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Thank you for reading our supplementary materials! Here we provide in-depth descriptions of our
method, including details about:

1. Loss functions (Sec. A).
2. Image-based lighting (Sec. B).
3. Image-based lighting (Sec. C).
4. Ablations (Sec. D).
5. Additional experimental results (Sec. E and Sec. H).
6. Challenges in ZJU Mocap dataset (Sec. F).
7. Application examples in Sec. G.
8. Limitations and social impact in Sec. I.

We strongly encourage our readers to view the supplemental video for a more comprehensive visual
perception.

A LOSS FUNCTIONS

Our loss function L = Limg + Lmask + Lreg is composed of three parts: an image loss Limg using
ℓ1 norm on tone mapped colors, and mask loss Lmask using squared ℓ2, and regularization losses
Lreg to improve the quality of canonical geometry, materials, lights, and motion.

Image loss: our renderer utilizes physically-based shading to produce high-dynamic range (HDR)
images. Then the complex materials and environmental lights are elaborately optimized. Thus
our loss function requires a full range of floating point values. We follow (Hasselgren et al.,
2021; Munkberg et al., 2022; Hasselgren et al., 2022) to compute ℓ1 norm on tone mapped col-
ors. Specifically, we first transform linear radiance values i according to a tone-mapping operator
T (i) = Γ(log(i+1)), in which Γ(i) is a linear RGB to sRGB transformation function (Stokes et al.,
1996):

Γ(i) =

{
12.92i i ≤ 0.0031308

(1 + a)i1/2.4 − a i > 0.0031308

a = 0.055,

(1)

Mask loss: The renderer (Laine et al., 2020) renders both the shaded images and the corresponding
rasterization masks in a differentiable manner. Therefore, we compute the ℓ2 norm between the
masks and the preprocessed mattings (in both ZJU-MoCap and H36M benchmarks, we use the
provided preprocessed subject masks from (Peng et al., 2021b; Gong et al., 2018)), akin to the
traditional shape-from-silhouette (Ma et al., 2004) technique. The mask loss is parallel with the
image loss, yet facilitates the course of shading optimization by making shape convergence super
fast in about a hundred training steps.

Regularizers: We need various priors to encourage the optimization to converge at a place where
the geometry, materials, and lighting are well separated and smooth enough (Munkberg et al., 2022;
Hasselgren et al., 2022). Therefore, we choose to minimize regularization during training.

We introduce smoothness to PBR materials in terms of albedo kd, specular parameters korm, and
surface geometry nomral n as following:

Lk =
1

|xsurf |
∑
xsurf

|k (xsurf )− k (xsurf + ϵ)| , (2)
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where |xsurf | is a surface point on the surface in canonical space and ϵ ∼ N (0, σ=0.01) is a small
random offset. We regularize the geometry normal on the surface of the canonical mesh derived
from the SDF field for a seek of a smoother surface and avoidance of holes in the surface.

We regularize light by assuming the neutral spectrum in the real world. Specifically, given the
per-channel average radiance densities c̄i, we penalize the color shifts as:

Llight =
1

3

3∑
i=0

∣∣∣∣∣ci − 1

3

3∑
i=0

ci

∣∣∣∣∣ , (3)

To encourage a watertight surface and reduce floating meshes both inside and outside the subject,
we impose the regularization of binary cross-entropy loss H on the SDF field as:

Lsdf =
∑

i,j∈Se

H (σ (si) , sign (sj))

+H (σ (sj) , sign (si)) ,

(4)

where Se is the set of all vertex along their edges in which the signs of the SDF values are different
(i.e., sign(si) ̸= sign(sj)). To remove the floating meshes outside the surface, we impose an addi-
tional loss. For a triangle surface f extracted by marching tetrahedra, if f is invisible, we encourage
its SDF values to be positive as:

Linvis =
∑

i∈Sinvis

H(σ (si) , 1). (5)

We weigh the above terms and use the loss for all our experiments:

L = Limage + Lmask

+ λkd︸︷︷︸
=0.03

Lkd
+ λkorm︸ ︷︷ ︸

=0.05

Lkorm
+ λn︸︷︷︸

=0.025

Ln

+ λlight︸︷︷︸
=0.005

Llight + λsdf︸︷︷︸
=0.02

Lsdf + λinvis︸︷︷︸
=0.01

Linvis.

(6)

B IMAGE-BASED LIGHTING

The split sum shading model is widely used in real-time rendering (Möller et al., 2008), giving both
realism and efficiency against spherical Gaussians (SG) and spherical harmonics (SH) (Boss et al.,
2021; Chen et al., 2019; Zhang et al., 2021a). We use a differentiable split sum (Karis, 2013) shading
model to approximate rendering equation (Kajiya, 1986) for image-based environment light learning
as (Munkberg et al., 2022):

L (ωo) ≈
∫
Ω

f (ωi, ωo) (ωi · n) dωi∫
Ω

Li (ωi)D (ωi, ωo) (ωi · n) dωi.

(7)

where D is the GGX normal distribution function (NDF) (Walter et al., 2007) in a Cook-Torrance
microfacet specular shading model (Cook & Torrance, 1982). The first term contributes to the
specular BSDF wrt. a solid white environment light, which depends solely on the roughness r of the
BSDF and the light-surface angles cos θ = ωi · n. The second term contributes to the integral of the
incoming radiance with the GGX normal distribution function, D. Both terms can be pre-computed
and filtered to reduce computation (Karis, 2013).

The training parameters are texels of a cube light map whose resolution is 6× 512× 512. The pre-
integrated lighting for the least roughness values is derived from the base level, and multiple smaller
mip levels are constructed from it (Karis, 2013). Each mip-map is filtered by average-pooling the
base level of the current resolution and is convolved with the GGX normal distribution function. The
per mip-level filter bounds are pre-computed as well. We leverage a PyTorch implementation with
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CUDA extensions from (Munkberg et al., 2022). Moreover, a cube map is created to represent the
diffuse lighting in a low resolution, akin to the filtered specular probe. It shares the same optimizable
parameters and is average-pooled to the mip level with r = 1 roughness. The pre-filtering only
involves the first term in Eq. 7.

C IMPLEMENTATION DETAILS

SDF network. We parametrize the SDF field with an MLP to increase surface water-tight and
smoothness. We choose the MLP architecture from (Mildenhall et al., 2022), which consists of 6
frequency bands for positional encoding, and 8 linear layers, each having 256 neurons, followed by
ReLU activations. We implicitly regularize the smoothness by increasing the Lipschitz property in
the SDF field(Liu et al., 2022).

Material network. The material model is a small MLP with hash-encoding (Müller et al., 2022)
as the materials query is computationally extensive. The MLP consists of two linear layers, each
having 32 neurons, followed by ReLU activations. The hash-encoding has a spatial resolution of
4096 and the rest configures are the same as (Munkberg et al., 2022). To reduce computation, we
predict all material channels at once with one backbone network. Besides, we introduce inductive
bias of materials of clothed humans in the real world, by providing minimum and maximum values
for each materials channel. We follow (Zhang et al., 2021b) to limit the albedo kd ∈ [0.03, 0.8], and
the roughness kr ∈ [0.08, 1]. The texels in the environment light are randomly initialized between
[0.25, 0.75].

Motion networks. For the motion module, we use the same MLP architecture as (Chen et al., 2021;
Wang et al., 2022), which is similar to our SDF MLP. To resolve the problem where the training
pose variation is too limited for skinning field learning (e.g., self-rotation video without any limbs
movements), we initialize the MLP with the pre-trained skinning model provided by (Wang et al.,
2022), and impose ℓ2 norm for the skinning weights logits between our predictions and the ground
truth from SMPL (Loper et al., 2015). We ablate the design choices in Sec. D. For the non-rigid
modeling, we use another 4-layer ReLU MLP with a 4-frequency-band positional encoding. We
also progressively anneal its encoding for 5k iterations as (Park et al., 2021). The weights of the
last layer are initialized with a uniform distribution U(−10−5, 10−5), i.e. initializing the non-rigid
offsets to be close to zero and not interfering with the major optimizations of geometry and materials.

Optimization. We use Adam (Kingma & Ba, 2015) as our default optimizer. We optimize the
subject for 5k steps for 1024×1024 images or 10k steps 512×512 images. We disable the perturbed
normal map during optimization as it leads to SDF collapsing abruptly at a certain step (i.e., all
SDF values are positive or negative where marching tetrahedra fails). The optimization process
takes about an hour on a single NVIDIA GTX3090 GPU. The indicative results with plausible
quality appear after a few minutes, which is quite faster than our counterparts (Peng et al., 2021b;a;
Wang et al., 2022; Xu et al., 2022). Such superior efficiency could largely accelerate downstream
applications. The training visualization is presented in the supplemental video.

Tetrahedra grids. We start with a tetrahedra grid with 128× 128 resolution, including 192k tetra-
hedra and 37k vertices. Each tetrahedron can produce at most 2 triangles by marching tetrahedra
algorithm (Munkberg et al., 2022; Shen et al., 2021; Gao et al., 2020). To increase the resolution of
the tetrahedra grid, we subdivide the grid at the 500th step. To avoid the out-of-memory problem
caused by the vast amount of floating meshes in the void space at the beginning of training, we
pre-train the SDF network to match a visual hull of humans in canonical space. The hull could be
derived from either the skeleton capsules or the SMPL (Loper et al., 2015) mesh. Note that we only
pre-train for 500 iterations, which leads to a very coarse shape akin to the visual hull rather than
the given ground truth mesh. The initialized mesh is presented in the training visualization part of
the supplemental video.

D ABLATIONS

The parametrization type for SDF field. The SDF fields can either be parameterized as either
MLPs or value fields. Table 1 and Figure 1 show that using MLP to predict SDF values results in a
smoother mesh surface that is watertight. MLP offers extrapolation ability to predict invisible parts
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Table 1: The ablation on each module from our method. The mesh tends to be noisy and poor
for rendering novel poses without MLP parametrization for the geometry module; Removing the
non-rigid module harms the convergence of our model due to the disability to solve multi-view in-
consistency; PBR materials improve the overall shading quality by joint modeling both decomposed
materials and lighting.

Training Pose Novel Pose
PSNR SSIM PSNR SSIM

w/o SDF MLP 25.17 0.913 23.37 0.874
w/o Non-rigid 25.03 0.909 23.45 0.877
w/o PBR 25.10 0.914 23.44 0.878
w/o Specular 25.24 0.915 23.58 0.879
Full 25.26 0.916 23.52 0.879

GT w/o SDF MLP w/o Non-rigid w/o PBR w/o Specular Full

Figure 1: Qualitative ablation on each module. The SDF MLP improves the mesh smoothness;
non-rigid modeling proves the texture quality by solving the multi-view consistency of cloth dynam-
ics; The PBR materials have a larger capacity for modeling complex materials and lighting against
the only-RGB and the no-specular counterparts, which further facilitates both mesh and material
learning.

and keep the mesh watertight. While directly optimizing SDF value fields leads to a jiggling mesh
surface and holes in invisible parts during training (e.g., underarm).

The shading model type in geometry module. We compare PBR shading models with directly
predicting RGB colors and PBR without shading specular. Table 1 and Figure 1 show that PBR
shading models lead to higher metrics against RGB predications, which indicates that PBR materials
can better model complex textures and lights for dynamic humans. Removing the specular term in
PBR does not affect the performance much. We conjecture that there is less specularity in human
skin and clothes materials.

The impact of the non-rigid net in motion module. As shown in Table 1 and Figures 1, mod-
eling pose-dependent non-rigid dynamics of clothes improves the overall reconstruction quality. It
facilitates the aggregation of shading information for multi-view inputs during training.

The impact of human tracking quality. Table 2 (a) and Figure 2 show that using marker-based
pose-tracking data can give better results. The same phenomenon has been stated in (Peng et al.,
2021a). Noisy marker-less pose-tracking harms the optimization process by damaging the multi-
view consistency and the exact pose for shading optimization, which leads to blurry textures.

The impact of training view amount. Table 2 (b) and Figure 3 reveal that giving one camera of
view degrades the overall reconstruction quality, and multi-view consistency improves the final re-
sults. The model can aggregate multi-view information for better shading optimization, thus leading
to clearer surface materials.
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GT Marker-based Markerless GT Marker-based Markerless

Figure 2: Qualitative results of models trained on poses from marker-less and marker-based sys-
tems.

GT 1 View 2 Views 3 Views

Figure 3: Comparison of models trained with different numbers of camera views on the subject
“S9”.

The impact of training frame amount. As the number of training frames increases, the rendering
quality on novel view and novel pose increases as well (Table 2 (c) and Figure 4). Notice that the
reconstruction quality saturated after using a certain amount of training frames, the same results can
be observed in (Peng et al., 2021a) as well.

Number of Training Views. Table 3 and Figure 5 show that giving one camera of view degrades
the overall reconstruction quality, and multi-view consistency improves the final results. The model
can aggregate multi-view information for better shading optimization, thus leading to clearer surface
materials.

The effect of Skinning Module Design Table4 and Figure8 reveal that the initialization with a pre-
trained skinning net and the regularization on surface skinning improve the overall reconstruction
quality. The initialization provides skinning prior which helps to speed up geometry convergence.
From Figure 6-7, the geometry details improve with the initialization under the same training time.

The regularization on surface skinning prevents geometry degradation. Figure 8 indicates that our
model can not learn correct canonical geometry without initialization and regularization. The mesh
distortion is reduced with the regularization.

Effect of SDF Network The MLP parametrization of the SDF field keeps our surface both water-
tight and smooth, as shown in Figure 9.

E MORE COMPARISONS

We present full quantitative comparisons in Table 7, Table 5, Table 8, and Table 6.

We present the visual comparisons with Neuman (Jiang et al., 2022) and HumanNeRF (Weng et al.,
2022). Notably, Neuman is designed for monocular video, so the comparison is just for reference.
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Table 2: The ablations results on data quality and quantity on H36M S9 subject, in terms of
PSNR and SSIM (higher is better). The better the data quality, the better the reconstruction results.

Training pose Novel pose
PSNR↑ SSIM↑ PSNR↑ SSIM↑

(a) type of pose tracking

w/o marker 24.73 0.893 22.60 0.853
w/ marker 25.53 0.911 23.80 0.879
(b) number of training views

1 view 25.09 0.906 22.97 0.866
2 views 25.56 0.911 23.76 0.878
3 views 25.57 0.911 23.67 0.876

(c) number of training frames

1 frame 20.93 0.817 19.58 0.785
100 frames 23.99 0.882 22.49 0.856
200 frames 25.27 0.905 23.32 0.873
800 frames 24.89 0.900 23.16 0.873

Table 3: Ablation results of training views on the ZJU-MoCap 313 subject.

Training pose Novel pose
ZJU-MoCap 313 PSNR↑ SSIM↑ PSNR↑ SSIM↑
1 view 24.39 0.913 21.45 0.869
2 views 28.06 0.945 22.81 0.888
3 views 28.50 0.956 23.17 0.894
4 views 29.04 0.961 23.20 0.896

Table 4: The ablation on the skinning module of ZJU-MoCap 313 dataset.

Training Pose Novel Pose
ZJU-MoCap 313 PSNR SSIM PSNR SSIM

w/o skinning init. & reg. 27.46 0.949 20.31 0.831
w/ skinning initialization 28.82 0.958 23.08 0.893
w/ skinning regularization 28.80 0.959 23.14 0.895

Full 29.05 0.961 23.27 0.897

Table 5: Quantitative results of training pose novel view synthesis of H36M dataset.

Training pose
PSNR SSIM

NB SA-NeRF Ani-NeRF ARAH Ours NB SA-NeRF Ani-NeRF ARAH Ours

S1 22.87 23.71 22.05 24.45 24.56 0.897 0.915 0.888 0.919 0.919
S5 24.60 24.78 23.27 24.54 24.51 0.917 0.909 0.892 0.918 0.920
S6 22.82 23.22 21.13 24.61 24.55 0.888 0.881 0.854 0.903 0.902
S7 23.17 22.59 22.50 24.31 24.05 0.914 0.905 0.890 0.919 0.916
S8 21.72 24.55 22.75 24.02 23.94 0.894 0.922 0.898 0.921 0.920
S9 24.28 25.31 24.72 26.20 25.99 0.910 0.913 0.908 0.924 0.919
S11 23.70 25.83 24.55 25.43 25.48 0.896 0.917 0.902 0.921 0.915

Average 23.31 24.28 23.00 24.79 24.72 0.902 0.909 0.890 0.918 0.916
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Table 6: Quantitative results of unseen pose novel view synthesis of H36M dataset.

Unseen pose
PSNR SSIM

NB SA-NeRF Ani-NeRF ARAH Ours NB SA-NeRF Ani-NeRF ARAH Ours

S1 21.93 22.67 19.96 23.08 23.72 0.873 0.890 0.855 0.899 0.904
S5 23.33 23.27 20.02 22.79 23.13 0.893 0.881 0.840 0.890 0.898
S6 23.26 23.23 23.64 24.04 24.17 0.888 0.888 0.882 0.900 0.903
S7 22.40 22.51 21.76 22.58 22.72 0.888 0.898 0.869 0.891 0.889
S8 20.78 23.06 21.63 22.34 22.71 0.872 0.904 0.877 0.896 0.902
S9 22.87 23.84 21.95 24.36 24.54 0.880 0.889 0.871 0.894 0.895
S11 23.54 24.19 22.55 24.78 24.47 0.879 0.891 0.875 0.902 0.900

Average 22.59 23.25 21.64 23.42 23.64 0.882 0.892 0.867 0.896 0.899

Table 7: Quantitative results of training pose novel view synthesis of ZJU-MoCap dataset.

Training pose
PSNR SSIM

NB SA-NeRF Ani-NeRF ARAH Ours NB SA-NeRF Ani-NeRF ARAH Ours

Twirl(313) 30.56 31.32 29.80 31.60 29.67 0.971 0.974 0.963 0.973 0.947
Taichi(315) 27.24 27.25 23.10 27.00 24.21 0.962 0.962 0.917 0.965 0.919
Swing1(392) 29.44 29.29 28.00 29.50 27.58 0.946 0.946 0.931 0.948 0.899
Swing2(393) 28.44 28.76 26.10 27.70 25.91 0.940 0.941 0.916 0.940 0.890
Swing3(394) 27.58 27.50 27.50 28.90 27.67 0.939 0.938 0.924 0.945 0.902
Warmup(377) 27.64 27.67 24.20 27.80 26.69 0.951 0.954 0.925 0.956 0.926
Punch1(386) 28.60 28.81 25.60 29.20 27.65 0.931 0.931 0.878 0.934 0.881
Punch2(387) 25.79 26.08 25.40 27.00 25.68 0.928 0.929 0.926 0.945 0.908
Kick(390) 27.59 27.77 26.00 27.90 24.08 0.926 0.927 0.912 0.929 0.840

Average 28.10 26.19 28.27 28.51 26.57 0.944 0.945 0.921 0.948 0.901

Table 8: Quantitative results of unseen pose novel view synthesis of ZJU-MoCap dataset.

Unseen pose
PSNR SSIM

NB SA-NeRF Ani-NeRF ARAH Ours NB SA-NeRF Ani-NeRF ARAH Ours

Twirl(313) 23.95 24.33 22.80 24.40 23.63 0.905 0.908 0.863 0.914 0.878
Taichi(315) 19.56 19.87 18.47 20.00 20.42 0.852 0.863 0.795 0.881 0.850
Swing1(392) 25.76 26.27 18.44 26.20 25.49 0.909 0.927 0.670 0.927 0.883
Swing2(393) 23.80 24.96 21.87 24.40 24.31 0.878 0.900 0.836 0.915 0.883
Swing3(394) 23.25 24.24 17.69 25.20 24.72 0.893 0.908 0.792 0.908 0.870
Warmup(377) 23.91 25.34 23.28 25.50 24.80 0.909 0.928 0.901 0.933 0.894
Punch1(386) 25.68 27.30 25.55 27.00 26.24 0.881 0.905 0.872 0.910 0.853
Punch2(387) 21.60 23.08 21.92 24.20 24.06 0.870 0.890 0.838 0.917 0.889
Kick(390) 23.90 24.43 23.90 24.80 25.79 0.870 0.889 0.887 0.896 0.873

Average 23.49 24.42 21.55 24.63 24.38 0.885 0.902 0.828 0.911 0.875
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GT 1 Frame 100 Frames 200 Frames 800 Frames

Figure 4: Comparison of models trained with different numbers of video frames on the subject
“S9”.

Figure 5: Ablation study of training views on the ZJU-MoCap 313 subject.

F CHALLENGES IN ZJU-MOCAP DATASET

We found that the challenges in ZJU-Mocap datasets impede our methods to get better quantitative
performance. Li et al. (2022) mentions this in their paper and here we refer to their findings in
Figure 11.

The variation of exposures in cameras breaks our assumption of constant lighting, which hurts the
performance.

We also compare the ground truths and our renderings side by side to demonstrate the problem in
Figure 12 and Figure 13. Even the successive cameras have different exposures. While our method
renders images with the same exposure due to our constant lighting assumption.

G APPLICATIONS

We showcase relighting, texture editing, and novel poses synthesis on AIST dataset (Li et al.,
2021a) in Figure 14, Figure 15, and Figure 16 separately. All the above applications are presented
in the supplemental video.

Figure 6: Ablation study of the skinning module on the H36M S9 subject.
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Figure 7: Ablation study of the skinning module on the ZJU-MoCap 313 subject.

Figure 8: Ablation study of the skinning module on the ZJU-MoCap 313 subject.

Figure 9: Ablation study of SDF field parametrization.

Neuman ReferenceOurs HumanNeRF

Figure 10: Qualitative comparison with Neuman and HumanNeRF.
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Figure 11: Challenges in ZJU-Mocap Dataset. Left: Train a NeRF (Mildenhall et al., 2022) in a
frame with all cameras; Right: The variation of exposures in cameras breaks our assumption of
constant lighting. Figure from (Li et al., 2022).

Figure 12: Compare the ground truths and our renderings. Upper: ground truths; Lower: our
renderings. The successive cameras have different exposures, which breaks our assumption of
constant lighting.

H MESH VISUALIZATIONS

We visualize the canonical mesh and present the number of faces of each mesh in Figure 17 and Fig-
ure 8. Note that the number of faces for each mesh is quite small. Though increasing the resolution
of tetrahedra grids may improve the details of both geometry and materials, we do not conduct this
experiment for it is orthogonal to our technical contributions.

I LIMITATIONS AND DISCUSSIONS

Our method leverage mesh as our core representation, which enables us efficiency for both train-
ing and rendering. However, the resolution of mesh is fixed in our pipeline, preventing fine-
grained geometry and texture reconstruction. One possible solution could be tetrahedra grids sub-
division (Schaefer et al., 2004; Gao et al., 2022; Kalischek et al., 2022). But it may break the SDF
values around the derived meshes since there is no regularization over the whole SDF field. Our
non-rigid modeling has less capacity, since we assume there is no topology change of mesh wrt. the
non-rigid motion. Otherwise, we cannot query materials and motions in the canonical shape. One
can solve it via the dense correspondence between the meshes before and after applying non-rigid
motions (Ahmed et al., 2008; Zeng et al., 2020), yet such an operation may increase computation
drastically.
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Figure 13: Compare the ground truths and our renderings. Upper: ground truths; Lower: our
renderings. The successive cameras have different exposures, which breaks our assumption of
constant lighting.

Our method needs foreground masks to facilitate mesh optimization, which is akin to shape-from-
silhouette. One future direction might be equipping our method with the ability to separate fore-
ground and background automatically (Jiang et al., 2022; Guo et al., 2023). It is also promising to
model the background simultaneously during foreground subject optimization (Jiang et al., 2022;
Guo et al., 2023), which eliminates the requirement of foreground mask processing.

Our method can digitize humans from visual footage, which may involve avatar misuse without the
permission of the owners. Methods like implicit adversarial watermarks (Chen et al., 2020; Li et al.,
2021b) that disable the neural nets inference could assist the video creation to protect their portrait
rights. Another concern is the deep fake misuse (Nguyen et al., 2022), which corrupts the identity in
the visual footage rendered by our model. Methods like deep fake detection (Pan et al., 2020) could
help to discover and prevent deep fake creations. Besides, our method involves training with GPUs,
which leads to carbon emissions and increasing global warming (Patterson et al., 2021).
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Figure 14: Relighting visualization. Zoom in for a better view. We strongly encourage our readers
to view the supplemental video for a more comprehensive visual perception.
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Figure 15: Texture editing visualization. Zoom in for a better view. We strongly encourage our
readers to view the supplemental video for a more comprehensive visual perception.
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Figure 16: Extreme pose visualization. Zoom in for a better view. We strongly encourage our
readers to view the supplemental video for a more comprehensive visual perception.
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Figure 17: Mesh visualization on the H36M dataset. Zoom in for a better view.

Figure 18: Mesh visualization on the ZJU-MoCap dataset. Zoom in for a better view.
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