Appendix

A Additional Experiments

A.1 Ablation on prior data

We perform a more fine-grained study on the role of prior data using the CALVIN domain. We
compare to variants of our method using 25% or 50% of the available prior data to see whether the
quantity of prior data plays a significant role on downstream policy performance. We also compare
to a variant of our method that only utilizes prior data collected from different environments than
the target task environments. In the context of our CALVIN domain, the prior data spans four
environments (A, B, C, D), while the target task data only spans one environment (D). Thus for
this ablation we only consider data from unseen environments (A, B, C) for our prior dataset. This
ablation examines the robustness of our method under environmental mismatch between the prior
data and target task data. We outline all results in Table 3.

Dataset No prior data 25% prior data 50% prior data ABC prior data Ours
CALVIN-Setting Up 53.3 £4.0 71.3+£0.5 76.0 £2.9 76.7 £6.5 77.3+3.1
CALVIN-Cleaning Up 60.7 £ 3.1 80.3 £3.3 82.3+2.1 77.3£10.1 88.0+5.1

Table 3: Ablation on prior data.

First, we see that increasing the size of prior data yields greater downstream policy performance.
There is a significant performance gain from using no prior data to using 25% prior data, from
which point increasing the amount of prior data leads to smaller gains. In addition, restricting the
prior data to unseen environments still results in a meaningful performance increase, which is a
promising sign that our method can operate even under controlled environmental distribution shifts
between the prior and target task data.

A.2 Ablation on retrieval metric

In this work we use ¢y distance in our latent skill space as the underlying distance measure for
our retrieval operation. We also consider performing retrieval based on KL-divergence distances.
ie. given two inference distributions ¢; and g2, we compute their distance as the average forward
and reverse KL divergence: d(q1,q2) = %(DKL(q1||q2) + Dxr.(g2||q1))- This metric effectively
incorporates both the mean and standard deviation of the inference distributions. We compare our
standard retrieval procedure with the KL-based retrieval operation in Table 4.

Dataset Ours KL-based Retrieval
CALVIN-Setting Up 77.3+3.1 79.3+5.7
CALVIN-Cleaning Up 88.0+5.1 80.7£0.9

Table 4: Ablation on retrieval method.

We do not find a significant difference between these two variants, suggesting that our method can
work with alternative distance metrics for retrieval.

A.3 Ablation on target dataset

We perform an ablation study on the size of the target dataset. We find for the CALVIN-Setting Up
task that increasing the number of target task demonstrations from 30 to 100 yields an increase in
success rate from 77.3% to 93.3% (see Table 5). Note that while it is promising that increasing the
number of target task demonstrations yields an increase in success rate, this comes at the expense of
additional burden for human collecting demonstrations for the target task.
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Dataset 30 demos (Ours) 100 demos
CALVIN-Setting Up 77.3+3.1 93.3+4.5
Table 5: Ablation on target dataset.

A.4 Ablation on retrieval dataset

We perform a detailed ablation study on the quantity and quality of the retrieved data for policy
learning. Recall that our retrieval procedure: (1) we first randomly sample N sub-trajectories from
the prior dataset as possible retrieval candidates, (2) sort them according to their relevance to the
target task, and (3) select the top r% of candidates for retrieval. We study the following ablations,
which use our standard settings of N=250,000 and r=10% unless otherwise stated:

No Retrieval: N=0. Ie. we retrieve no data

All Retrieval: N=sizeof(prior dataset), r=100%. le. we retrieve the entire prior dataset. For
CALVIN this is 2.3M sub-trajectories

Random Retrieval: instead of sorting the retrieval candidates according to relevance, we
randomly select 10% of the candidates. This is a test of data quality, to see whether the relevance of
the retrieved sub-trajectories to the target task matters.

2/50/ 90 % Retrieval: we retrieve r=2%, 50%, or 90% of the N candidates. This is to
test whether our setting of r=10% is a good threshold for retrieval

Large Retrieval: N=sizeof(prior dataset). This ablation uses the same threshold r=10% as
our method to perform retrieval but considers all prior sub-trajectories as retrieval candidates and
thus retrieves a significantly larger quantity of data.

Note that Ours, No Retrieval, and All Retrieval are from the original submission and we in-
clude these results again for reference. We present results on the CALVIN Setting Up and Cleaning

Dataset Ours No Retrieval ~ All Retrieval Random Retrieval 2% Retrieval 50% Retrieval 90% Retrieval Large Retrieval
CALVIN-Setting Up 77.3+3.1 65.0+£2.2 64.3 +10.8 82.0+3.7 75.7+5.4 74.3+£9.9 80.7+ 6.5 79.7+£0.9
CALVIN-Cleaning Up 88.0 £5.1 70.0£0.8 65.3+7.3 55.3+ 7.3 80.7+2.9 75.7+5.3 46.3 +20.0 83.3+4.6

Table 6: Ablation on retrieval dataset.

Up tasks in Table 6. We make the following observations for CALVIN-Cleaning Up:

* Data quality is important. The Random Retrieval retrieves the same quantity but lower
quality of data as Ours. The performance significantly degrades as a result. We see the
same trend from the 50 / 90% Retrieval experiments. Ie. as we increase the threshold for
retrieval from r=10% to 50% and 90% (and thus decrease the quality of data) we see a
consistent and significant drop in performance.

* Our standard setting of r=10% is optimal, striking the right balance between diversity and
quality of data. Lower and higher thresholds (2%, 50%, 90%) perform worse.

* Retrieving larger amounts of data does not have a major impact on performance. Large
Retrieval achieves performance within the margin of error as Ours.

CALVIN-Setting Up however offers a different analysis. For this task data quality does not appear
to matter, as the Random retrieval, 2% / 50%, 90% Retrieval ablations all perform similarly to Ours
within the margin of error. One possible explanation for this observation is that the Setting Up
task involves a more diverse range of behaviors than Cleaning Up — the Setting Up task involves
manipulating all components of the environment whereas the Cleaning Up task involves a subset.
Another potential hypothesis is that the prior data is more biased towards behaviors seen in the
Setting Up task. Because many of the behaviors in the Cleaning Up task are mirror behaviors of
the Setting Up task, this may result in an unfavorable bias for the Cleaning Up task, necessitating a
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retrieval procedure to filter out irrelevant behaviors.

The implication of all of these results is that the importance of retrieval may be task and
dataset dependent, with some tasks being especially sensitive to the choice of retrieved data.
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B Tasks and Datasets

B.1 Franka Kitchen

The Franka Kitchen domain consists of a simulated 9-DoF Franka robot operating in a kitchen
environment comprising a microwave, kettle, light switch, stove knobs, and a sliding and hinge
cabinet. In our experiments the agent operates the robot via joint torque control resulting in a
9-dimensional action space. For observations, the agent has access to proprioceptive information
consisting of the 9-dimensional joint values of the robot, in addition to RGB images from a third-
person view camera and an eye-in-hand camera.

Prior Data. This environment is accompanied by approximately 600 human demonstrations each
performing a subset of four out of seven possible subtasks: opening the microwave, turning on the
light switch, turning on the top burner, turning on the bottom burner, moving the kettle, opening
the hinge cabinet, and opening the sliding cabinet. We consider two prior datasets Dprior: (D

using all demonstrations except the ones corresponding to the target task (Kitchen-A11); and (2)
using all demonstrations except those that involve interacting with the microwave (Kitchen-No
Microwave). These prior datasets have 584 and 235 demonstrations, respectively.

Target Task. We consider one target task demonstrating a specific permutation of subtasks: opening
the microwave, followed by moving the kettle, flipping on the light switch, and opening the sliding
cabinet. We define task success as whether the agent has completed all of these subtasks (in no
particular order). For the target dataset Dyarget We obtain all demonstrations in the original dataset
that perform this specific permutation of subtasks, resulting in 18 demonstrations. Note that this
dataset is equivalent to the kitchen-complete-vO dataset in the d4rl benchmark [46]. These
demonstrations have an average length of 194 timesteps.

B.2 CALVIN

The CALVIN domain consists of a simulated 7-DoF Franka robot operating in a playroom environ-
ment comprising a drawer, cubbies, two lights, and three blocks. The environment comes in four
variants (see Figure 3), each with different textures, block sizes, and fixture locations. In our experi-
ments the agent operates the robot via inverse kinematics control resulting in a 7-dimensional action
space. For observations, the agent has access to proprioceptive information consisting of the robot
end effector pose and gripper state, in addition to RGB images from a third-person view camera and
an eye-in-hand camera.

Prior Data. This environment is accompanied by a large dataset of task-agnostic “play” data across
all four environment variants and comprises 2.3M transitions. The play data encompass diverse
behaviors, such as opening and closing drawers, turning on and off the lights, and picking, placing,
and pushing blocks. We use all play data as Dprior to solve two target tasks.

Target Tasks. We consider two target tasks:

CALVIN-Setting Up: the robot must turn on the lights, retrieve the pink block from the drawer,
place it on the table, and retrieve the red and blue blocks from the cubby area and place them
on the table. We define task success as whether the agent has completed all of these subtasks (in
no particular order). At environment resets the lights are always off, the pink block is randomly
initialized inside the (closed) drawer, and the red and blue blocks are randomly initialized inside the
cubby area with one block in the left region of the cubby and the other block in the right region
of the cubby. For this task we collect 30 demonstrations, amounting to about half an hour of data
collection. In these demonstrations, we first turn on the lights, then retrieve the pink block, then
retrieve the first unoccluded block from the cubby area, then move the slider to retrieve the other
block from the other side of the cubby area. These demonstrations have an average length of 584
timesteps.

CALVIN-Cleaning Up: the robot must open the drawer, place all three blocks into the drawer, close
the drawer, and turn off the lights. We define task success as whether the agent has completed all of
these subtasks (in no particular order). At environment resets the lights are always on, the drawer is
closed, and the three blocks are randomly placed in left, center, and right regions of the table. For
this task we collect 30 demonstrations, amounting to about half an hour of data collection. In these
demonstrations, we first open the drawer, then place the blocks on by one into the drawer from right
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to left, then close the drawer, and finally turn off the lights. These demonstrations have an average
length of 572 timesteps.

B.3 Real World Kitchen

We designed a real world kitchen environment to study the utility of our method on physical hard-
ware. Our kitchen environment comprises a Flexa toy kitchen, a set of toy food items®, a number of
serving items (placemat, plate, knife, fork), and a small pot and pan that we purchased from a local
store. We use a 7-DoF Franka Emika Panda robot which is operated via Operational Space Control
(OSC) [49]. We found OSC to be a fitting choice, as it offers task-space compliant behavior that
makes for a more intuitive data collection experience. We restrict the OSC controller to the position
and yaw of the end effector*, which combined with the gripper controller results in a 5-dimensional
action space. For observations, the agent has access to proprioceptive information consisting of
the robot end effector pose and gripper state, in addition to RGB images from a third-person view
camera and an eye-in-hand camera.

Prior Data. We collect a large prior dataset of task-agnostic play behaviors involving the food items
and the pot and pan. Overall our prior dataset involves 150 trajectories each with approximately
2,000 timesteps, resulting in approximately 300,000 total timesteps. For each trajectory we first
initialize the scene by randomly sampling four out of eight food items (milk, bread, butter, sausage,
fish, tomato, banana, cheese) and randomly placing these four items around the serving area. We
also randomly initialize the pot and pan on the two front stove burners or occasionally place one on
the table next to the serving area. We then randomly pick and place food items either on the table,
the serving area, or the pot and pan. We also occasionally pick and place the pot or pan to the table
or stove burners.

Target Tasks. We consider three target tasks:

Real-Breakfast: the objective of this task is to place the bread, butter, and milk from the table
onto the serving area. These food items are initialized randomly in the vicinity of three possible
locations on the table: the left, center, and right of the region preceding the serving area. We
consider two possible permutations for the placement of object onto these three regions (in left-
center-right format): butter-bread-milk, bread-butter-milk, and butter-milk-bread. The pots and pans
are initialized on the front stove burners. We define task success as whether the robot has (in no
particular order) placed the bread onto the plate, the butter to the left of the plate on the placemat,
and the milk to the right of the plate on the placemat. For this task we collect 30 demonstrations,
amounting to about half an hour of data collection. In these demonstrations we place the bread,
butter, and milk in order onto their corresponding goal locations. These demonstrations have an
average length of 546 timesteps.

Real-Cook: the objective of this task is to place the fish, sausage, and tomato from the table into
the pan. These food items are initialized randomly in the vicinity of three possible locations on the
table: the left, center, and right of the region preceding the serving area. We consider three possible
permutations for the placement of object onto these three regions (in left-center-right format): fish-
sausage-tomato, sausage-fish-tomato, and fish-tomato-sausage. The pots and pans are initialized
on the front stove burners. We define task success as whether the robot has (in no particular order)
placed these three items into the pan. For this task we collect 30 demonstrations, amounting to about
half an hour of data collection. In these demonstrations we place the food items from left to right
(in order) into the pan. These demonstrations have an average length of 548 timesteps.

Real-Setup-Pan: the objective of this task is to place the pan from the table onto the stove and
subsequently place the fish and sausage into the pan. The pan is initialized randomly in the vicinity
of the right region of the table preceding the serving area. The food items are initialized randomly in
the vicinity of the left and center regions of the table preceding the serving area. We consider three
possible permutations for the placement of the objects onto these three regions (in left-center-right
format): fish-tomato-pan and tomato-fish-pan. The pot is initialized on the front stove burners. We
define task success as whether the robot has (in no particular order) placed the pan onto the stove

*https://flexa-usa.com/collections/play/products/toys—the-kitchen

*https://www.amazon . com/Melissa-Doug-Food-Groups-Hand-Painted/dp/BO0O00OBX8MA

“We did not find the roll and pitch actuation to be necessary for our real world tasks and we opted for a simpler
action space.
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and the two food items into the pan. For this task we collect 30 demonstrations, amounting to about
half an hour of data collection.
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C Implementation Details

C.1 Model Architecture

We elaborate further on our method architecture outlined in Figure 2. Our implementation is based
on top of robomimic?, a recent open source codebase with extensive benchmarking results across a
number of imitation learning algorithms. We adopted the same neural modules (same RNN back-
bone, VAE, visual perception encoders) for our algorithm, and in fact our BC-RNN baseline uses
the exact implementation from robomimic.

Our model specifically consists of five neural network modules: four networks for the skill model
comprising an RNN encoder, an RNN decoder, a feedforward VAE prior6, and a feedforward tem-
poral prediction network; and one RNN network for the policy.

Observation Encoder. Four out of the five modules described above take observation inputs (among
other potential inputs), and each of these modules is equipped with an observation encoder to pro-
cess these observations. The observation encoder specifically consists of ResNet-18 backbones [50]
to encode the third-person image and eye-in-hand image, and a multi-layer perceptron (MLP) for all
remaining low-dimensional observational inputs. Note that we pre-process the ResNet inputs with
random cropping and post-process the outputs with a Spatial Softmax [51] pooling layer. After pro-
cessing the image and low-dimensional observation inputs we concatenate the resulting outputs to
form one unified observation encoding. Note that our RNN encoder, RNN decoder, and RNN policy
process a sequence observations individually using the observation encoder and then processes these
encoded observations into one unified representation with a recurrent neural network.

Skill Model. The skill model is a Variational Autoencoder that encodes sub-trajectories into a latent
skill representation and decodes information back into the actions of sub-trajectories. The skill
encoder and decoder are RNNs with a 2-layer LSTM followed by a 2-layer MLP, while the VAE
prior and temporal prediction network are 2-layer MLPs.

Policy. The policy is a 2-layer LSTM network that maps a history of F' observations into a latent
skill z. We also condition the policy on a dataset id € {0,1} to indicate whether the policy is
optimized on the target dataset or the retrieval dataset, to prevent potential interference between the
target and retrieved data (see Algorithm 2 for additional details). Note that we can extend our policy
to incorporate fine-grained goal information by conditioning on additional context information such
as goal images or language goals [44, 52, 23].

C.2 Training

Our algorithm consists of two phases. In the first phase we pre-train our skill model on sub-
trajectories in Dprior (see Algorithm 1 for further details”). In the subsequent phase we are given the
target dataset Dyarget and we proceed to learning the policy and fine-tuning the skill model. Before
we perform policy learning, we first retrieve sub-trajectories in Dprior that have similar embeddings
to those in Diyrger. We aggregate these retrieved embeddings into our retrieval dataset Dret. We
then proceed to train the policy jointly on embeddings from Dyarget and Dret. At the same time we
continue to fine-tune the skill model with sub-trajectories sampled from both Dprior and Diarget-

We summarize these steps in Algorithm 2.

We sample fixed-length sub-trajectories uniformly at random to train our model, following recent
skill-based imitation learning works [6, 9, 7]. More specifically, for each dataset we concatenate
all trajectories into one continuous stream of data and uniformly sample sub-trajectories from this
stream. Note that this can result in sampling overlapping sub-trajectories. For training the policy we
additionally train on the frame stack of observations preceding the sampled sub-trajectory. There
are some edge cases, such as when the sub-trajectory intersects with the next trajectory and when

https://github.com/ARISE-Initiative/robomimic

Swe also utilize a feedforward deterministic inverse dynamics model but we found that it does not lead to a
significant change in downstream policy learning results

’in our code we also have a slowness term to ensure that two nearby sub-trajectories have similar skill em-
beddings. We did not find this feature to have a noticeable impact on downstream policy performance and
therefore we omit it from the algorithm pseudocode for simplicity.
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the frame-stack intersects with the previous trajectory. We deal with these cases by padding all data
from the offending consecutive trajectory with the first / last observation of the current trajectory.

Algorithm 1 Skill pretraining
Input: prior dataset Dprior

1: while not done do
2:  Sample 7 = {(o, at)}tlif)l ~ Dprior

3:  Sample temporal offset d € [—50, 50] and obtain 7’ shifted d timesteps from 7
4 pr, X ge(T) // Encode T

50 prr, B 4 qo(T!) // Encode 7’

6:  z~N(ur%;) // Sample latent z

7o Gy pylog, 2) // Decode actions through RNN
8 d < my(tr, pir) /I Predict temporal distance

9:  Lyag < ||a —al|* + B Dk r(qs(T)||pe(00, 0m)) // Compute VAE Loss
10:  Lrc + a-(d—d)? /I Compute TC Loss

11:  Lsyin + Lvag + L1c
12:  update ¢, 1), 0, w on Lgy via gradient descent
13: end while

Algorithm 2 Policy learning and skill fine-tuning
target dataset Dyarget, pre-trained skill encoder ¢,

Input: prior dataset Dprior’

1: // Obtain retrieval dataset

20 Zpsior + {1(qp (1))} 70 ~ Dprior /I Sample and encode N sub-trajs from Do
3: Ziarget {u(qd,(Tj))}jﬂil, 7j ~ Dtarget // Sample and encode M sub-trajs from Diaroet
4: D;; = ||Z}fri0r — Zgﬁong // Compute all pairwise encoding distances

5: D_min; = min;(D;;) // Find closest target sub-traj for each prior sub-traj

6: K < argsort(Dmin) [:n] // Compute list of indices in Zee with minimal distance

7: Dret¢— {(0’}5, Z;];rior)}keK // Retrieve skill embeddings and their preceding observations

8

9: // Train policy
10: while not done do

11:  Sample (oys, 2) ~ Dtarget /I target dataset sub-traj encoding and frame stack
12 Sample (o', 2") ~ Dret /] retrieval dataset sub-traj encoding and frame stack
13: 24 m(ofs,id = 0) /1 predict skill for target dataset sub-traj

14 2/ < 7(d),,id=1) // predict skill for retrieval dataset sub-traj

15:  Lpolicy < (2 — 2)2 4 (zA’ —2')? /I Compute Policy Loss

16:  update 7 on Lpoicy via gradient descent
17:  fine-tune Lg on sub-trajectories sampled from Dprior and Dtarget // see Algorithm 1

18: end while

C.3 Evaluation

To perform a policy rollout, we first obtain a skill z = 7r(0;cs7 id = 0) from the policy. We execute
this skill with our closed-loop skill decoder py, (o, z) for H timesteps and we subsequently repeat
the process by obtaining a new skill from the policy. Note that we do not preempt skill execution;
we execute all H timesetps until completion®. We terminate the episode either when the agent has
successfully solved the task or if the agent has exceeded the time budget for the rollout. We assess
each episode based on whether the agent successfully solved the task in the allotted time budget.
While other metric also exist (time to complete task), we chose binary success for its popularity and
relative simplicity. We elaborate further on our evaluation protocol:

8We believe this is reasonable choice, as (1) the closed-loop skill decoder can react to current environment con-
ditions during skill execution, and (2) the policy is still operating at high frequency and can react accordingly
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Simulation Experiments: We evaluate the success rate across 3 seeds (unless otherwise noted) and
report the average and standard deviation across all seeds. To evaluate a seed, we perform 100 policy
rollouts every n checkpoints and record the success rate for each checkpoint. We then record the
success rate for the seed as the highest success rate across all checkpoints evaluated for that seed’.

Real World Experiments: Due to the challenges of real-world evaluation we only evaluate 1 seed
for each baseline. To evaluate an experiment, we perform an initial evaluation of different policy
checkpoints, evaluating each checkpoint for only a few trials. Upon choosing the most promising
checkpoint we perform 30 rollouts and report the success rate over these rollouts.

C.4 Baselines

All baselines are implemented in the robomimic codebase for fair comparison. We briefly elaborate
on these implementations as follows:

BC-RNN: We use the default implementation of BC-RNN in robomimic and we use identical hy-
perparameters as those reported in the robomimic study paper [1].

BC-RNN (FT): We use an identical architecture and identical hyperparameters as BC-RNN. We first
train the baseline on Dprior and subsequently fine-tune on Diarget Via a second stage of training. We

also experimented with jointly training a task-conditioned BC-RNN policy in Dprior and Diarget

but we found that it yielded very poor performance due to the multi-modality of actions in the prior
data.

BC-RNN (R3M): We use an identical architecture and identical hyperparameters as BC-RNN but
with a pretrained R3M visual representation. We specifically replace the weights of our ResNet-18
networks with the pretrained ResNet-18 weights from R3M!'?. We follow the same practice from the
R3M paper and we freeze the pretrained ResNet weights during downstream imitation learning.

IQL: We base our implementation off of the publicly available PyTorch implementation of IQL'".

IQL (UDS): We make small modification to our IQL implementation. For each batch that we sample
from Diyrget, we also sample an equivalent-size batch from Dy, with the rewards set to 0. We

then perform gradient updates on the aggregated data from both of these batches.

FIST: We use the same underlying skill model as our method but a semi-parametric policy in place
of our parametric neural network policy. We use an identical scheme for the semi-parametric policy
as the FIST paper [7].

C.5 Environment Implementation

C.5.1 Gripper Logic

We elaborate on the gripper logic in our environments. The gripper state is either the position of the
gripper fingers (Franka Kitchen, Real World Kitchen) or the opening width of the gripper (CALVIN).
The gripper action is a continuous 1-D variable, and we interpret this as either opening (if < 0) or
closing (if > 0). The gripper is controlled via position control. When the agent specifies a closing
action the position target of the controller is set to close the gripper fingers all the way (and for
opening the target is set to open the gripper fingers all the way). There are limits on the force and
velocity of the fingers in order to ensure gripper stability.

%this is the same evaluation protocol used in [1]
https://github.com/facebookresearch/r3m
"https://github. com/rail-berkeley/rlkit/tree/master/examples/iql
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D Hyperparameters

We adopted a similar set of hyperparameters as the BC-RNN baseline from robomimic—we used
the same LSTM settings, batch size, and RNN policy history length of F' = 10. We did experiment
with different choices of sub-trajectory lengths for the skill model (H = {1,5,10,25}) and found
that I = 10 performs optimally. Longer horizons may be helpful in some settings, however we
hypothesize that RNN-based architectures lack the capacity to accurately predict actions over sig-
nificantly longer horizons. It would be interesting to investigate if the optimal H changes under a
Transformer-based [53] architecture.

Hyper-parameter Value
Skill encoder: # LSTM hidden units 1000
Skill encoder: MLP hidden sizes 1024, 1024
Skill decoder: # LSTM hidden units 1000
Skill decoder: MLP hidden sizes 1024, 1024
Skill prior: hidden sizes 1024, 1024
TC: hidden sizes 128,128
Policy: # LSTM hidden units 1000
Sub-trajectory length I 10
Skill latent dimension 64
Skill KL weight 5 le—5
TC weight o le—6
Retrieval weight 0.15 for Real tasks, else 1.0
# observation history frames F’ 10
Batch size 16
Optimizer Adam [54]
Learning rate: skill VAE 5e—4
Learning rate: TP le—4
Learning rate: Policy le—3
Retrieval: max # Dprior samples N 300,000 for Real tasks, else 250,000
Retrieval: max # Dgrger samples M 2,500

% of samples chosen for retrieval

5% for Real tasks, else 10%

Table 7: Hyperparameters for our method.
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Method # Epochs Evaluation checkpoints freq n
BC-RNN 800 40
Franka Kitchen: 300
BC-RNN (FT): phase 1 CALVIN: 600 —
Real tasks: 300
Franka Kitchen: 400 20
BC-RNN (FT): phase 2 CALVIN: 400 20
Real tasks: 600 50
BC-RNN (R3M) 800 40
IQL 800 40
IQL (UDS) 800 40
! Franka Kitchen: 300
FIST: phase 1 CALVIN: 600 -
FIST: phase 2 200 10
Franka Kitchen: 300
Ours: phase 1 CALVIN: 600 -
Real tasks: 200
Ours: phase 2 200 10

Table 8: Training and Evaluation Hyperparameters.
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Task Image Size Rollout Length

Franka Kitchen 84 x 84 280
CALVIN: Setting Up 84 x 84 1000
CALVIN: Cleaning Up 84 x 84 1000
Real Breakfast 128 x 128 1500
Real Cook 128 x 128 1500

Table 9: Task Hyperparameters.
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