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Abstract

We introduce Masked Trajectory Models (MTM)
as a generic abstraction for sequential decision
making. MTM takes a trajectory, such as a state-
action sequence, and aims to reconstruct the tra-
jectory conditioned on random subsets of the
same trajectory. By training with a highly ran-
domized masking pattern, MTM learns versatile
networks that can take on different roles or capa-
bilities, by simply choosing appropriate masks at
inference time. For example, the same MTM net-
work can be used as a forward dynamics model,
inverse dynamics model, or even an offline RL
agent. Through extensive experiments in several
continuous control tasks, we show that the same
MTM network — i.e. same weights — can match
or outperform specialized networks trained for
the aforementioned capabilities. Additionally, we
find that state representations learned by MTM
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can significantly accelerate the learning speed
of traditional RL algorithms. Finally, in offline
RL benchmarks, we find that MTM is competi-
tive with specialized offline RL algorithms, de-
spite MTM being a generic self-supervised learn-
ing method without any explicit RL components.
Code is available at https://github.com/
facebookresearch/mtm.

1. Introduction

Sequential decision making is a field with a long and il-
lustrious history, spanning various disciplines such as re-
inforcement learning (Sutton & Barto, 1998), control the-
ory (Bertsekas, 1995; Astrom & Murray, 2008), and op-
erations research (Powell, 2007). Throughout this history,
several paradigms have emerged for training agents that
can achieve long-term success in unknown environments.
However, many of these paradigms necessitate the learn-
ing and integration of multiple component pieces to obtain
decision-making policies. For example, model-based RL
methods require the learning of world models and actor-
critic methods require the learning of critics. This leads to
complex and unstable multi-loop training procedures and
often requires various ad-hoc stabilization techniques. In
parallel, the emergence of self-supervised learning (Devlin

Masked Trajectory Modeling Infergnce
Tasks & Masking Patterns
Train with random autoregressive mask r ~
@ Future
" cructed @/ Prediction
econstructe
Hem B ; ‘
(Output) d dy s Y e reation 3\
Q I I
@‘ Learning
. 7
( Bi-Directional Transformer J p N\
'@' State
o~ Representation
. 7
Masked s
Tr(aljecn))ry . m E f |
nput, ﬁ Inverse
G{ Dynamics
"

Figure 1. Masked Trajectory Modeling (MTM) Framework. (Left) The training process involves reconstructing trajectory segments
from a randomly masked view of the same. (Right) After training, MTM can enable several downstream use-cases by simply changing the
masking pattern at inference time. See Section 3 for discussion on training and inference masking patterns.
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et al., 2018; Jing & Tian, 2019) has led to the developmentind unique capabilities dafi TMbelow.

of simple training objectives such as masked prediction and

contrastive prediction, which can train generic backbone 1 one Model Many Capabilities: The same model

models for various tasks in computer vision and natural lan-
guage processing (NLP). Motivated by this advancement,
we explore if self-supervised learning can lead to the cre-
ation of generic and versatile models for sequential decision
making with capabilities including future prediction, imita-
tion learning, and representation learning.

Towards this end, we propose the use of Masked Trajec-
tory Models MTM as a generic abstraction and framework
for prediction, representation, and control. Our approach
draws inspiration from two recent trends in Arti cial Intel-
ligence. The rstis the success of masked prediction, also
known as masked autoencoding, as a simple yet effective
self-supervised learning objective in NLP (Devlin et al.,
2018; Liu et al., 2019; Brown et al., 2020) and computer vi-
sion (Bao et al., 2021; He et al., 2021). This task of masked
prediction not only forces the model to learn good represen-
tations but also develops its conditional generative modeling
capabilities. The second trend that inspires our work is the

recent success of transformer sequence models, such as de-

cision transformers, for reinforcement (Chen et al., 2021;

Janner et al., 2021) and imitation learning (Reed et al., 2022; 4.

Sha ullah et al., 2022). Motivated by these breakthroughs,
we investigate if the combination of masked prediction and

transformer sequence models can serve as a generic self-

supervised learning paradigm for decision-making.

ConceptuallyMTMs trained to take a trajectory sequence
of the form: :=(Sg;ax;Sk+1;ak+1;:::St;at) and recon-
struct it given a masked view of the same, i.e.

A=h (Masked( )) (MTNI

whereh () is a bi-directional transformer arddasked ( )
is a masked view of
dropping some elements in the sequence.

trained withMTM(i.e. the same set of weights) can
be used zero-shot for multiple purposes including in-
verse dynamics, forward dynamics, imitation learning,
of ine RL, and representation learning.

2. Heteromodality: MTMis uniquely capable of con-

suming heteromodal data and performing missing data
imputation, since it was trained to reconstruct full tra-
jectories conditioned on randomly masked views. This
capability is particularly useful when different trajec-
tories in the dataset contain different modalities, such
as a dataset containing both state-only trajectories as
well as state-action trajectories (Baker et al., 2022).
Following the human heteromodal cortex (Donnelly,
2011), we refer to this capability as heteromodality.

3. Data Ef ciency: Training with random masks enables

different training objectives or combinations, thus al-
lowing more learning signal to be extracted from any
given trajectory. As a result, we ntMTMo be more
data ef cient compared to other methods.

Representation Learning: We nd that state repre-
sentations learned Y TMransfer remarkably well to
traditional RL algorithms like TD3 (Fujimoto et al.,
2018a), allowing them to quickly reach optimal perfor-
mance. This suggests tHdiT Mcan serve as a powerful
self-supervised pre-training paradigm, even for practi-
tioners who prefer to use conventional RL algorithms.

Overall, these results highlight the potential féTMas a
versatile paradigm for RL, and its ability to be used as a tool
for improving the performance of traditional RL methods.

generated by masking or 2 Related Work
For exam-

ple, one masked view of the above sequence couldutoencoders and Masked Prediction. Autoencoders
be: (sk;_; ak+1;_ ;:::;St;_ ) where  denotes a have found several applications in machine learning. The

masked element. In this caddTMnust in Il intermediate

classical PCA (Jolliffe & Cadima, 2016) can be viewed

states and actions in the trajectory as well as predict the nexs a linear autoencoder. Denoising autoencoders (Vincent
action in the sequence. A visual illustration of our paradigmet al., 2008) learn to reconstruct inputs from noise corrupted
is shown in Figure 1. Once trainell,TMcan take on mul-  versions of the same. Masked autoencoding has found recent
tiple roles or capabilities at inference time by appropriatesuccess in domains like NLP (Devlin et al., 2018; Brown
choice of masking patterns. For instance, by unmasking aet al., 2020) and computer vision (He et al., 2021; Bao et al.,
tions and masking states in the sequehEMcan function  2021). Our work explores the use of masked prediction as a
as a forward dynamics model. self-supervised learning paradigm for RL.

Our Contributions Our main contribution is the pro- Ofine Learning for Control ~ Our work primarily studies
posal ofMTMas a versatile modeling paradigm and pre-the of ine setting for decision making, where policies are
training method. We empirically investigate the capabilitieslearned from static datasets. This broadly falls under the
of MTMbon several continuous control tasks including planarparadigm of of ine RL (Lange et al., 2012). A large class of
locomotion (Fu et al., 2020) and dexterous hand manipuleasf ine RL algorithms modify their online counterparts by in-
tion (Rajeswaran et al., 2018). We highlight key ndings corporating regularization to guard against distribution shift
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that stems from the mismatch between of ine training andwe study the broader capabilities of our model on several
online evaluation (Kumar et al., 2020; Kidambi et al., 2020;high-dimensional control tasks. VPT (Baker et al., 2022)
Fujimoto et al., 2018b; Yu et al., 2021; Liu et al., 2020). In also tackles sequential decision making using transformers,
contrast, our work proposes a generic self-supervised précusing primarily on extracting action labels with a sep-
training paradigm for decision making, where the resultingarate inverse dynamics model. Furthermore, unlike prior
model can be directly repurposed for of ine RL. Zheng et al.work, we also demonstrate that our model has unique and
(2022) introduces a self supervised approach for the heteréavorable properties like data ef ciency, heteromodality, and
modal of ine RL settings where only a small subset of the the capability to learn good state representations.
trajectories have action labels. We leverage this setting in

th.e investigation of HeteromodMTMwhich can be trained 3. Masked Trajectory Modeling

without any change to the algorithm.
We now describe the details of our masked trajectory mod-
eling paradigm, such as the problem formulation, training

Self-Supervised Learning for Control The broad idea 9 F i i
objective, masking patterns, and overall architecture used.

of self-supervision has been incorporated into RL in two
ways. The rstis self-supervisediata collection such as _
task-agnostic and reward-free exploration (Pathak et alS-1- Trajectory Datasets

2017; Laskin et al.,, 2021; Burda et al., 2018). The second i/ TMs designed to operate on trajectory datasets that we
concerned with self-superviségharning for control, which  encounter in decision making domains. Taking the example
is closer to our work. Prior works typically employ self- of ropotics, a trajectory comprises of proprioceptive states,
supervised learning to obtain state representations (Yang &amera observations, control actions, task/goal commands,

Nachum, 2021; Parisi et al., 2022; Nair et al., 2022; Xia0and so on. We can denote such a trajectory comprising of
etal., 2022) or world models (Hafner et al., 2020; Hansen\; different modalities as

et al., 2022a;b; Seo et al., 2022), for subsequent use in

standard RL pipelines. In contrabMTMuses self-supervised = xhxZoooM oo xExE oy @
learning to train a single versatile model that can exhibit
multiple capabilities. wherex" refers to then™ modality in thet™ timestep. In

our empirical investigations, following prior work (Chen
et al., 2021; Janner et al., 2021), we use state, action, and

Trgnzf%rn:ﬁrs anthtJentlon n ARJL (glurd\gof[k IS fm- return-to-go (RTG) sequences as the different data modali-
spired by the recent advances In Al enabled Dy transiormerga s e that in-principle, our mathematical formulation is

(Vaswani et al., 2017), espe_cially in of ine RL (Cher_1 e_t al_"lggeneric and can handle any modality.
2021; Janner et al., 2021; Jiang et al., 2022b) and imitatio

learning (Reed et al., 2022; Sha ullah et al., 2022; Brohan
et al., 2022; Jiang et al., 2022a; Zhou et al., 2022). OP
particular relevance are works that utilize transformers info perform masked trajectory modeling, we rst “tokenize”
innovative ways beyond the standard RL paradigm. Dethe different elements in the raw trajectory sequence, by lift-
cision Transformers and related methods (Schmidhubeing them to a common representation space using modality-
2019; Srivastava et al., 2019; Chen et al., 2021) use returspeci ¢ encoders. Formally, we compute

conditioned imitation learning, which we also adopt in this

work. However, in contrast to Chen et al. (2021) and Jan- z;' = EM(x{") 8t2[LT m2[LM];

ner et al. (2021) who use next token prediction as the self- . . )
supervised task, we use a bi-directional masked predictioy"€réE™ is the encoder corresponding to modatity We
objective. This masking pattern enables the learning ofUPseauently arrange the embeddings in a 1-D sequence of

versatile models that can take on different roles based ofg"9thN = M T as:
inference-time masking pattern.

Recently, Liu et al. (2022) and Carroll et al. (2022) explore
the use of bi-directional transformers for RL and we build The self-supervised learning taskVti Ms to reconstruct the

off their work. In contrast to Liu et al. (2022) which studies aPove sequence conditioned on a masked view of the same.
downstream tasks like goal reaching and skill promptingVVe denote the latter witMasked( ), where we randomly

we study a different subset of tasks such as forward anfrop or “mask” a subset of elements in the sequence. The
inverse dynamics. Liu et al. (2022) also studies of ine RL Nal self-supervised objective is given by:

by applying TD3 and modifying the transformer attention N

mask Fo be cgusal, \{vhile we study the return conditioned max E logP (z"j Masked( )); (2)
behavior cloning setting. In contrast to Carroll et al. (2022),

.2. Architecture and Masked Modeling

= zhz2 Mz

t=1 m=1
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illustration. We note that the autoregressive mask in our
context isnot using a causal mask in attention weights, but
instead corresponds to masking at the input and output token
level, similar to MAE.

In the case of computer vision and NLP, the entire image or
sentence is often available at inference time. However, in the
case of RL, the sequence data is generated as the agent inter-
acts with the environment. As a result, at inference time, the
model is forced to be causal (i.e. use only the past tokens).
Figure 2.Tokenization of the trajectory sequencecomprises By using our random autoregressive masking pattern, the
three components. A modality speci ¢ encoder lifts from the model both learns the underlying temporal dependencies in
raw modality space to a common representation space, where Whe data, as well as the ability to perform inference on past

additionally add timestep embeddings and modality type embedévents. We nd that this simple modi cation is helpful in
dings. Collectively, these allow the transformer to distinguish most tasks we study.

between different elements in the sequence.

whereP is the prediction of the model. This encourage53'3' MTMas a generic abstraction for RL

the learning of a model that can reconstruct trajectories fronyhe primary bene t ofMTMs its versatility. Once trained,
parts of it, forcing it to learn about the environment as wellthe MTMhetwork can take on different roles, by simply using
as the data generating policy, in addition to good representgifferent masking patterns at inference time. We outline a
tions of the various modalities present in the trajectory.  few examples below. See Figure 3 for a visual illustration.

1. Firstly, MTMcan be used as a stand-alone algorithm for
of ine RL, by utilizing a return-conditioned behavior
cloning (RCBC) mask at inference time, analogous
to DT (Chen et al., 2021) and RvS (Emmons et al.,
2021). However, in contrast to DT and RvS, we use a
different self-supervised pre-training task and model

Architecture and Embeddings We adopt an encoder-
decoder architecture similar to He et al. (2021) and Liu
et al. (2022), where both the encoder and decoder are bi-
directional transformers. We use a modality-speci c en-
coder to lift the raw trajectory inputs to a common represen-
:je_mon space for tokens. F_urther, to allow the_ transformer to architecture. We nd in Section 4.3 that usivgTMn
isambiguate between different elements in the sequence, “RCBC-mode” outperforms DT and RS
a xed sinusoidal timestep encoding and a learnable mode- '
speci ¢ encoding are added, as illustrated in Figure 2. The 2. Alternatively, MTMcan be used to recover various
resulting sequence is then attened and fed into the trans-  components that routinely feature in traditional RL
former encoder where only unmasked tokens are processed. pipelines, as illustrated in Figure 3. Conceptually, by
The decoder processes the full trajectory sequence, and uses appopriate choice of masking patteriT Mcan: (a)
values from the encoder when available, or a mode-speci ¢ provide state representation that accelerates the learn-
mask token when not. The decoder is trained to predict the  ing of traditional RL algorithms; (b) perform policy
original sequence, including the unmasked tokens, using an initialization through behavior cloning; (c) act as a
MSE loss (He et al., 2021), which corresponds to a Gaus-  world model for model-based RL algorithms; (d) act as
sian probabilistic model. We also note that the length of an inverse dynamics model to recover action sequences
episodes/trajectories in RL can be arbitrarily long. In our that track desired reference state trajectories.
practical implementation, we model shorter “trajectory seg-
ments” that are randomly sub—.selected contiguous segmenEE Experiments
of xed length from the full trajectory.
Through detailed empirical evaluations, we aim to study the
Masking Pattern Intuitively, we can randomly mask ele- following questions.
ments in the sequence with a suf ciently high mask ratio to 1
make the self-supervised task dif cult. This has found suc- )
cess in computer vision (He et al., 2021). We propose to use 2- IS MTMa versatile learner? Can the same network
a variation of this — a random autoregressive masking pat- ~ trained withMThMbe used for different capabilities with-
tern. This pattern requires at least one token in the masked ~ ©ut additional training?
sequence to be autoregressive, meaning it must be predicted3. Is MTMan effective heteromodal learner? Can it con-
based only on previous tokens, and all future tokens are  sume heteromodal datasets, like state-only and state-
masked. This means the last element in each sampled tra- action trajectories, and effectively use such a dataset to
jectory segment is necessarily masked. See Figure 3 foran improve performance?

. IsMTMan effective algorithm for of ine RL?
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Figure 3.Masking Pattern for Training and Inference. (Training: box in orangeMTMs trained to reconstruct trajectory segments
conditioned on a masked view of the same. We use a random autoregressive masking pattern, where elements in the input sequence are
randomly masked, with the added constraint that at least one masked token must have no future unmasked tokens. This means the last
element in the sequence must necessarily be masked. We note that the input sequence can start and end on arbitrary modalities. In this
illustrated exampleR; is the masked token that satis es the autoregressive constraint. That is the predi®igisafonditioned on no

future tokens in the sequence. (Inference: boxes in gray) By changing the masking pattern at infereMd€Ntraa, either be used

directly for of ine RL using RCBC (Chen et al., 2021), or be used as a component in traditional RL pipelines as a state representation,
dynamics model, policy initialization, and more. These different capabilities are shown in gray. Modes not shown at the input are masked

out and modes not shown at the output are not directly relevant for the task of interest.

4. CanMTMlearn good representations that acceleratanark consisting of several environments and datasets. Fol-

downstream learning with standard RL algorithms? lowing a number of prior work, we focus on the locomo-
tion subset:Walker2D , Hopper , andHalfCheetah

See Appendix for additional details about model architecturd™0r €ach environment, we consider 4 different dataset
settings: Expert , Medium-Expert , Medium, and

and hyperparameters. _ _
Medium-Replay . The Expert dataset is useful for

4.1. Benchmark Datasets benchmarking imitatic_)n Iearning with BC, while thg .o_ther
datasets enable studying of ine RL and other capabilities of

To help answer the aforementioned questions, we draw upoRI TMsuch as future prediction and inverse dynamics.

a variety of continuous control tasks and datasets that lever- . _ _ _

age the MuJoCo simulator (Todorov et al., 2012) Addi_Adr0|t (Rajeswaran et al., 2018) is a collection of dexterous

tional environment details can be found in Appendix B.  Manipulation tasks with a simulated ve- ngered. We ex-
periment with thePen, andDoor tasks that test an agent's

D4RL (Fu et al., 2020) is a popular ofine RL bench-

Table 1.Results on D4RL.Of ine RL results on the V2 locomotion suite of D4RL are reported here, speci ed by the normalized score as
described in Fu et al. (2020). We nd thstTMbutperforms RvS and DT, which also use RCBC for of ine RL.

MOPO RsV DT MTM (Ours)

42.3 38.0 36.6 43.0
82.7 92.9

Environment Dataset BC CQL IQL TT

HalfCheetah = Medium-Replay 36.6 45.5 44.2 41.9
Medium-Replay  18.1 95.0 94.7 915 28.0 73.5

Hopper .
Walker2d Medium-Replay  26.0 77.2 73.9 82.6 17.8 60.6 66.6 77.3
HalfCheetah  Medium 42.6 44.0 47.4 46.9 53.1 41.6 42.0 43.6
Hopper Medium 52.9 58.5 66.3 61.1 67.5 60.2 67.6 64.1
Walker2d Medium 75.3 72.5 78.3 79.0 39.0 71.7 74.0 70.4
HalfCheetah  Medium-Expert  55.2 91.6 86.7 95.0 63.7 92.2 86.8 94.7
Hopper Medium-Expert 525 1054 915 110.0 23.7 101.7 107.6 112.4
Walker2d Medium-Expert 107.5 108.8 109.6 101.9 44.6 106.0 108.1 110.2
Average 51.9 77.6 77.0 78.9 42.2 71.7 74.7 78.7
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Table 2.Evaluation of various MTMcapabilities. MTMefers to the model trained with the random autoregressive mask, and evaluated
using the appropriate mask at inference tiBeMTM(“Specialized”) refers to the model that uses the appropriate mask both during
training and inference time. We also compare with a specialized MLP baseline trained separately for each capability. Note that higher is
better for BC and RCBC, while lower is better for FD and ID. We nd tMifMs often comparable or better than training on specialized
masking patterns, or training specialized MLPs. We use a box outline to indicate that a single model was used for all the evaluations
within it. The right most column indicatesMTMs comparable or better th&MTM and we nd this to be true in most cases.

Domain Dataset Task MLP S-MTM(Ours) MTMOurs) MTM& (S-MTM?
Expert (") BC 111.14 0.33 111.81 0.18 | 107.35 7.77 3
D4RL Expert (") RCBC 111.17 0.56 112.64 0.47 | 112.49 0.37 3
Hopper  Expert (#) ID 0.009 0.000 0.013 0.000 | 0.050 0.026 7
Expert (#) FD 0.072 0.000 0.517 0.025 | 0.088 0.049 3
Medium Replay (") BC 35.63 6.27 36.17 4.09 |29.46 6.74 7
D4RL Medium Replay (") RCBC 88.61 1.68 93.30 0.33 9295 1.51 3
Hopper Medium Replay (#) ID 0.240 0.028 0.219 0.008 | 0.534 0.009 7
Medium Replay (#) FD 2.179 0.052 3.310 0.425 | 0.493 0.030 3
Expert (") BC 62.75 1.43 66.28 3.28 |61.25 5.06 3
Adroit Expert (") RCBC 68.41 2.27 66.29 1.39 64.81 1.70 3
Pen Expert (#) ID 0.128 0.001 0.155 0.001 | 0.331 0.049 7
Expert (#) FD 0.048 0.002 0.360 0.020 | 0.321 0.048 3
Medium Replay (") BC 33.73 1.00 5484 5.08 |47.10 7.13 7
Adroit Medium Replay (") RCBC 41.26 4.99 57.50 3.76 58.76 5.63 3
Pen Medium Replay (#) ID 0.308 0.004 0.238 0.004 | 0.410 0.064 7
Medium Replay (#) FD 0.657 0.023 0.915 0.007 | 0.925 0.026 3

ability to carefully coordinate a large action-space to acjective without any explicit RL components.
complish complex robot manipulation tasks. We collect
Medium-Replay andExpert trajectories for each task 4.3. MTMCapabilities

using a protocol similar to D4RL. ) i ]
We next study ifMTMs a versatile learner by evaluating

ExORL (Yarats et al., 2022) dataset consists of trajectoriest across four different capabilities on Adroit and D4RL
collected using various unsupervised exploration algorithmsjatasets. We emphasize that we test these capabilities for
Yarats et al. (2022) showed that TD3 (Fujimoto et al., 2018a)y singleMTMmodel (i.e. same weights) by simply altering
can be effectively used to learn in this benchmark. We usene masking pattern during inference time. See Figure 3 for

data collected by a ProtoRL agent (Yarats et al., 2021) iy visual illustration of the inference-time masking patterns.
theWalker2D environment to learn three different tasks:

Stand , Walk, andRun. 1. Behavior Cloning (BC): Predict next action given
state-action history. This is a standard approach to
4.2. Of ine RL results imitation learning as well as a popular initialization

. L method for subsequent RL (Rajeswaran et al., 2018).
We rst test the capability oMTMo learn policies in the

standard of ine RL setting. To do so, we traMTMwith 2. Return Conditioned Behavior Cloning (RCBC) is

the random autoregressive masking pattern as described in  Similar to BC, but additionally conditions on the de-
Section 3. Subsequently, we use the Return Conditioned ~ Sired Return-to-Go. Recent works (Chen et al., 2021;
Behavior Cloning (RCBC) mask at inference time for evalu- ~ Emmons et al., 2021) have shown that RCBC can lead
ation. This is inspired by DT (Chen et al., 2021) which uses {0 Successful policies in the of ine RL setting.

a similar RCBC approach, but with a GPT model. 3. Inverse Dynamics (ID), where we predict the action
using the current and future desired state. This can
be viewed as a 1-step goal-reaching policy. It has
also found application in observation-only imitation
learning (Radosavovic et al., 2021; Baker et al., 2022).

Our empirical results are presented in Table 1. We nd
that MTMoutperforms the closest algorithms of DT and
RVS, suggesting that masked prediction is an effective pre-
training task for of ine RL when using RCBC inference . )
mask. More surprisinglyMTMs competitive with highly ~ 4- Forward Dynamics (FD), where we predict the next
specialized and state-of-the-art of ine RL algorithms like state given history and current action. Forward dy-
CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2021) namics models are an integral component of several

despite training with a purely self-supervised learning ob- ~ Model-based RL algorithms (Janner et al., 2019; Ra-
jeswaran et al., 2020; Hafner et al., 2020).
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Figure 4.lmpact of Masking Patterns. This plot shows

MTMRCBC performance trained with three different masking

patterns, random, random autoregressive, and a specialized RCBC

mask. We nd that autoregressive random often outperforms rangigure 5.MTMcan effectively learn from heteromodal datasets.

dom, and in most cases is even competitive with the specialized (0Real world data may not always contain action labels. We simulate

oracle) RCBC maskY -axis normalized with using RCBC mask.  thjs setting by training MTMmodels on Expert datasets across
domains where only a small fraction of the data have action labels.

. s . Our HeteromodaMTMmodel is able to effectively improve task
We consider two variations dfiTM The rst variant, S with the additional data over baseliMTMand MLP that train

MTMtrains a spemallzed_ mode for egch_ capability usingy,p, only the subset of data with actioné-axis normalized with
the corresponding masking patterrtratin time. The sec- respect to performance of Heteromo¥éT\
ond variant, denoted simply &TMtrains a single model

using the random autoregressive mask speci ed in Section

3. Subsequently, the same model (i.e. same set of weights)

is evaluated for all the four capabilities. We also compare

our results with specialized MLP models for each capabil-

ity. We evaluate the best checkpoint across all models and

report mean and standard deviation acebsseds, taking

the average 020 trajectory executions per seed. For all

experiments we train on 95% of the dataset and reserve

5% of the data for evaluation. For BC and RCBC results,

we report the normalized score obtained during evaluation

rollouts. For ID and FD, we report normalized loss values

on the aforementionebi% held-out data.

A snapshot of our results are presented in Table 2 for a sub-

set of environments. Please see Appendix A for detailed

results on all the environments. The last column of the

table indicates the performance difference between the ver-

satileMTMand the specialize8-MTM We nd thatMTMs

comparable or even better than specialized masks, and also

matches the performance of specialized MLP models. Wﬁigure 6.Dataset ef ciency. We trainMTMn the D4ARL Hopper
suspect that specialized masks may require additional tuningng Adroit Door environments across a range of dataset sizes,
of parameters to prevent over tting or under tting, whereas measured by the percent of the original dataset illion tran-
random autoregressive masking is more robust across tasksions). We see thafTMs able to consistently outperform spe-

and hyperparameters. cialized MLP models in the low data regime. Furthermore, we
see that Heteromod8MTMi.e. MTMrained on heteromodal data
4.4. Impact of Masking Patterns containing both state-only and state-action trajectories) is further

able to provide performance improvement in low data regimes.
We study if the masking pattern in uences the capabilities
of the learned model. Figure 4 shows that random autore-
gressive masking matches or outperforms purely randoman lead to diminished performance for downstream capa-
masking on RCBC for a spread of environments for of ine bilities. Random autoregressive masking mitigates these
RL. We note that pure random masking, as done in MAE andssues by allowing the learning of a single versatile model
BERT, which focuses on only learning good representationsyhile still matching or even exceeding the performance of
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(a) DM-Control Walker2D Stand Task.  (b) DM-Control Walker2D Walk Task (c) DM-Control Walker2D Run Task

Figure 7.MTMRepresentations enable faster learningThe plot visualizes a walker agent's performance as it is trained using TD3

on different representations across 3 taskaifd , Walk, Run). The agent is trained completely of ine using data from the EXORL
dataset. FOMTMbstate representations, we encode the raw stateMiltklM T Mstate-action representations additionally jointly encode the

state and action for the critic of TD3. The learning curves show that netiMiEdrepresentations enable the agent to more quickly

learn the task at hand, reaching or exceeding the asymptotic performance of TD3 on raw stat®4T &itie representations and

MT Mstate-action representations are comparable in terms of learning speed and performance. In addition, we see that in some cases, like
the Run task, state-action representations frtfivhelp achieve better performance than alternatives. We also show the asymptotic
performance reached by TD3 on raw states and actions after training for 100000 iterations and plot the average of 5 seeds.

specialized masks, as seen in Table 2. 4.6. Data Ef ciency

Figure 5 not only showed the effectivenes$fMon hetero-
modal data, but also thtdTMs able to achieve higher per-
MTMis uniquely capable of learning from heteromodal formance than baseline (specialized) MLPs in the low data
datasets. This is enabled by the training procedure, wher@gimes. To explicitly test the data ef ciency bfTMwe
any missing data can be treated as if it were masked. Duringtudy the performance as a function of the training dataset
training we apply the loss only to modes that exist in thesize, and present results in Figure 6. We observeNfidils
dataset. For these experiments we takeBkgert subset more sample ef cient and achieves higher performance for
of our trajectory data and remove action labels from theany given dataset size. Heteromol&IMalso outperforms
majority of the dataset. The training data consistdd%fof ~ MTMhroughout, with the performance gap being quite sub-
the data with all modes (states, actions, return-to-go) angtantial in the low-data regime. We hypothesize that the
95%percent of the data with no action labels. As is done indata ef ciency ofMTMs due to better usage of the data.
all experiments, the remainder is reserved for testing. ~ Speci cally, since the model encounters various masks dur-
I . . .__ing training, it must learn general relationships between
From our initial experiments, we found that naively adding igterent elements. As a resubTMmay be able to squeeze
in the state only data during tralnlng, gnd evaluating with theOut more learning signal from any given trajectory.
RCBC mask did not always result in improved performance.
'I_'h|s was despite |mpr(_Jvement in forwar_d dyn_amlcs pred|c21_7. Representations oMTM
tion as a result of adding state-only trajectories. Based on
this observation, we propose a two-stage action inferencEinally, we study if the representations learnedyVare
procedure. First, we predict future states given current stataseful for downstream learning with traditional RL algo-
and desired returns. This can be thought of as a forwardithms. If this is the caseéMTMcan also be interpreted as
dynamics pass where the desired returns are used instead of ine pre-training exercise to help downstream RL. To
of actions, which are masked out (or more precisely, missnstantiate this in practice, we consider the setting of of-
ing). Next, we predict actions using the current state andine RL using TD3 on the EXORL dataset. The baseline
predicted future states using the inverse dynamics mask. Waethod is to simply run TD3 on this dataset using the raw
refer to this model trained on heteromodal data, along withstate as input to the TD3 algorithm. We compare this to
the two stage inference procedure, as Heterombta@¥!  our proposed approach of usiMr Mstate representations
We present the results in Figure 5, where we nd that Hetfor TD3. To do this, we rst pretrain amMTMmodel on
eromodaMTMeonsistently improves performance over the state-action sequences in the ExORL dataset. Subsequently,
baseline MLP andITMhat are trained only on the subset to use state representations frdfit Mwe simply use the
of data with action labels. MTMencoder to tokenize and encode each state individually.

4.5. Heteromodal Datasets
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This latent representation of the state can be used in thBovernment, any sponsor, or employer.

place of raw states for the TD3 algorithm. The critic of TD3

is condm_oned on state; and actions. _We additionally teshaferences

state-action representationsMT Moy using the latent rep-

resentation of the state and action encoded jointly MM~ Astrom, K. J. and Murray, R. M. Feedback systems: An
We allow end to end netuning of the representations during  introduction for scientists and engineers. 2008.
training. We compare training TD3 on raw states to training
TD3 with (a) state representations from & Mmodel, and
(b) state-action representations from ¥M&Mmodel with
the of ine RL loss (i.e. TD3 objective).
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2016.
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Figure 7 depicts the learning curves for the aforementioned Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
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A. Additional MTMResults

Table A.1.Evaluation oMTMcapabilities on D4RL.

Domain Dataset Task MLP S-MTM(Ours) MTMOurs)
Expert BC 111.14 0.33 111.81 0.18 | 107.35 7.77
D4RL Expert RCBC 111.17 0.56 112.64 0.47 | 112.49 0.37
Hopper Expert ID 0.009 0.000 0.013 0.000 | 0.050 0.026
Expert FD 0.072 0.000 0.517 0.025 | 0.088 0.049
Medium Expert BC 58.75 3.79 60.85 3.14 |54.96 244
D4RL Medium Expert RCBC 110.22 0.99 113.00 0.39 | 112.41 0.23
Hopper Medium Expert  ID 0.015 0.000 0.015 0.001 | 0.053 0.003
Medium Expert FD 0.139 0.001 0.938 0.062 | 0.077 0.005
Medium BC 5593 1.12 56.74 056 |57.64 3.37
D4RL Medium RCBC 62.20 341 69.20 1.60 70.48 4.62
Hopper Medium ID 0.022 0.001 0.030 0.001 | 0.143 0.035
Medium FD 0.153 0.002 1.044 0.061 | 0.206 0.064
Medium Replay BC 35.63 6.27 36.17 4.09 | 29.46 6.74
D4RL Medium Replay RCBC 88.61 1.68 93.30 0.33 9295 1.51
Hopper Medium Replay ID 0.240 0.028 0.219 0.008 | 0.534 0.009
Medium Replay FD 2.179 0.052 3.310 0.425 | 0.493 0.030
Expert BC 109.28 0.12 108.76 0.32 | 107.08 1.47
D4RL Expert RCBC 112.21 0.31 109.83 0.58 | 110.08 0.82
Walker2D Expert ID 0.021 0.000 0.055 0.001 | 0.233 0.038
Expert FD 0.077 0.001 0.233 0.012 | 0.177 0.031
Medium Expert BC 108.45 0.31 108.49 1.00 | 75.64 7.78
D4RL Medium Expert RCBC 110.47 0.38 110.43 0.30 | 110.21 0.31
Walker2D Medium Expert  ID 0.019 0.000 0.038 0.001 | 0.213 0.030
Medium Expert FD 0.088 0.001 0.221 0.013 | 0.167 0.032
Medium BC 7591 1.87 75.87 0.44 59.82 7.06
D4RL Medium RCBC 78.76 2.26  78.64 2.05 78.08 2.04
Walker2D Medium ID 0.026 0.001 0.055 0.002 | 0.214 0.145
Medium FD 0.116 0.002 0.236 0.012 | 0.175 0.162
Medium Replay BC 23.39 2.75 4845 284 | 2198 2.77
D4RL Medium Replay RCBC 72.855.23 78.33 211 77.32 1.79
Walker2D Medium Replay ID 0.532 0.017 0.493 0.018 | 0.921 0.032
Medium Replay FD 1.224 0.011 0.883 0.011 | 0.446 0.016
Expert BC 93.14 0.16 9521 0.44 |94.19 0.21
D4RL Expert RCBC 94.16 0.35 95.12 0.64 94.83 0.72
HalfCheetah Expert ID 0.001 0.000 0.003 0.000 | 0.009 0.001
Expert FD 0.009 0.000 0.018 0.003 | 0.005 0.001
Medium Expert BC 68.04 157 77.88 7.21 |65.73 5.69
D4RL Medium Expert RCBC 93.49 0.29  94.85 0.32 94.78 0.39
HalfCheetah Medium Expert ID 0.0010.000 0.001 0.000 | 0.012 0.002
Medium Expert  FD 0.014 0.000 0.043 0.008 | 0.009 0.001
Medium BC 4287 0.11 4337 0.14 | 4319 0.34
D4RL Medium RCBC 44.43 0.26  43.83 0.22 43.65 0.08
HalfCheetah Medium ID 0.001 0.000 0.005 0.000 | 0.027 0.017
Medium FD 0.020 0.000 0.053 0.011 | 0.020 0.010
Medium Replay BC 36.81 0.52 39.03 0.78 | 19.64 11.26
D4RL Medium Replay RCBC 40.55 0.18 4294 0.33 43.08 0.43
HalfCheetah Medium Replay 1D 0.0030.000 0.005 0.000 | 0.036 0.012
Medium Replay FD 0.059 0.000 0.058 0.010 | 0.028 0.007
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