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A Appendix

Effect of the number of crops at test time: Throughout this work, at test time, we report results
using 1 temporal and 3 spatial crops (i.e. 1× 3). This is noticeable different from the current practice
of using up to 10× 3 crops [4, 1].

To showcase the behavior of our method, herein, we test the effect of increasing the number of crops
as measured on Kinetics-400. As the results from Fig. 1 show, increasing the number of crops beyond
two temporal views (i.e. 2× 3), yields no additional gains. Our findings align with the ones recently
reported in Bertasius et al. [2].

Figure 1: Effect of number of temporal crops at test time as measured on Kinetics-400 in terms of
Top-1 accuracy. For each temporal crop, 3 spatial clips are sampled, for a total of tcrops × 3 clips.
Notice that beyond tcrops = 2 no additional accuracy gains are observed.

Inference speed: In the main paper, where available, we detailed the computational complexity of
each model as measured in FLOPs. In Table 1, we show the complexity as measure in videos per
second for a few selected models. The test is performed on 8 V100 GPUs.

Comparison with TSM [6]: To emphasise and experimentally validate the conceptual differences
between TSM and the proposed X-ViT method (both sharing the use of the “shift trick” [8]"), we
applied the method described in TSM to the ViT architecture. A straightforward application of the the
shift trick to ViT, which from now on we call TSM-ViT, can be described by the following Equations:
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Table 1: Speed comparison in videos/sec. Where possible, the original, open-sourced implementations
provided by the authors were used.

Method images/sec

bLVNet [3] 7.5
TEA [5] 2.4

i3D-NL ResNet101 [7] 0.37
SlowFast (8frames) [4] 0.69

TimeSformer [2] 0.69
ViViT-L [1] 0.66

X-ViT (Ours) 12

Zl = SHIFT(Zl), (1)

Yl = MSA(LN(Zl−1)) + Zl−1, (2)

Zl = MLP(LN(Yl)) +Yl. (3)

Note that the differences between TSM-ViT and our model (XViT) are:

1. 1. TSM-ViT does not perform an approximation to the full space-time attention as XViT
does.

2. TSM performs simple temporal average pooling for temporal aggregation. Instead we
propose two new forms of aggregation: Temporal Attention aggregation and Summary
Token.

The results of Table 2 clearly show that the two approaches are different. Moreover, we see that the
proposed temporal attention aggregation is much more effective than the simple temporal pooling
proposed by the original TSM paper.

Table 2: Comparison between XViT and “TSM-ViT” on the SS-v2 dataset in terms of Top-1 accuracy.
ViT-B/16 was used for all models.

Method Top-1

TSM-ViT (with temporal aggregation as proposed in TSM) 60.8%
XViT (with temporal aggregation as proposed in TSM) 62.5%

TSM-ViT (with Temporal Attention aggregation) 63.1%
XViT (with Temporal Attention aggregation) 64.4%
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