t
∥∥∥Θ̂Z⊤Z

∥∥∥ ∥∥∥Θ(0) − Θ̂
∥∥∥+ κ(η)2t

∥∥Z⊤Z
∥∥∥∥∥Θ(0) − Θ̂

∥∥∥2
≤ κ(η)t

(
2
∥∥∥Θ̂Z⊤Z

∥∥∥∥∥∥Θ(0) − Θ̂
∥∥∥+ ∥∥Z⊤Z

∥∥∥∥∥Θ(0) − Θ̂
∥∥∥2)

= O(κ(η)t).
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Then from Equation (44), we have:

∆1β
(t) =

t−1∏
i=0

(
I − αΘ(i)⊤Z⊤ZΘ(i)

)(
β(0) − β̂2SLS

)
=

t−1∏
i=0

[
I − αΘ̂⊤Z⊤ZΘ̂− α

(
R(i)⊤Z⊤ZΘ̂+ Θ̂⊤Z⊤ZR(i) +R(i)⊤Z⊤ZR(i)

)](
β(0) − β̂2SLS

)
=

t−1∏
i=0

[
I − αΘ̂⊤Z⊤ZΘ̂− αW (i)

] (
β(0) − β̂2SLS

)
=
(
I − αΘ̂⊤Z⊤ZΘ̂

)t t−1∏
i=0

[
I − α

(
I − αΘ̂⊤Z⊤ZΘ̂

)−1

W (i)

](
β(0) − β̂2SLS

)
= V (t)

t−1∏
i=0

[
I − α

(
I − αΘ̂⊤Z⊤ZΘ̂

)−1

W (i)

](
β(0) − β̂2SLS

)
.

We denote Ψ := α
(
I − αΘ̂⊤Z⊤ZΘ̂

)−1

. By Lemma B.1, we take ε = 1, c0 be a constant such

that
∥∥W (t)

∥∥
F
≤ c0κ(η)

t, and T0 = ⌈logκ(η)
(1−κ(η))

∥Ψ∥F c0(p+(1−κ(η)))⌉.

Then we have: ∥∥∥∥∥
t−1∏
i=T0

(
I −ΨW (i)

)∥∥∥∥∥ ≤

∥∥∥∥∥
t−1∏
i=T0

(
I −ΨW (i)

)∥∥∥∥∥
F

<
√
p+ 1. (46)

Hence∥∥∥∆1β
(t)
∥∥∥ =

∥∥∥∥∥V (t)
t−1∏
i=0

(I −ΨW (i))(β(0) − β̂2SLS)

∥∥∥∥∥
≤
∥∥∥V (t)

∥∥∥∥∥∥∥∥
T0−1∏
i=0

(
I −ΨW (i)

)∥∥∥∥∥
∥∥∥∥∥

t−1∏
i=T0

(I −ΨW (i))

∥∥∥∥∥∥∥∥β(0) − β̂2SLS

∥∥∥
< γ(α)t

∥∥∥∥∥
T0−1∏
i=0

(
I −ΨW (i)

)∥∥∥∥∥ (√p+ 1)
∥∥∥β(0) − β̂2SLS

∥∥∥
= O(γ(α)t).

(47)

Next we consider ∆2β
(t):

∆2β
(t) =

t−1∑
i=0

α

 t−1∏
j=i+1

(
I − αΘ(j)⊤Z⊤ZΘ(j)

)Θ(i)⊤Z⊤
(
Y −ZΘ(i)β̂2SLS

)

=

t−1∑
i=0

α

 t−1∏
j=i+1

(
I − αΘ̂⊤Z⊤ZΘ̂− αW (j)

)(R(i) + Θ̂
)⊤

Z⊤
[
Y −Z

(
R(i) + Θ̂

)
β̂2SLS

]

=

t−1∑
i=0

α
(
I − αΘ̂⊤Z⊤ZΘ̂

)t−1−i t−1∏
j=i+1

[
I − α

(
I − αΘ̂⊤Z⊤ZΘ̂

)−1

W (j)

]
·
(
R(i) + Θ̂

)⊤
Z⊤

[
Y −Z

(
R(i) + Θ̂

)
β̂2SLS

]
=

t−1∑
i=0

α

V (t−1−i)
t−1∏

j=i+1

(
I −ΨW (j)

)(R(i) + Θ̂
)⊤

Z⊤
[
Y −Z

(
R(i) + Θ̂

)
β̂2SLS

]
.

For convenience, let ∆2β
(t) := ∆21β

(t) +∆22β
(t), where

∆21β
(t) : =

t−1∑
i=0

α

V (t−1−i)
t−1∏

j=i+1

(
I −ΨW (j)

)R(i)⊤Z⊤
[
Y −Z

(
R(i) + Θ̂

)
β̂2SLS

]
,
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∆22β
(t) : =

t−1∑
i=0

α

V (t−1−i)
t−1∏

j=i+1

(
I −ΨW (j)

) Θ̂⊤Z⊤
[
Y −Z

(
R(i) + Θ̂

)
β̂2SLS

]
.

Suppose M̃1, M̃2 are the upper bounds such that∥∥∥Z⊤
[
Y −Z

(
R(i) + Θ̂

)
β̂2SLS

]∥∥∥ ≤ M̃1, ∀i = 0, . . . , t− 1,

∥∥∥∥∥∥
t−1∏

j=i+1

(
I −ΨW (j)

)∥∥∥∥∥∥ ≤ M̃2, ∀i = 0, . . . , t− 1.

We know such M̃1, M̃2 exist because of the bounds given by (45) and (46). Let M̃ = M̃1M̃2. Then

∥∥∥∆21β
(t)
∥∥∥ ≤ M̃

∥∥∥∥∥
t−1∑
i=0

αV (t−1−i)R(i)⊤

∥∥∥∥∥
≤ M̃α

t−1∑
i=0

∥∥∥V (t−1−i)
∥∥∥∥∥∥R(i)

∥∥∥
≤ M̃α

∥∥∥Θ(0) − Θ̂
∥∥∥ t−1∑

i=0

γ(α)t−1−iκ(η)i

= M̃α
∥∥∥Θ(0) − Θ̂

∥∥∥ t−1∑
i=0

γ(α)t−1

(
κ(η)

γ(α)

)i

= O
(
γ(α)t − κ(η)t

γ(α)− κ(η)

)
≤ O(max{γ(α)t, κ(η)t}),

and similarly,

∥∥∥∆22β
(t)
∥∥∥ ≤ M̃

∥∥∥∥∥
t−1∑
i=0

αV (t−1−i)Θ̂⊤

∥∥∥∥∥
≤ M̃α

∥∥∥Θ̂∥∥∥ t−1∑
i=0

∥∥∥V (t−1−i)
∥∥∥

≤ M̃α
∥∥∥Θ̂∥∥∥ t−1∑

i=0

γ(α)t−1−i

= O(γ(α)t).

Thus ∥∥∥∆2β
(t)
∥∥∥ =

∥∥∥∆21β
(t) +∆22β

(t)
∥∥∥

≤
∥∥∥∆21β

(t)
∥∥∥+ ∥∥∥∆22β

(t)
∥∥∥

≤ O(max{γ(α)t, κ(η)t}).

(48)

Therefore, plugging (47) and (48) into (44), we have:∥∥∥β(t) − β̂2SLS

∥∥∥ ≤ O(max{γ(α)t, κ(η)t}),

Hence completes the proof.
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B.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. For ease of notations, we ignore l in the following proof. Consider the input
matrix taking the form:

H(0) =



z1 · · · zn zn+1

x1 · · · xn xn+1

y1 · · · yn 0

Θ
(0)
:,1 · · · Θ

(0)
:,1 Θ

(0)
:,1

...
...

...
...

Θ
(0)
:,p · · · Θ

(0)
:,p Θ

(0)
:,p

β(0) · · · β(0) β(0)

x̂
(0)
1 · · · x̂

(0)
n x̂

(0)
n+1

1 · · · 1 1
1 · · · 1 0


∈ RD×(n+1),

i.e., element-wise,

h
(0)
i =

(
zi,xi, yiti,Θ

(0)
:,1 , . . . ,Θ

(0)
:,p ,β

(0), x̂
(0)
i , 1, ti

)⊤
, i = 1, . . . , n+ 1,

where D = qp+ 3p+ q + 3, ti := 1{i ≤ n} is the indicator for training sample. We can take any
initialization for Θ(0), β(0) and x̂(0). To avoid abuse of notations, we omit the superscript of those
parameters to be updated in the following proof.

Recall the definitions (4) and (5). Our goal is to show that there exists a series of attention pa-
rameters θ(1:2)

ATTN = {(Q(1:2)
m ,K

(1:2)
m ,V

(1:2)
m )}m∈[M ] ⊂ RD×D such that θ(1:2)

ATTN updates Θ,β on the
corresponding rows. i.e, if we denote D0 := q + p+ 1, the updates on row D0 + 1 to row D0 + qp
correspond to Θ, and the updates on row D0 + qp+ 1 to row D0 + qp+ p correspond to β.

1) In the first layer, the transformer updates the current first-stage estimate x̂.

For m = 2k − 1, k = 1, . . . , p, define Q
(1)
m ,K

(1)
m ,V

(1)
m such that:

Q(1)
m h

(0)
i =


zi1
...
ziq
x̂
(0)
ik
0

 ,K(1)
m h

(0)
j =


Θ

(0)
1k
...

Θ
(0)
qk

−1
0

 ,V (1)
m h

(0)
j = eD0+qp+p+k. (49)

For m = 2k, k = 1, . . . , p, define Q
(1)
m ,K

(1)
m ,V

(1)
m such that:

Q(1)
m h

(0)
i =


−zi1

...
−ziq
x̂
(0)
ik
0

 ,K(1)
m h

(0)
j =


Θ

(0)
1k
...

Θ
(0)
qk

1
0

 ,V (1)
m h

(0)
j = −eD0+qp+p+k, (50)

where ej ∈ RD is the standard unit vector with only one 1 at the j-th coordinate. Note that the
above are just linear transformations on hi or hj , hence such matrices Q(1)

m ,K
(1)
m ,V

(1)
m must exist.
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Then we have:

h
(1)
i = h

(0)
i +

2p∑
m=1

1

n+ 1

n+1∑
j=1

σ
(
⟨Q(1)

m h
(0)
i ,K(1)

m h
(0)
j ⟩
)
· V (1)

m h
(0)
j

= h
(0)
i +

p∑
k=1

1

n+ 1

n+1∑
j=1

[
σ

(
q∑

l=1

zilΘ
(0)
lk − x̂

(0)
ik

)
− σ

(
−

q∑
l=1

zilΘ
(0)
lk + x̂

(0)
ik

)]
· eD0+qp+p+k

= h
(0)
i +

p∑
k=1

[
q∑

l=1

zilΘ
(0)
lk − x̂

(0)
ik

]
eD0+qp+p+k

= h
(0)
i +

p∑
k=1

(
x̂
(1)
ik − x̂

(0)
ik

)
eD0+qp+p+k.

Thus this layer correctly updates the first-stage prediction values x̂
(1)
1 , . . . , x̂

(1)
n+1, where x̂

(1)
i :=

[ZΘ(0)]i,: =
∑q

l=1 zilΘ
(0)
l,: . We will have:

H(1) =



z1 · · · zn zn+1

x1 · · · xn xn+1

y1 · · · yn 0

Θ
(0)
:,1 · · · Θ

(0)
:,1 Θ

(0)
:,1

...
...

...
...

Θ
(0)
:,p · · · Θ

(0)
:,p Θ

(0)
:,p

β(0) · · · β(0) β(0)

x̂
(1)
1 · · · x̂

(1)
n x̂

(1)
n+1

1 · · · 1 1
1 · · · 1 0


.

2) In the second layer, the transformer does the gradient updates on the parameters Θ and β.

For m = 2k − 1, k = 1, . . . , p, define Q
(2)
m ,K

(2)
m ,V

(2)
m such that:

Q(2)
m h

(1)
i =


Θ

(0)
:,k

−1
−1

...
0

 ,K(2)
m h

(1)
j =


zj

xjktj
R(1− tj)

...
0

 ,V (2)
m h

(1)
j = −(n+ 1)η

q∑
l=1

zjleD0+(k−1)q+l.

(51)

For m = 2k, k = 1, . . . , p, define Q
(2)
m ,K

(2)
m ,V

(2)
m such that:

Q(2)
m h

(1)
i =


−Θ

(0)
:,k

1
−1

...
0

 ,K(2)
m h

(1)
j =


zj

xjktj
R(1− tj)

...
0

 ,V (2)
m h

(1)
j = (n+ 1)η

q∑
l=1

zjleD0+(k−1)q+l,

(52)

where R = max
i=1,...,n+1
t=0,1,...

{||Θ(t)⊤zi||}. Then we have:

σ
(
⟨Q(2)

2k−1h
(1)
i ,K

(2)
2k−1h

(1)
j ⟩
)
= σ

(
Θ

(0)⊤
:,k zj − xjktj −R(1− tj)

)
= σ

(
Θ

(0)⊤
:,k zj − xjk

)
1{tj = 1}

= σ
(
Θ

(0)⊤
:,k zj − xjk

)
tj ,
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and

σ
(
⟨Q(2)

2k h
(1)
i ,K

(2)
2k h

(1)
j ⟩
)
= σ

(
−Θ

(0)⊤
:,k zj + xjktj −R(1− tj)

)
= σ

(
−Θ

(0)⊤
:,k zj + xjk

)
1{tj = 1}

= σ
(
−Θ

(0)⊤
:,k zj + xjk

)
tj .

So that
2p∑

m=1

σ
(
⟨Q(2)

m h
(1)
i ,K(2)

m h
(1)
j ⟩
)
V (2)
m h

(1)
j

= −(n+ 1)tjη

p∑
k=1

[
σ
(
Θ

(0)⊤
:,k zj − xjk

)
− σ

(
−Θ

(0)⊤
:,k zj + xjk

)]
·

q∑
l=1

zjleD0+(k−1)q+l

= −(n+ 1)tjη

p∑
k=1

q∑
l=1

zjl

(
Θ

(0)⊤
:,k zj − xjk

)
eD0+(k−1)q+l.

Similarly, for m = 2p+ 1, 2p+ 2, define Q
(2)
m ,K

(2)
m ,V

(2)
m such that:

Q
(2)
2p+1h

(1)
i =


β(0)

−1
−1

...
0

 ,K
(2)
2p+1h

(1)
j =


x̂
(1)
j

yjtj
R′(1− tj)

...
0

 ,V2p+1h
(1)
j = −(n+ 1)α

p∑
l=1

x̂
(1)
jl eD0+qp+l,

(53)

Q
(2)
2p+2h

(1)
i =


−β(0)

1
−1

...
0

 ,K
(2)
2p+2h

(1)
j =


x̂
(1)
j

yjtj
R′(1− tj)

...
0

 ,V2p+2h
(1)
j = (n+ 1)α

p∑
l=1

x̂
(1)
jl eD0+qp+l,

(54)

where R′ = max
i=1,...,n+1
t=0,1,...

{|β(t)⊤xi|}. Then

σ
(
⟨Q(2)

2p+1h
(1)
i ,K

(2)
2p+1h

(1)
j ⟩
)
= σ

(
β(0)⊤x̂

(1)
j − yjtj −R′(1− tj)

)
= σ

(
β(0)⊤x̂

(1)
j − yj

)
1{tj = 1}

= σ
(
β(0)⊤x̂

(1)
j − yj

)
tj ,

and

σ
(
⟨Q(2)

2p+2h
(1)
i ,K

(2)
2p+2h

(1)
j ⟩
)
= σ

(
−β(0)⊤x̂

(1)
j + yjtj −R′(1− tj)

)
= σ

(
−β(0)⊤x̂

(1)
j + yj

)
1{tj = 1}

= σ
(
−β(0)⊤x̂

(1)
j + yj

)
tj .

So that
2p+2∑

m=2p+1

σ
(
⟨Q(2)

m h
(1)
i ,K(2)

m h
(1)
j ⟩
)
V (2)
m h

(1)
j

= −(n+ 1)tjα
[
σ
(
β(0)⊤x̂

(1)
j − yj

)
− σ

(
−β(0)⊤x̂

(1)
j + yj

)]
·

p∑
l=1

x̂
(1)
jl eD0+qp+l

= −(n+ 1)tjα

p∑
l=1

x̂
(1)
jl

(
β(0)⊤x̂

(1)
j − yj

)
eD0+qp+l.
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Thus the final output, for i = 1, . . . , n+ 1:

h
(2)
i = h

(1)
i +

2p+2∑
m=1

1

n+ 1

n∑
j=1

σ
(
⟨Q(2)

m h
(1)
i ,K(2)

m h
(1)
j ⟩
)
V (2)
m h

(1)
j

=



zi
xi

yiti

Θ
(0)
:,1 − η

∑n
j=1 zj

(
z⊤
j Θ

(0)
:,1 − xj1

)
...

Θ
(0)
:,p − η

∑n
j=1 zj

(
z⊤
j Θ

(0)
:,p − xjp

)
β(0) − α

∑n
j=1 x̂

(1)
j

(
x̂
(1)⊤
j β(0) − yj

)
x̂
(1)
i
1
ti



=



zi
xi

yiti
Θ

(0)
:,1 − ηZ⊤ [ZΘ(0) −X

]
:,1

...
Θ

(0)
:,p − ηZ⊤ [ZΘ(0) −X

]
:,p

β(0) − αΘ(0)⊤Z⊤ (ZΘ(0)β(0) − y
)

x̂
(1)
i
1
ti


.

This corresponds to a one-step 2SLS GD update of Θ,β, according to (7). Therefore, the final
output matrix is:

H(2) =



z1 · · · zn zn+1

x1 · · · xn xn+1

y1 · · · yn 0

Θ
(1)
:,1 · · · Θ

(1)
:,1 Θ

(1)
:,1

...
...

...
...

Θ
(1)
:,p · · · Θ

(1)
:,p Θ

(1)
:,p

β(1) · · · β(1) β(1)

x̂
(1)
1 · · · x̂

(1)
n x̂

(1)
n+1

1 · · · 1 1
1 · · · 1 0


.

Thus the proof is complete. We further note that in construction steps (49)(50)(51)(52)(53)(54),
regardless of the initial values of Θ(0),β(0), and x̂(0), the matrices Q

(1:2)
m ,K

(1:2)
m ,V

(1:2)
m do the

same linear transformations on the input vectors. Therefore they are identical across different layers.

B.3 PROOF OF THEOREM 3.3

Lemma B.2 (Generalization of pretraining, from Theorem 20 in Bai et al. (2023)). Given optimiza-
tion problm (12), with probability at least 1− ζ, the solution θ̂ satisfies:

LICL(θ̂) ≤ inf
θ∈ϑ

LICL(θ) +O

(
B2

y

√
L2(MD2 +DD′) log(2 + max{Bθ, R,By}) + log(1/ζ)

N

)
.
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Proof of Theorem 3.3. We begin by showing the (clipped) 2SLS predictor achieves small excess
loss under in-context distribution P :

EP

[(
⟨clipBβ

(β̂2SLS),xn+1⟩ − yn+1

)2]
= EP

[(
⟨clipBβ

(β̂2SLS)− β,xn+1⟩+ ⟨β,xn+1⟩ − yn+1

)2]
= EP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩2
]
+ 2EP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩
(
⟨β,xn+1⟩ − yn+1

)]
+ EP

[(
⟨β,xn+1⟩ − yn+1

)2]
= EP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩2
]

︸ ︷︷ ︸
Excess Loss

+EP

[(
⟨β,xn+1⟩ − yn+1

)2]
,

where EP [⟨clipBβ
(β̂2SLS) − β,xn+1⟩

(
⟨β,xn+1⟩ − yn+1

)
] = 0 follows from the independence

between ⟨clipBβ
(β̂2SLS) − β,xn+1⟩ and

(
⟨β,xn+1⟩ − yn+1

)
with EP [⟨β,xn+1⟩ − yn+1] =

EP [ϵn+1] = 0.

To bound the excess loss, we have

EP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩2
]
= EP

[∥∥∥x⊤
n+1

(
clipBβ

(β̂2SLS)− β
)∥∥∥2]

≤ EP

[
∥xn+1∥2

∥∥∥clipBβ
(β̂2SLS)− β

∥∥∥2]
= EP

[
∥xn+1∥2

]
EP

[∥∥∥clipBβ
(β̂2SLS)− β

∥∥∥2]
≤ O

(
B2

x

(
q

n

(
B2

β

K
+ C2(n)(ϕ⊤Σuϕ+ σ2

ϵ )

)))
,

(55)

where the last inequality follows from (3).

Next, for the ICL loss, we have

LICL(θ)

= EπEP

[(
T̃Fθ(H)− yn+1

)2]
= EπEP

[(
T̃Fθ(H)− ⟨clipBβ

(β̂2SLS),xn+1⟩+ ⟨clipBβ
(β̂2SLS),xn+1⟩ − yn+1

)2]
= Eπ

{
EP

[ (
T̃Fθ(H)− ⟨clipBβ

(β̂2SLS),xn+1⟩
)2 ]

+ EP

[ (
⟨clipBβ

(β̂2SLS),xn+1⟩ − yn+1

)2 ]
+ 2EP

[ (
T̃Fθ(H)− ⟨clipBβ

(β̂2SLS),xn+1⟩
)(

⟨clipBβ
(β̂2SLS),xn+1⟩ − yn+1

) ]}
≤ Eπ

{
EP

[ (
T̃Fθ(H)− ⟨clipBβ

(β̂2SLS),xn+1⟩
)2 ]

+ EP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩2
]
+ EP

[(
⟨β,xn+1⟩ − yn+1

)2]
+ 2EP

[ ∣∣∣T̃Fθ(H)− ⟨clipBβ
(β̂2SLS),xn+1⟩

∣∣∣ ]EP

[ ∣∣∣⟨clipBβ
(β̂2SLS),xn+1⟩ − yn+1

∣∣∣ ]}
≤ Eπ

{
EP

[(
T̃Fθ(H)− ⟨clipBβ

(β̂2SLS),xn+1⟩
)2]

+ EP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩2
]
+ EP

[(
⟨β,xn+1⟩ − yn+1

)2]
+ 2EP

[ ∣∣∣T̃Fθ(H)− ⟨clipBβ
(β̂2SLS),xn+1⟩

∣∣∣ ] (EP

[∣∣⟨clipBβ
(β̂2SLS)− β,xn+1⟩

∣∣]+ EP

[∣∣⟨β,xn+1⟩ − yn+1

∣∣])}.
(56)
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From Corollary 3.1, we know that there exists a L = 2L̄+1-layer attention-only transformer model
θ, with M = 2(p + 1) heads, and embedding dimension D = qp + 3p + q + 3, such that for any
H , given any learning rates α, η and Λ as defined in Equation (8), the following holds4:∣∣∣T̃Fθ(H)− ⟨clipBβ

(β̂2SLS),xn+1⟩
∣∣∣ ≤ O

(
BxΛ

L̄
)
.

Denote Λ⋆ := min
α,η

EπEP [Λ|H, α, η], then under α⋆, η⋆, we have:

EπEP

[∣∣∣T̃Fθ(H)− ⟨clipBβ
(β̂2SLS),xn+1⟩

∣∣∣] ≤ O
(
Bx(Λ

⋆)L̄
)
, (57)

and

EπEP

[(
T̃Fθ(H)− ⟨clipBβ

(β̂2SLS),xn+1⟩
)2] ≤ O

(
B2

xµ
⋆
Λ,2

)
, (58)

where µ⋆
Λ,2 := EπEP

[
Λ2L̄|H, α⋆, η⋆

]
is close to 0.

With condition (13), from Cauchy-Schwarz inequality, we have:

EπEP

[∣∣⟨β,xn+1⟩ − yn+1

∣∣] ≤ Eπ

[√
EP
(
ϵ2n+1

)]
= Eπ[σϵ] ≤ σ̃ϵ. (59)

Also, from (55), we have:

EπEP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩2
]
≤ O

(
B2

x

(
q

n

(
B2

β

K
+ C2(n)σ̃2

)))
. (60)

Further,

EπEP

[∣∣⟨clipBβ
(β̂2SLS)− β,xn+1⟩

∣∣] ≤√EπEP

[
⟨clipBβ

(β̂2SLS)− β,xn+1⟩2
]

≤ O

Bx

√√√√ q

n

(
B2

β

K
+ C2(n)σ̃2

) .

(61)

Finally, with (57)(58)(59)(60)(61), rearranging the terms in (56), we have:

LICL(θ)− EπEP
[
(yn+1 − ⟨β,xn+1⟩)2

]
≤ O

B2
x

µ⋆
Λ,2 + (Λ⋆)L̄

√√√√ q

n

(
B2

β

K
+ C2(n)σ̃2

)
+

q

n

(
B2

β

K
+ C2(n)σ̃2

)+Bx(Λ
⋆)L̄σ̃ϵ

 .

≤ O

(Λ⋆)L̄

B2
x

√√√√ q

n

(
B2

β

K
+ C2(n)σ̃2

)
+Bxσ̃ϵ

+B2
x

(
q

n

(
B2

β

K
+ C2(n)σ̃2

)
+ µ⋆

Λ,2

) .

(62)

Thus combining Lemma B.2 with (62) completes the proof.

C ADDITIONAL EXPERIMENTS AND DISCUSSIONS

For all experiments in this section, to be consistent with our main experiment in Section 4, we
generate n = 50 training samples with p = 5, q = 10, following the data generating process
described in Algorithm 1. The task parameters Θ,β,Φ,ϕ are sampled from standard Gaussian
distribution, the covariance matrices Σz,Σu,Σω are set to be identity matrices, and the noise level
σϵ is set to 1.

4The clipping bound on β̂2SLS can be matched by adjusting the clipping threshold on the last layer of T̃Fθ .
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C.1 SIMULATIONS VERIFYING THEOREM 3.1

We use the GD-based 2SLS method (7) to estimate the causal effect β. For the simulated data, we
calculate the following metrics:

2

σ2
max(ZΘ̂)

= 0.0016,
2

σ2
max(Z)

= 0.0212.

By Theorem 3.1, the gradient descent converges when α ∈ (0, 0.0016) and η ∈ (0, 0.0212). The
overall convergence rate is determined by Λ := max{γ(α), κ(η)}, where

γ(α) := ρ
(
I − αΘ̂⊤Z⊤ZΘ̂

)
,

κ(η) := ρ
(
I − ηZ⊤Z

)
.

We first set α = 0.0012 and vary η. The corresponding convergence rates are determined by Λ =
max(0.87, κ(η)). Next, we set η = 0.01 and vary α. The corresponding convergence curves are
determined by Λ = max(γ(α), 0.82). We compare the estimates β̂(t) with the 2SLS estimate β̂2SLS
as the iteration proceeds. The convergence results are shown in Figure 3.

(a) (b)

Figure 3: The convergence of the GD-based 2SLS method with (a) fixed α = 0.0012 and varying η
and (b) fixed η = 0.01 and varying α.

The results in Figure 3 are consistent with our theoretical analysis in Theorem 3.1. It is worth noting
that in Figure 3a, when η is relatively large (or small), the convergence curves exhibit some suiggly
patterns. This is due to the innerloop updates (7a) are converging faster (or slower) than the outer
loop updates (7b). However, the overall convergence rate is still determined by Λ. This pattern
doesn’t appear in Figure 3b as we set η to be a moderate value, which ensures that the inner loop
and outer loop converge synchronously.

Next, we show the bias of the GD estimator. For better convergence, we set α⋆ = 1
σ2
max(ZΘ̂)

and

η⋆ = 1
σ2
max(Z) . We compare the biases of the GD estimator with n = 50, 100, 150 in-context

samples. The results are shown in Figure 4.
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Figure 4: The convergence of the GD-based 2SLS method with α⋆ = 1
σ2
max(ZΘ̂)

and η⋆ = 1
σ2
max(Z) .

The biases of 2SLS estimator and OLS estimator at n = 150 are plotted for comparison.

C.2 DISCUSSIONS ON 2SLS WITH ℓ2-REGULARIZATION

In this section, we briefly discuss a generalization of our analysis to the case where the 2SLS
estimator is regularized by the ℓ2 penalty (Ridge 2SLS). For this case, the bi-level optimization
problem Equation (6) is modified as follows:

min
β

L(β) = 1

n

n∑
i=1

(yi − z⊤
i Θ̂β)2 +

1

2
λ∥β∥2,

where Θ̂ :=argmin
Θ

1

n

n∑
j=1

(xj − z⊤
j Θ)2 +

1

2
τ∥Θ∥2F ,

where λ, τ ≥ 0 are regularization parameters. To solve this problem, the GD updates in Equation (7)
is modified as follows:

Θ(t+1) = Θ(t) − η
[
Z⊤(ZΘ(t) −X) + τΘ(t)

]
, (63a)

β(t+1) = β(t) − α
[
Θ(t)⊤Z⊤(ZΘ(t)β(t) − Y ) + λβ(t)

]
. (63b)

The only difference between Equation (7) and Equation (63) is the additional terms τΘ(t) in Equa-
tion (63a), and λβ(t) in Equation (63b). The convergence analysis of the ℓ2-regularized GD updates
in Equation (63) can be conducted in a similar manner as in Theorem 3.1. The only difference is
that the convergence rate Λ is now determined by the spectral radiuses of I − η(Z⊤Z + τI) and
I − α(Θ̂⊤Z⊤ZΘ̂+ λI), respectively.

With the same configuration as in Theorem 3.2 but adding p+ 1 attention heads in the second layer
(i.e. the second layer needs 3p+ 3 heads), we can show that transformers are able to implement the
ℓ2-regularized GD updates in Equation (63). The proof follows directly from Appendix B.2, with
the construction of the new attention heads in the second layer as follows.

For m = 2p+ 2 + k, k = 1, . . . , p, define Q
(2)
m ,K

(2)
m ,V

(2)
m such that:

Q(2)
m h

(1)
i =

[
1
0

]
,K(2)

m h
(1)
i =

[
1
0

]
,V (2)

m h
(1)
i = −ητ

q∑
l=1

Θ
(0)
lk eD0+(k−1)q+l.

For m = 3p+ 3, define Q
(2)
3p+3,K

(2)
3p+3,V

(2)
3p+3 such that:

Q
(2)
3p+3h

(1)
i =

[
1
0

]
,K

(2)
3p+3h

(1)
i =

[
1
0

]
,V

(2)
3p+3h

(1)
i = −αλ

q∑
l=1

β
(0)
l eD0+qp+l.
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Then the remaining proof follows exactly the same as Appendix B.2. This result indicates that
transformers are potentially capable of handling multicollinearity in IV regression problem. We
conduct experiments to validate this and the results are shown in Appendix C.3.

C.3 EXPERIMENTS ON MULTICOLLINEARITY IV PROBLEM

As a supplement to Section 4.2, we examine the case where multicollinearity occurs in the IV re-
gression problem. We generate the test prompts in the same way using Algorithm 1, but introduce
multicollinearity in the endogenous variable x and instrument z.

Specifically, we first generate 4 columns of X , and 9 columns of Z, and then set X:,5 ∼
N (2X:,4, 10

−6In), and Z:,10 ∼ N (2Z:,9, 10
−6In). The results are shown in Figure 5a. As shown

in Figure 5a, both ordinary OLS and 2SLS estimators fail to estimate the coefficients, while the
trained transformer model is still able to provide consistent predictions and coefficient estimates.

(a) (b)

Figure 5: The ICL performance of the trained transformer model in endogeneity tasks with multi-
collinearity. (a) 1 collinear column in X , and 1 collinear column in Z. Note that the coefficient
MSEs for 2SLS and OLS are both out of range. (b) 2 collinear columns in X , and 5 collinear
columns in Z. We compare the performance to the ℓ2-regularized 2SLS and OLS estimators. The
curves are averaged over 500 simulations.

We further examine a more difficult case where heavy multicollinearity occurs. We first generate
3 column of X , and 5 column of Z, and then set X:,j ∼ N (2X:,j−2, 10

−6In) for j = 4, 5, and
Z:,j ∼ N (2Z:,j−5, 10

−6In) for j = 6, 7, 8, 9, 10. For better comparisons, we now compare the
performance of the trained transformer model to the ℓ2-regularized 2SLS and OLS estimators (with
all regularization parameters set to 1). The results are shown in Figure 5b.

These results suggest that the trained transformer model is capable to handle multicollinearity in IV
regression problems, even though it has not been specifically trained with multicollinearity tasks.

C.4 EXPERIMENTS ON COMPLEX NON-LINEAR IV PROBLEM

As a supplement to Section 4.2, we examine a more complex scenario where the instrument z has
non-linear effect on the endogenous regressor x. We consider the following data generating process:

y = ⟨β,x⟩+ ϵ1, and x = g(z) + ϵ2,

where g : Rq → Rp is a two-layer fully connected neural network with ReLU activation function.
Similar to Section 4, the test prompts are generated using Algorithm 1, with all task parameters
and weights of neural network sampled from standard Gaussian distribution. The results are shown
in Figure 6. From this figure, we can see that the trained transformer model still achieves optimal
performance in this complex non-linear setting.

C.5 EXPERIMENTS ON VARYING ENDOGENEITY STRENGTH

As a supplement to Section 4.2, we examine the performance of the trained transformer model in
standard IV tasks with varying endogeneity strengths. The strength of endogeneity is determined
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Figure 6: The ICL performance of the trained transformer model in complex non-linear endogeneity
tasks where the IV has non-linear effect on the endogenous variable. The curves are averaged over
500 simulations.

by the correlation between x and the endogenous error ϵ1. To vary the endogeneity strength, in
Algorithm 1, we multiply u by a factor r ∈ (0, 2) when generating test prompts. The results
are shown in Figure 7, which illustrates that the trained transformer model is comparable with the
optimal 2SLS estimator in these standard IV tasks, regardless of the endogeneity level.

Figure 7: The ICL performance of the trained transformer model in tasks with varying endogeneity
strengths. The curves are averaged over 500 simulations.

C.6 EXPERIMENTS ON REAL-WORLD DATASET

In this section we provide an example to illustrate how the pretrained transformer model can be
applied to a real-world dataset. We use the dataset from the study of Angrist & Evans (1998).
This study investigates the effect of childbearing on labor supply. For demonstration purpose, we
consider a simplified setup. We focus on a subset of the dataset that contains 6421 samples from
Alabama. The outcome variable y is mother’s labor supply (number of working weeks in a year
divided by 52), the endogenous variable x is the number of children (≥ 2), and the instrument z is
an indicator variable of whether the first and second children are of the same sex5.

5Research found that parents of same-sex siblings are significantly more likely to go on to have an additional
child (Westoff & Parke, 1972), while it is not directly correlated with mother’s labor supply as mixture of sex
of the first two children can be considered as randomly assigned.
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For each run we randomly select 50 samples from the dataset, and make the boxplot of the estimated
β over 500 runs6. As the ground truth effect β is unknown, we compare them to the OLS and 2SLS
estimates over all samples. The results are shown in Figure 8.

Figure 8: The boxplot of transformer’s estimates over 500 runs on the labor supply dataset, com-
paring to the OLS and 2SLS estimates. βGPT is taken to be the median of all runs. The gray box
represents the interquartile range, where the middle 50% of the estimated values fall. The whiskers
of the box indicate the spread of the estimates. Any points falling outside of the whisker can be
considered as outliers.

The final estimate βGPT = −0.091, which suggests that with each increase in the number of children,
the mother’s labor supply is expected to drop 9.1% (approximately 4.73 weeks per year). This result
is closer to the 2SLS estimate β2SLS = −0.089 than the OLS estimate βOLS = −0.023. This
example demonstrates the potential of the pretrained transformer model in handling real-world IV
problems.

C.7 EXPERIMENTAL DETAIL

The training of the transformer in our experiment was conducted on a Windows 11 machine with
the following specifications:

• GPU: NVIDIA GeForce RTX 4090
• CPU: Intel Core i9-14900KF
• Memory: 32 GB DDR5, 5600MHz

The training process took around 10 hours.

6For large enough model that can fit in the entire dataset, this step can be ignored. As shown in the simulation
study in Section 4, a single estimate is expected to perform at least as good as 2SLS estimator, given the same
number of samples.
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