
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

P-RAG: Progressive Retrieval Augmented Generation for
Planning on Embodied Everyday Tasks

Anonymous Author(s)

ABSTRACT
Embodied Everyday Task is a popular task in the embodied AI com-
munity, requiring agents to make a sequence of actions based on
natural language instructions and visual observations. Traditional
learning-based approaches face two challenges. Firstly, natural lan-
guage instructions often lack explicit task planning. Secondly, ex-
tensive training is required to equip models with knowledge of the
task environment. Previous works based on Large Language Model
(LLM) either suffer from poor performance due to the lack of task-
specific knowledge or rely on ground truth as few-shot samples. To
address the above limitations, we propose a novel approach called
Progressive Retrieval Augmented Generation (P-RAG), which not
only effectively leverages the powerful language processing capa-
bilities of LLMs but also progressively accumulates task-specific
knowledge without ground-truth. Compared to the conventional
RAG methods, which retrieve relevant information from the data-
base in a one-shot manner to assist generation, P-RAG introduces
an iterative approach to progressively update the database. In each
iteration, P-RAG retrieves the latest database and obtains historical
information from the previous interaction as experiential references
for the current interaction. Moreover, we also introduce a more
granular retrieval scheme that not only retrieves similar tasks but
also incorporates retrieval of similar situations to provide more
valuable reference experiences. Extensive experiments reveal that
P-RAG achieves competitive results without utilizing ground truth
and can even further improve performance through self-iterations.
We will release the source code to the public.

CCS CONCEPTS
• Computing methodologies→ Robotic planning.

KEYWORDS
Embodied AI, Large LanguageModel, ProgressiveMethod, Retrieval
Augmented Generation

ACM Reference Format:
Anonymous Author(s). 2024. P-RAG: Progressive Retrieval Augmented
Generation for Planning on Embodied Everyday Tasks. InWoodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock,
NYProceedings of the 32nd ACM International Conference on Multimedia
(MM’24), October 28-November 1, 2024, Melbourne, Australia. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/10.1145/nnnnnnn.nnnnnnn

…

Database

Retrieval

Trajectory

Agent

LLM

Environmenta

b

c

Interaction
Goal instruction

Scene Graph

History

Done

Figure 1: The framework of our Progressive Retrieval Aug-
mented Generation method. a) The database consists of a list
of tuples, each including goal instruction, scene graph, trajec-
tory history, and whether the task is completed. b) The agent
with LLM. c) The interactive environment (MINI-BEHAVIOR
or ALFRED). The database will update after each complete
interaction between the agent and the environment, equip-
ping the agent with increasingly high-quality experiences.

1 INTRODUCTION
Recent years have witnessed the rapid development of Embodied
AI (EAI) which aims to endow AI agents with the ability to inter-
act with the physical world. Two famous robots in this field from
Figure AI 1 and Voxposer [11] are both concentrated on Embodied
Everyday Task. Due to the risks and instability inherent in con-
ducting experiments in real environments, researchers often opt to
train and test algorithms in simulation platforms. Many simulators
abstract and integrate key components of the embodied everyday
task into their environments, such as MINI-BEHAVIOR [13] and
ALFRED [23]. In these platforms, embodied everyday task is set by
a natural language goal instruction guiding the agent’s objective or
offering step-by-step guidance for aligning the robot’s actions with
linguistic commands.

Embodied everyday tasks often encounter three main challenges.
1) Dense reward feedback is typically absent, with the environment
only signaling task completion after it has been entirely achieved,
usually denoted by a reward of either 1 or 0. Tasks like “Cleaning
up the kitchen only” in MINI-BEHAVIOR not only feature ambigu-
ous goal instructions without clear subtasks, but also present a
challenge for agents due to the difficulty in processing the natural
language provided. 2) Another challenge for agents is the variable
space of the action in the environment, where actions may not
be fixed or there may be invalid actions that cannot be executed
in current environment. For example, agents may use cooking or
heating to process certain foods, but for everyday household items

1https://www.figure.ai/

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

such as pot plants and shoes, these actions are considered illegal. 3)
Certain limitations imposed by real-world circumstances can easily
be overlooked. For example, in specific environments, tables may
be smaller than usual, unable to accommodate an excessive number
of items (in the MINI-BEHAVIOR simulation, each cell is restricted
to contain a maximum of three items). However, this information
is not commonly known, and even language models trained on
textual data may not be aware of such constraints.

Traditional learning-based approaches such as reinforcement
learning (RL) can enhance the ability of the model for specific
tasks and environments through iterative processes. But they of-
ten lack the capability to understand language instructions. The
application of large language models (LLM) to embodied every-
day task is a highly promising direction. Previous works [9, 29]
have mostly focused on prompt design, which incorporates general
commonsense knowledge and addresses the issue of understanding
language instructions. Nevertheless, they still lack the ability to
possess knowledge specific to particular tasks and environments.

To address the issue of understanding linguistic instructions and
imbuing knowledge about specific tasks and situations, we propose
a new framework called Progressive Retrieval Augmented Gen-
eration (P-RAG) for embodied everyday tasks. It is based on LLM,
and designs progressive retrieval to assist in generating actions
with specific contextual knowledge iteratively, as shown in Fig. 1.
The progressive mechanism can iteratively increase the success rate
similar to learning-based approach, without involving any training
steps. With the text understanding ability of LLM, P-RAG combines
both the advantages of both learning-based approaches and pre-
trained LLM for planning approaches. Indeed, previous works like
LLM-planner [28] have also employed retrieval augmented gener-
ation with ground few-shot to enhance the agent’s knowledge of
specific environments and situations. In comparison, P-RAG has
improvements in the following aspects: 1) Instead of using ground-
truth action list as few-shot samples, P-RAG utilizes data generated
through straightforward interactions with the environment, which
is more general for real scenes. 2) In the query, we not only consider
searching for trajectory information related to similar tasks but also
take into account trajectory information corresponding to similar
situations, which provides more valuable context for LLM.

We validate the effectiveness of P-RAG in planning with exten-
sive experiments for everyday tasks. P-RAG outperforms existing
methods in few-shot setting, and it provides an effective approach
that can further enhance the online planning performance for em-
bodied everyday tasks. Additionally, P-RAG showcases its ability to
generalize across different tasks, enabling it to effectively operate
in various planning task. Our contributions can be summarized into
the following three points. 1) We introduce a new framework for
planning with LLM in embodied everyday task. This framework
combines the advantages of LLM’s prior knowledge and language
processing capabilities enhancing the efficiency of utilizing inter-
action data. 2) Instead of relying on ground truth actions as previ-
ous methods do, P-RAG enhances its performance solely through
historical trajectories obtained from interaction of last round. 3)
P-RAG outperforms existing methods in utilizing few-shot training
datasets, and even provides a self-iteration approach that further
enhances performance of testing tasks.

2 RELATEDWORK
2.1 Embodied Everyday Task
Embodied Everyday Task aims to establish human-centered AI [16]
that “serves human needs, goals, and values” by simulating tasks
from human daily lives, including navigation and manipulating.
Due to the increasing demand for human-computer interaction,
tasks oriented towards ordinary users are becoming more popular,
giving rise to some new tasks such as language-conditional navi-
gation and manipulation [4, 8, 16, 26, 40, 41]. These tasks typically
involve describing a desired final state using language, requiring
algorithms to plan and decompose tasks. The execution process
also involves a combination of navigation and manipulation opera-
tions. Recently, mainstream approaches to manipulation tasks can
roughly be divided into three categories as following: 1) learning-
based approaches which needs to train agents in simulation envi-
ronments [19, 33, 37]. 2) LLM-based approaches which leverage the
vast knowledge embedded within large language models [9, 14, 17].
3) hybrid methods [22] combined with the above two approaches
where LLMs facilitate task decomposition into subtasks, while meta-
skills are honed through training to optimize subtask execution
strategies.

2.2 Retrieval Augmented Generation
Retrieval-augmented generation is an effective tool for reducing
the hallucination of large language models like GPT-4 [1] and im-
proving their performance in generating authenticity. Initially, RAG
translates the task description into a query for database retrieval.
Once the query results are obtained, it integrates them with a
prompt for the language model, initiating the language model to
generate the final output. Initially introduced by [15], this primitive
direct approach later came to be known as Naive RAG (Retrieval-
Augmented Generation). It is widely used in various NLP tasks,
such as narratives generation [34], abstract generation [5, 6, 32]
and code generation [35, 38].

Retrieval AugmentedGeneration for planning represents a promis-
ing direction. However, only a limited amount of work has been
conducted in this area. Previous methods like LLM-Planner [28]
and RAP [36] have utilized the Retrieval Augmented Generation
(RAG) approach for planning. However, in their methodologies,
ground-truth planning instruction is employed during the train-
ing phase or is either utilized during the few-shot learning phase.
There has not yet devised a unified approach for interactive tasks
without ground truth guidance, which is a more common setting
of interactive task like MINI-BEHAVIOR [13].

2.3 LLM for Planning
Large language models such as GPT-3.5 and GPT-4 [1], have sig-
nificantly advanced the development of various applications. Com-
pared to common text-only tasks, robotic tasks require more prior
knowledge and understanding, crucially involving interaction with
the physical world [10, 12, 18, 25]. Large Language Models (LLMs)
are commonly employed for high-level agent planning [29]. LLMs
applied in planning exhibit distinct two advantages [30] as follow-
ing. Firstly, pre-trained on textual data, LLMs inherently incorpo-
rate substantial prior knowledge concerning the physical world,

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

P-RAG: Progressive Retrieval Augmented Generation for Planning on Embodied Everyday Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

LLM

Action Filter

Error Check

REATTEMPT

Encoder

Retrieval

…

Database

(# Retrieval Result)

Goal Instruction

Scene Graph

History

Done

ENV

Encoder
Insert

Goal Instruction

Scene Graph

History

Done

a

f
e

b

d

c
Decomposition

Top K

(# Action Space)

(# Observation)

(# Goal Instruction)

Move a chilled mug to the

coffee maker …

You see an apple 1, a mug 1,

a plate 1, a plate 2 …

‘go to fridge 1’, ‘open fridge

1’, ‘go to coffeemachine 1’…

Figure 2: The pipeline of P-RAG in each iteration. “#” stands for the form of text. a) The information transmitted to the agent
consists of the following four parts: natural language goal instruction, observations obtained from the environment, the action
space of the agent, and the retrieval results from the dataset. b) The agent adopts an LLM to plan a series of actions according to
the information in (a). If the LLM produces unsatisfactory content, the agent will initiate a reattempt; otherwise, it will utilize
a filtering mechanism to extract the requisite actions from the fields. c) The environment receives actions from the agent and
returns observations, along with a “done" state denoting whether the task is completed. d) Following the completion of each
iteration comprising multiple tasks, the database undergoes an update procedure. During each update, it stores the embedding
vector of the goal instruction and the scene graph obtained through observation. e) The database contains the trajectories of
previous iterations. f) The interface between the database and the agent’s information involves two main components. Firstly,
the current goal instruction and observation of agent are embedded into vectors, which are further used as query in retrieval
augmented process. Secondly, the similarity between query and each database item is computed, and the top K relevant database
items are returned to agent.

enabling them to have a fundamental understanding of common
robotic tasks. Secondly, LLMs excel in handling tasks involving
language instructions, which are prevalent in current popular ap-
plications.

However, LLMs for planning also encounter several challenges:
1) LLMs possess only general knowledge and lack task-specific
information concerning specific environments and tasks. 2) the ro-
bustness of LLMs’ action outputs is inadequate, sometimes failing
to adhere precisely to the required format. 3) LLMs lack compre-
hensive modeling of the physical world, resulting in decisions that
may contravene physical constraints.

3 METHOD
3.1 Overview
To accomplish embodied everyday task, we propose a new pro-
gressive retrieval augmented planning framework named P-RAG,
which integrates better task-specific knowledge progressively into
the prompt of large language models (LLMs) for planning. The
framework of P-RAG is shown in Fig. 1. During each interaction

episode, the trajectory of agent is collected to iteratively update
a dynamic database, which is retrieved to provide task-relevant
knowledge from the previous completed interaction.

Specifically, the detailed pipeline in each episode is shown in
Fig. 2. First, the agent is provided with four types of information
including natural language instruction, observations, the action
space, and the retrieval results from database. Then, this informa-
tion is input to LLM for planning, which outputs a series of actions
for solving the embodied every task. After that, the environment
responds to the receiving actions and converts to the new state,
which provides agent new observations and reward. These new
trajectory information for agent will be used to update the database,
which stores the timely agent experience. In the next interaction
episode, these experience knowledge in database could be retrieved
according to the agent information, which returns the task-relevant
knowledge to LLM for better planning. This pipeline could be pro-
gressively iterated, and increasingly improve the planning ability
by providing more success trajectory information. The detailed

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

…

Goal Instruction

Scene Graph

History

Done

Encoder

Goal Instruction

Vector

Scene Graph

Vector

… …

Database

0.8

Cosine Similarity

0.2

0.6

0.6

0.8

0.2

+

+

+

Trajectory Data Embedding Top K

Agent Query Action Space
Historical Trajectory

Figure 3: Database Construction and Retrieval. In P-RAG, both the construction of database and retrieval utilize encoding. 1)
During the insertion process, four components are inputted: goal instruction, scene graph, history, and done. Among these, goal
instruction and scene graph need to undergo sentence embedding to be stored as vectors in the database. 2) When retrieval is
required, the current task’s goal instruction and scene graph are used as queries. They are also encoded to sentence embedding,
while simultaneously computing the similarity score between them and the corresponding vectors in the database. The top K
historical trajectory information is then returned based on the aggregated similarity scores.

components of this pipeline will be elaborated in the following
subsections.

3.2 Agent Input Information
Four parts of information will be provided to the agent: goal instruc-
tions, observations, action space, and retrieval results. Each part
of the information will ultimately be transformed into text format
and then integrated into coherent prompt delivered to agent.

Initially, during the interaction with the task environment, the
current task’s goal instruction will be provided, such as “Move a
chilled mug to the coffee maker”. During the interaction between
P-RAG and the environment, before the agent provides an action, it
will first return an observation image to depict the current observed
state. We convert the observation image into a scene graph format,
which is easier for LLMs to process. We extract the instance labels
of all objects from the image and detect the relative relationships
between each object, such as “on the top of”, “inside of”, and so on.
In detail, we slightly adjust the extraction of the scene graph for
different interaction environments. For ALFRED, we utilize tools
from ALFWORLD, which include interactive TextWorld environ-
ments [7] that mirror embodied worlds in the ALFRED dataset [23],
to extract instance-level labels of objects observed in the image
directly in front of the robot in the environment. After obtaining
the instance labels, we first identify the landmarks among them and
designate them as key nodes in the scene graph. Next, we organize
these labels into a list format, with the key node being placed as
the first node in the list for subsequent encoding steps. For the
MINI-BEHAVIOR environment, which utilizes gym-minigrid, we
sequentially compare the relative relationships between each object
by function API in the environment to obtain a relationship matrix
with form of each cell in matrix like “object_1/object_2/relationship:
True/False”. After obtaining the relationship matrix, to reduce the
length of the context input to the LLM, P-RAG retains only those
pairs that are true. The action space is also a crucial component,

and the action space provided to the LLM consists of high-level
actions. Subsequent steps in section 3.3 will involve instruction
decomposition, where high-level instructions are converted into
low-level actions to be provided to the environment.

Another component involves historical trajectory information re-
trieved from database to provide the agent with references, thereby
increasing its task-specific knowledge. The retrieval result includes
goal instructions, scene graphs, history, and the done state from
the previous interaction history. Among them, the goal instruction
and scene graph are in the same format as mentioned above. “His-
tory” refers to the sequence of (𝐴𝑡 ,𝑂𝑡) pairs, providing the agent
with entire pairs in the task of previous round. The “done” states
indicate whether the task corresponding to these historical pieces
of information was completed by the agent at that time.

3.3 Planning with LLM
The four components of information mentioned above in section
3.2 will be integrated into a single coherent prompt and provided as
input to the LLM. Fig. 2 part b illustrates the main workflow of this
section, including the LLM, error check, action filter, and decompo-
sition components. For the first component, we choose GPT-4 and
GPT-3.5, renowned for their widespread utilization across various
generation tasks, to serve as LLM in P-RAG. The second part in-
volves error checking, where the input consists of the text output
from the LLM. It employs regular expression matching and com-
pares the generated actions with those in the action space to ensure
adherence to fixed formatting and validity. In the case of invalid
actions or non-compliant formatting, a new requirement will be
raised for the LLM. Otherwise, the output from the LLM will be
passed on to the next component. The third component is the action
filter, which extracts the necessary strings from the text generated
by the LLM using regular expressionmatching, providing high-level
actions. The final component is decomposition, which translates
the high-level actions obtained from the previous component into

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

P-RAG: Progressive Retrieval Augmented Generation for Planning on Embodied Everyday Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

low-level actions to be executed in the environment. For example,
the “navigation” high-level action is decomposed using the Fast
Marching Method (FMM) [21].

Specifically, FMM is a numerical technique designed to tackle
boundary value problems arising from the Eikonal equation [21].
We employ a simplified and customized FMM as the tool for de-
composing the navigation component from high-level action to
low-level action in our process. The FMM process used in P-RAG
can be summarized as follows: Firstly, we construct a flat model
of the environment with different navigable positions. In MINI-
BEHAVIOR, we determine whether each cell in the observation can
be covered by the agent. Secondly, we set the current point as the
source point and the destination point as the sink point. Then, we
compute the Euclidean distance from each point to the source point.
Finally, starting from the sink point, we search for the point with
the minimum distance value within its one-step neighborhood to
serve as the next subgoal point.

3.4 Database Construction and Retrieval
P-RAG interacts with the environment through agents to construct
and update a historical trajectory database. Then, it retrieves infor-
mation from the database to provide as reference for the agent. It
iterates over a set of tasks across multiple rounds. The first round is
dedicated to constructing the database. In each subsequent round,
P-RAG utilizes retrieval to enhance the capability of action genera-
tion and leverages the interaction history of each round to update
the database.

The database is initialized as an empty collection. The agent in-
teracts with the environment exclusively through goal instructions
and observation obtained from each step. After the completion of
all task interactions in the first iteration, a round of interaction be-
tween the agent and the environment yields valuable information.
This information increases the agent’s knowledge of specific tasks.
The database will store this information and update itself with the
latest historical trajectory data after each subsequent iteration.

During each round of data update, the database will retain four
key pieces of information for each task interaction sequence: the
goal instruction, scene graph, historical data, and completion sta-
tus. The details of database construction and retrieval pipeline is
illustrated in Fig. 3. When an agent interacts with the environment
during a task, it first receives the environment’s goal instruction
𝐼𝑔 and observation 𝑂𝑡 . Then it encodes with MiniLM [31] both of
them with formula as

𝑄𝑔𝑜𝑎𝑙 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝐼𝑔), (1)

𝑄𝑜𝑏𝑠,𝑡 = 𝐸𝑛𝑐𝑜𝑑𝑒 (F (𝑂𝑡)), (2)
where 𝑄𝑔𝑜𝑎𝑙 and 𝑄𝑜𝑏𝑠,𝑡 represent the query embedding vector en-
coded from goal instruction 𝐼𝑔 and observation 𝑂𝑡 at time t. F
means scene graph extraction module. With these embedding rep-
resentation of goal instruction and observation, we use cosine simi-
larity to retrieval the most similar task trajectory in task name or
in situation. Each set of embedding vectors serves as keys in the
historical records, and will undergo similarity computation with
the query. The similarity score for the 𝑛-th interaction in a task
dialogue 𝑠𝑡 is calculated as following:

𝑠𝑛 = sim(𝑄𝑔𝑜𝑎𝑙 , 𝐾𝑔𝑜𝑎𝑙) + max
𝑡 ∈[1,𝑁]

sim(𝑄𝑜𝑏𝑠,𝑛, 𝐾𝑜𝑏𝑠,𝑡), (3)

Algorithm 1 P-RAG for Planning
INPUT: 𝐸𝑁𝑉𝑖 , 𝑖 = 1, 2, ..., 𝑁𝑒𝑛𝑣

OUTPUT: 𝐴𝑖,𝑡
𝑖=1,2,...,𝑁𝑒𝑛𝑣
𝑡=1,2,...,𝑁

𝐷𝐵 ← ∅;
𝐸𝑁𝑉𝑖 ← 𝑅𝐸𝑆𝐸𝑇, 𝑖 = 1, 2, ..., 𝑁𝑒𝑛𝑣 ;
for 𝑖𝑡𝑒𝑟𝑖𝑛[1, 𝐼𝑇𝐸𝑅] do

for t in [1,N] do
𝑂𝑖,𝑡 , 𝐼𝑖,𝑔𝑜𝑎𝑙 ← 𝐸𝑁𝑉𝑖 (𝐴𝑖,𝑡), 𝑖 = 0, 1, 2, ...𝑁𝑒𝑛𝑣 ;
← 𝐸𝑁𝑉𝑖 , 𝑖 = 0, 1, 2, ...𝑁𝑒𝑛𝑣 ;
𝑄𝑜𝑏𝑠,𝑖,𝑡 ← 𝐸𝑛𝑐𝑜𝑑𝑒 (F(𝑂𝑖,𝑡)) ;
𝑄𝑖𝑛𝑠,𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒 (𝐼𝑖,𝑔𝑜𝑎𝑙) ;
if 𝐷𝐵 ≠ ∅ then
𝐾𝑜𝑏𝑠,𝑖,𝑡 , 𝐾𝑖𝑛𝑠,𝑖 ← 𝐷𝐵, 𝑖 = 1, 2, ...𝑁𝑛𝑒𝑣 ;
𝑠𝑖 ← 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3;
𝐼𝑔𝑜𝑎𝑙 , 𝑆𝐺,𝐻,𝐷 ← 𝑇𝑂𝑃𝐾 (𝐷𝐵, {𝑠𝑖 }𝑁𝑒𝑛𝑣

𝑖=1) ;
𝐴𝑖,𝑡 ← 𝐴𝑔𝑒𝑛𝑡 (𝐿𝐿𝑀, 𝐼𝑔𝑜𝑎𝑙 , 𝑆𝐺,𝐻,𝐷) ;

else
𝐴𝑖,𝑡 ← 𝐴𝑔𝑒𝑛𝑡 (𝐿𝐿𝑀) ;

end if
end for

end for

where 𝑄𝑔𝑜𝑎𝑙 and 𝐾𝑔𝑜𝑎𝑙 denote the embedding vectors correspond-
ing to the goal instructions, while 𝑄𝑜𝑏𝑠,𝑛 and 𝐾𝑜𝑏𝑠,𝑡 represent the
embedding vectors of the scene graph for the 𝑛-th interaction and
the 𝑡-th interaction, respectively. We select the maximal similar-
ity scores in the 𝑡-interaction for scene graphs. Ultimately, within
the database, P-RAG selects the top K entries as output based on
composite score that incorporates both task and scene graph simi-
larities.

3.5 Progressive Iteration
As depicted in Algorithm 1, P-RAG initializes an empty data-

base and initiates successive iterations. At this stage, P-RAG makes
decisions solely based on observations of the environment and
the generic prior knowledge of LLM. After the first iteration, the
historical information from the previous iteration is collected and
stored in the database. The database is progressively updated when
the agent trajectories of new round are completed. In each subse-
quent iteration, P-RAG utilizes the collaborative similarity retrieval
of scene graph and task name to identify similar tasks and scenes
across different tasks. It then provides this information to LLM to fa-
cilitate more informed decision-making. The progressive approach
is widely employed in learning-based solutions, yet its application
in the RAG (Retrieval-Augmented Generation) framework for plan-
ning remains a novel paradigm. In scenarios where ground truth is
not available, the progressive approach offers a mode of gradual per-
formance improvement compared to the direct method. Moreover,
it allows for the accumulation of environment-specific knowledge
for the agent through historical trajectories.

4 EXPERIMENT
4.1 Experimental Setup
Dataset. We select two datasets, MINI-BEHAVIOR [13] and AL-
FRED [23], for our experiments. Extracting 20 activities from BE-
HAVIOR 1K and abstracting them into a grid environment, the
MINI-BEHAVIOR platform offers a comprehensive array of tasks

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Navigation

Pick up pot plant 1

Navigation

Drop in Sink

…
Drop in Sink

Reward : 0

Navigation

Pick up pot plant 1

Navigation

Drop in Sink

…
Drop in Sink

Navigation

Pick up pot plant 2

Toggle sink

Navigation

Drop in Sink

Reward : 1

GPT-4 Baseline

P-RAG

MINI-BEHAVIOR
Task : Water houseplants

Pot plant ×3

Sink ×1

Table ×1

Countertop ×1

Agent

Pick up pot plant 1 Drop in Sink Toggle sink

Figure 4: Comparison on planning trajectories between GPT-4 baseline and P-RAG. The baseline method follows a decision
process of sequentially picking up three pot plants and placing them in the sink, considering the task complete. However, it
fails to achieve the task successfully. In contrast, P-RAG utilizes comprehensive historical trajectory information to make
decisions, leading to the judgment to toggle the sink and ultimately accomplishing the task.

for agents to navigate and manipulate over extended periods. The
agent needs to input linguistic instructions and then make decisions
to output actions, such as turning left/right, picking up, and so on.
Compared to MINI-BEHAVIOR, ALFRED offers more tasks for eval-
uating the agent and provides realistic observation images. In the
ALFRED dataset, we employ the text-world tool from ALFWORLD
[24] to convert image-based observations into text format. Since
the MINI-BEHAVIOR dataset only consists of 20 environments,
we conduct evaluating all of them directly in the experiment. The
ALFRED dataset is divided into Valid Seen, Valid Unseen and Train
datasets. Following LLM-Planner [28], we choose 100 task environ-
ments from a pool of 21,023 examples in the ALFRED training set
for interaction by P-RAG, which is called Train100 in our exper-
iments. Ensuring a balanced representation, we employ random
stratified sampling across all seven task types following the setting
to the approach adopted by the LLM-Planner. Valid Seen and Valid
Unseen consist of 242 and 85 tasks [23], respectively.
Implementation Details. Different from the previous works [28],
we do not require a ground-truth training dataset. All we need
is interaction with the environment as the evaluation stage. P-
RAG is designed to provide a unified framework for conducting
experiments across different datasets. We use the GPT series model
as our LLM planner, with the majority of tests utilizing GPT-4 [1]. In
the P-RAG setup, the database will store historical trajectories from
previous rounds, with a maximum of 6 iterations. For the ALFRED
dataset, we use the JSON format to organize the embedding vector
with 384 dimensions of goal instruction and scene graph for each
task. The raw trajectory information is recorded in text format in a
SQLite1 database, with an average size of 3.2K bytes per task.

1https://www.sqlite.org/

4.2 Comparison Experiment with the
State-of-the-art Methods

We first conduct evaluations on the ALFRED dataset to compare the
success rates (SR) of the state-of-the-art methods [2, 3, 20, 27, 28, 39]
and our method. To ensure fair comparison, after 3 iterations in
the training dataset, P-RAG evaluates its performance on both test
datasets. In particular, we curate a subset of 100 task environments
from the training set for agent to interact. The database undergoes
three iterative updates prior to subsequent evaluation on the two
evolution datasets.

As illustrated in Table 1, we categorize different methods into
two groups based on experimental settings. One group including
HiTUT [39], HLSM [3], E.T. [20] and M-TRACK [27] utilizes the full
train set with 21,023 instruction and trajectory pairs to derive per-
formance results. Another group including HLSM [3], LLM-Planer
[28] and Saycan [2] utilizes a smaller subset of training data. Note
that within the experimental setup, certain methods denoted with
a star (*) utilize step-by-step instructions rather than goal instruc-
tions, such as Saycan [2] and E.T. [20]. The performance comparison
in the table reveals that our approach denoted as “P-RAG (Ours)”
outperforms existing state-of-the-art methods of utilizing few train-
ing dataset on both Valid Seen and Valid Unseen dataset. These
results demonstrate the effectiveness of ourmethod, which develops
the progressive retrieval augmentation to assist the large language
model to obtain task-relevant information. Compared to methods
trained on the full dataset, P-RAG maintains high performance
even under conditions where only approximately 1/200 of the train-
ing data is utilized. These results prove that our method possesses
better generalizability than these training methods, which usually
overfit the training datasets and achieve better performance on the
Val Seen dataset than Val Unseen dataset.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

P-RAG: Progressive Retrieval Augmented Generation for Planning on Embodied Everyday Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Model Dataset G.T. Valid Unseen Valid Seen

HiTUT [39] Full ✓ 10.23 18.41
HLSM [3] Full ✓ 18.28 29.63
*E.T. [20] Full ✓ 7.32 46.59
*HiTUT [39] Full ✓ 12.44 25.24
*M-TRACK [27] Full ✓ 17.29 26.70
*HLSM [3] Part ✓ 0.00 0.13
LLM-Planer [28] Part ✓ 12.92 13.53
*Saycan [2] Part ✓ 9.88 12.3
GPT-4 [1] - × 7.05 17.46
P-RAG (Ours) Part × 14.11 18.2

P-RAG (Self-Iter.) - × 27.4 19.05
Table 1: Comparison of Different Method on ALFRED. Star
(*) stands for using step-by-step instruction instead of goal
instruction. G.T. means ground-truth action. In the “Dataset”
column, “Full” indicates the utilization of the entire training
dataset, while “Part” indicates sampling from a subset of the
training dataset. “P-RAG (Self-Iter.)” represents the iterative
updates of P-RAG on the same group of task datasets.

Besides the standard setting of our method, we also construct a
self-iteration variant denoted as “P-RAG (Self-Iter.)”. It constructs
progressive iteration over the test dataset, which means the re-
trieval database is constructed by the trajectories on test dataset. It
directly improves the success rates of testing tasks, since the agent
obtains better task-relevant experiences about testing tasks by pro-
gressive retrieval. From Table 1, with self-iteration on the Valid
Unseen dataset, our method denoted as “P-RAG (Self-Iter.)” can
even outperform all the methods, both with and without using the
entire training dataset, which further verifies the effectiveness of
the proposed progressive retrieval augmented planning framework.

We also evaluate the performance of P-RAG onMINI-BEHAVIOR
which lacks ground-truth actions annotation, and therefore can
be used to evaluate our method and compared methods in weak
supervision setting. As shown in Table 2, we evaluate through
three evaluation metrics: Total success rate (SR), which represents
the success average by episodes; Task success rate (SR), indicating
success average by tasks; Success weight by Path Length (SPL),
evaluated according to the following formula:

𝑆𝑃𝐿 =
1
𝑁

𝑁∑︁
𝑖=1

𝑆𝑖
𝐿𝑖

𝑚𝑎𝑥 (𝐿𝑖 , 𝑃𝑖)
, (4)

where N is total number of evalutional episodes, 𝑆𝑖 represents
whether the current episode is successful, 𝐿𝑖 denotes the number
of actions used by the agent, and 𝑃𝑖 represents the number of steps
needed to complete the task in the shortest possible manner.

We compare the success rate of P-RAG relative to its correspond-
ing baseline with LLM selecting either GPT-4 or GPT-3.5. From
the results in the table, we can observe that P-RAG demonstrates
significant improvements of 1.7% and 2.5% compared to the base-
lines of GPT-4 and GPT-3.5, respectively. Although simple and
lightweight, MINI-BEHAVIOR presents a formidable challenge for
popular Reinforcement Learning algorithms, particularly in the
absence of a dense reward signal. The vanilla PPO algorithm is
only able to achieve a valid success rate (approximately 8%) af-
ter training 1e6 steps and evaluating on a single task (not work
in other tasks) within MINI-BEHAVIOR [13]. In contrast, P-RAG

MINI-BEHAVIOR GPT-4[1] P-RAG-4 GPT-3.5 P-RAG-3.5

Total SR 15% 16.7% 7.5% 10%
Task SR 20% 25% 20% 20%
SPL 13.8% 15% 7.5% 9.5%
Table 2: Comparison of Retrieval Augmented Models on
MINI-BEHAVIOR. GPT-3.5 and GPT-4 represent the re-
sults of each as the baseline LLM planner. P-RAG-3.5 and
P-RAG-4 represent the results of setting the LLM in P-
RAG as GPT-3.5 and GPT-4, respectively.

Dataset Original 1st Iter. 2nd Iter. 3rd Iter.

Train100 5% 9% 10% 11%
Valid Unseen 7.05% 14.11% 20.00% 22.35%

Table 3: Success Rate with the Iteration Number on ALFRED.

achieves 16.7% Total SR requiring iterations of no more than 6
eposides and accomplish 5 tasks (compare to single task of vanilla
PPO algorithm), demonstrating its effectiveness across different
environments and its few-shot property. We select one group of
task trajectories as visualization result, as shown in Fig. 4. The visu-
alization of trajectory demonstrates the decision-making processes
of P-RAG and the GPT-4 baseline for the task “water houseplants”.
From the visualization results, it can be observed that P-RAG is able
to make judgments with more task-specific knowledge by referring
to historical trajectory information.

4.3 Ablation Study & Parameter Analysis
Progressive Iteration. We conduct additional experiments on
P-RAG regarding self-revolution to validate its progressive effect.
Compared to the previous approach of iterating on the training
dataset, we directly conduct progressive retrieval iteration on the
same dataset, which we call self-iteration. In particular, we choose
to conduct self-iteration on the Valid Seen dataset and training
dataset (where there may be overlap between the Valid Seen and
Train datasets), respectively. From Table 3, there is an improve-
ment after progressive iteration in both task datasets. P-RAG not
only demonstrates the advantages of performance in standard ex-
perimental setting as shown in the first row “Train100”, but also
achieves performance improvement through progressive iteration
on the Valid Unseen dataset as shown in the second row in Table 3.

We also conduct in-depth experiments on performance satura-
tion, by enhancing retrieval through updating historical informa-
tion from the previous round after encoding it into the database.
Subsequently, we update the database based on the current round’s
historical trajectory, iterating multiple times until saturation is
achieved, as shown in Fig. 5. From Fig. 5, P-RAG achieves signifi-
cant performance improvement through iteration. In the ALFRED
Valid Unseen dataset, the success rate is improved from 7.05% at
the beginning to 27.4% after 5 rounds of iteration. Similarly, in the
ALFRED Train 100 dataset, the success rate increases from 5% at
the beginning to 11% after 3 rounds of iteration. Both of them all
eventually reach performance saturation. From the curves, it can
be observed that the curve of success rate increase in each iteration
of P-RAG until convergence, indicating that it is approaching the
performance limit of LLM as a Planner on the testing tasks.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 1 2 3 4 5 6

5

10

15

20

25

Number of Iterations

Su
cc
es
sR

at
e
(%
)

Valid Unseen
Train100

Figure 5: Performance with Iteration Number on ALFRED.

Correlation Between Iteration. We also continue to study the
correlation between the successfully completed tasks in the iterative
process of P-RAG. Table 4 displays the correlations between tasks
completed in different iteration stages. The data values in the table
are derived from the results with iterations number of 0, 1, 2, 3 in
the ALFRED dataset. Each pair of True and False corresponds to
successful and failed tasks in a single iteration. The value within
each cell indicates the ratio of occurrences of “done” compared
to the total occurrences of True/False in the corresponding row’s
iteration. Considering the value located in the top-left corner of the
table, this value signifies the proportion of successful tasks from
the initial iteration that remain successful after the first subsequent
iteration.

Next 1 Iter. Next 2 Iter. Next 3 Iter.
True False True False True False

0th Iter. True 83.3% 16.7% 100% 0.0% 83.3% 16.7%
False 6.8% 93.2% 14.9% 85.1% 17.6% 82.4%

1st Iter. True 72.7% 27.3% 72.7% 27.3% - -
False 12.3% 87.7% 13.7% 86.3% - -

2nd Iter. True 88.2% 11.8% - - - -
False 4.5% 95.5% - - - -

Table 4: Relation Between Iteration on ALFRED. “N-th Iter.”
represents the completion status of tasks after the n-th iter-
ation of P-RAG. For the row labeled “Next m-th.” each cell
represents the comparison between the (n+m)-th iteration
and the n-th iteration. The value in each cell represents the
proportion of True/False occurrences of “done” in its column
compared to the total occurrences of True/False in its corre-
sponding row’s iterations.

By analyzing the data in Table 4, it is evident that P-RAG pre-
dominantly achieves success in subsequent iterations based on the
success of the previous iteration. Furthermore, it also demonstrates
the capability to achieve success in tasks that were unsuccessful
in the previous iteration. This highlights how P-RAG not only ef-
fectively maintains the performance from the previous iteration
but also leverages information from unsuccessful trajectories of
the previous iteration to achieve new successes. This meticulous
demonstration underscores the sources of performance enhance-
ment in P-RAG.

P-RAG (Self-Iter.) P-RAG P-RAG GPT-4 [1]
1st 2nd 3rd w/o SG

14.11% 20.00% 22.35% 14.11% 13.10% 7.05%
Table 5: Ablation with Scene Graph on ALFREDValid Unseen.
The first three columns represent P-RAG with 3 rounds of
self-iterations on Valid Unseen dataset. The following two
columns indicate testing on Valid Unseen after iterations on
Train100.

Ablation Study. We demonstrate through ablation experiments to
verify 1) the effectiveness of the progressive approach and 2) the
effectiveness of the joint retrieval of scene graph and task name
compared to using task name alone.

For the former, in the last row of Table 1, P-RAG is demonstrated
to be effective through iterations on both Valid Unseen and Valid
Seen. Through iterations, P-RAG outperforms nearly all the meth-
ods, including step-by-step instruction and training on the full
dataset, in performance on Valid Unseen without training and with
a few number of samples. Similarly, in Table 2, conducting two sets
of experiments with LLM as GPT-4 and GPT-3.5 also demonstrates
the effectiveness of the progressive method.

To further evaluate the effectiveness of the progressive mecha-
nism, we conduct extra ablation experiments on the ALFRED Valid
Unseen dataset, as shown in Table 5. The interpretation of the data
in the table is as following. The “GPT-4” column represents the
results by using the GPT-4 baseline for testing. The “P-RAG (Self-
Iter.)” colunm represents the results obtained through testing with
1, 2 and 3 iterations, respectively. The “P-RAG” column represents
the results obtained by iteratively using task name and scene graph
joint retrieval on the Train100 dataset and then testing on the Valid
Unseen dataset. The “P-RAG w/o SG” column represents the re-
sults obtained by solely using task name for retrieval, iteratively on
the Train100 and then testing on the Valid Unseen dataset. From
the table, it is evident that compared to not utilizing scene graph
for joint retrieval, P-RAG exhibits significant improvements. This
demonstrates the effectiveness of the progressive mechanism and
the necessity of incorporating scene graph and task name retrieval.

5 CONCLUSION
We propose a novel progressive retrieval augmented generation
framework called P-RAG for planning to address the issue of lacking
task-specific and scene-specific knowledge in LLM. P-RAG distin-
guishes previous methods by eliminating the need for ground truth
and achieves promising performance with just a few task interac-
tions. By collaboration with task name and scene graph for P-RAG
to retrieval, we ensure historical records selected from database
are not only similar in tasks but also in situations. P-RAG’s unique
iterative capability continuously acquires historical information
through interaction. By leveraging enhanced retrieval capabilities,
P-RAG incrementally accumulates task-specific knowledge during
iterations, thereby improving its planning performance. The ex-
periments demonstrate the effectiveness of P-RAG compared with
the state-of-the-art planning methods for Embodied Everyday task.
We hope that the ground-truth-free capability in P-RAG can be
applied to a broader range of planning tasks and deliver even more
outstanding performance.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

P-RAG: Progressive Retrieval Augmented Generation for Planning on Embodied Everyday Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. GPT-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, et al. 2022. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691 (2022).

[3] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. 2022.
A persistent spatial semantic representation for high-level natural language
instruction execution. In Conference on Robot Learning. PMLR, 706–717.

[4] Jingwen Chen, Jianjie Luo, Yingwei Pan, Yehao Li, Ting Yao, Hongyang Chao,
and Tao Mei. 2023. Boosting Vision-and-Language Navigation with Direction
Guiding and Backtracing. ACM Trans. Multimedia Comput. Commun. Appl. 19, 1,
Article 9 (jan 2023), 16 pages. https://doi.org/10.1145/3526024

[5] Xiuying Chen, Mingzhe Li, Shen Gao, Xin Cheng, Qiang Yang, Qishen Zhang,
Xin Gao, and Xiangliang Zhang. 2023. A topic-aware summarization framework
with different modal side information. International ACM SIGIR Conference on
Research and Development in Information Retrieval (2023), 1416–1425.

[6] Xin Cheng, Shen Gao, Yuchi Zhang, Yongliang Wang, Xiuying Chen, Mingzhe Li,
Dongyan Zhao, and Rui Yan. 2023. Towards personalized review summarization
by modeling historical reviews from customer and product separately. arXiv
preprint arXiv:2301.11682 (2023).

[7] Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes,
Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada,
et al. 2019. Textworld: A learning environment for text-based games. In Computer
Games: Workshop International Conference on Artificial Intelligence. Springer, 41–
75.

[8] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy Liang,
and Dorsa Sadigh. 2023. No, to the right: Online language corrections for robotic
manipulation via shared autonomy. In ACM/IEEE International Conference on
Human-Robot Interaction. 93–101.

[9] Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. 2023. Look before
you leap: Unveiling the power of gpt-4v in robotic vision-language planning.
arXiv preprint arXiv:2311.17842 (2023).

[10] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. 2023. Visual
language maps for robot navigation. In IEEE International Conference on Robotics
and Automation. IEEE, 10608–10615.

[11] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li
Fei-Fei. 2023. VoxPoser: Composable 3D value maps for robotic manipulation
with language models. In Conference on Robot Learning, Vol. 229. PMLR, 540–562.

[12] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence,
Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. 2022.
Inner monologue: Embodied reasoning through planning with language models.
arXiv preprint arXiv:2207.05608 (2022).

[13] Emily Jin, Jiaheng Hu, Zhuoyi Huang, Ruohan Zhang, Jiajun Wu, Li Fei-Fei,
and Roberto Martín-Martín. 2023. Mini-BEHAVIOR: A Procedurally generated
benchmark for long-horizon decision-making in embodied AI. arXiv preprint
arXiv:2310.01824 (2023).

[14] Yixiang Jin, Dingzhe Li, A Yong, Jun Shi, Peng Hao, Fuchun Sun, Jianwei Zhang,
and Bin Fang. 2024. Robotgpt: Robot manipulation learning from chatgpt. IEEE
Robotics and Automation Letters (2024).

[15] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented gen-
eration for knowledge-intensive NLP Tasks. In Advances in Neural Information
Processing Systems, Vol. 33. Curran Associates, Inc., 9459–9474.

[16] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava,
Roberto Martín-Martín, Chen Wang, Gabrael Levine, Wensi Ai, Benjamin Mar-
tinez, et al. 2024. BEHAVIOR-1K: A Human-Centered, Embodied AI Bench-
mark with 1,000 Everyday Activities and Realistic Simulation. arXiv preprint
arXiv:2403.09227 (2024).

[17] Jinyi Liu, Yifu Yuan, Jianye Hao, Fei Ni, Lingzhi Fu, Yibin Chen, and Yan Zheng.
2024. Enhancing robotic manipulation with AI feedback from multimodal large
language models. arXiv preprint arXiv:2402.14245 (2024).

[18] Yujie Lu, Weixi Feng, Wanrong Zhu, Wenda Xu, Xin Eric Wang, Miguel Eck-
stein, and William Yang Wang. 2022. Neuro-symbolic procedural planning with
commonsense prompting. arXiv preprint arXiv:2206.02928 (2022).

[19] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav
Gupta. 2022. R3m: A universal visual representation for robot manipulation.
arXiv preprint arXiv:2203.12601 (2022).

[20] Alexander Pashevich, Cordelia Schmid, and Chen Sun. 2021. Episodic transformer
for vision-and-language navigation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 15942–15952.

[21] James A Sethian. 1999. Fast marching methods. SIAM review 41, 2 (1999),
199–235.

[22] SP Sharan, Ruihan Zhao, Zhangyang Wang, Sandeep P Chinchali, et al. 2024.
Plan Diffuser: Grounding LLM planners with diffusion models for robotic ma-
nipulation. In Bridging the Gap between Cognitive Science and Robot Learning in
the Real World: Progresses and New Directions.

[23] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,
Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED: A bench-
mark for interpreting grounded instructions for everyday tasks. In The IEEE
Conference on Computer Vision and Pattern Recognition. https://arxiv.org/abs/
1912.01734

[24] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam
Trischler, and Matthew Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv preprint arXiv:2010.03768
(2020).

[25] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan
Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. 2023. Progprompt:
Generating situated robot task plans using large language models. In IEEE Inter-
national Conference on Robotics and Automation. IEEE, 11523–11530.

[26] Julian Skirzynski. 2020. Language-conditional imitation learning. McGill Univer-
sity (Canada).

[27] Chan Hee Song, Jihyung Kil, Tai-Yu Pan, Brian M Sadler, Wei-Lun Chao, and
Yu Su. 2022. One step at a time: Long-horizon vision-and-language navigation
with milestones. In IEEE Conference on Computer Vision and Pattern Recognition.
15482–15491.

[28] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun
Chao, and Yu Su. 2023. Llm-planner: Few-shot grounded planning for embodied
agents with large language models. In IEEE International Conference on Computer
Vision. 2998–3009.

[29] Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. 2023. ChatGPT
for Robotics: design principles and model abilities. Technical Report MSR-TR-2023-
8. Microsoft. https://www.microsoft.com/en-us/research/publication/chatgpt-
for-robotics-design-principles-and-model-abilities/

[30] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,
Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers of Computer Science 18, 6
(2024), 1–26.

[31] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. Minilm: Deep self-attention distillation for task-agnostic compression of
pre-trained transformers. Advances in Neural Information Processing Systems 33
(2020), 5776–5788.

[32] Chen Xiuying, Alamro Hind, Li Mingzhe, Gao Shen, Yan Rui, Gao Xin, and
Zhang Xiangliang. 2022. Target-aware abstractive related work generation
with contrastive learning. International ACM SIGIR Conference on Research and
Development in Information Retrieval (2022).

[33] Jun Yamada, Youngwoon Lee, Gautam Salhotra, Karl Pertsch, Max Pflueger, Gau-
rav Sukhatme, Joseph Lim, and Peter Englert. 2021. Motion planner augmented
reinforcement learning for robot manipulation in obstructed environments. In
Conference on Robot Learning. PMLR, 589–603.

[34] Satoshi Yamazaki, Jianquan Liu, and Mohan Kankanhalli. 2023. Sequential action
retrieval for generating narratives from long videos. InWorkshop on User-Centric
Narrative Summarization of Long Videos. Association for Computing Machinery,
New York, NY, USA, 25–29. https://doi.org/10.1145/3607540.3617143

[35] Chi Yu, Guang Yang, Xiang Chen, Ke Liu, and Yanlin Zhou. 2022. Bashexplainer:
Retrieval-augmented bash code comment generation based on fine-tuned code-
bert. IEEE International Conference on Software Maintenance and Evolution, 82–93.

[36] Ali Zare, Yulei Niu, Hammad Ayyubi, and Shih-fu Chang. 2024. RAP: Retrieval-
Augmented planner for adaptive procedure planning in instructional videos.
arXiv preprint arXiv:2403.18600 (2024).

[37] Albert Zhan, Ruihan Zhao, Lerrel Pinto, Pieter Abbeel, and Michael Laskin. 2021.
A framework for efficient robotic manipulation. In Deep RL Workshop of Neural
Information Processing Systems Conference.

[38] Xiangyu Zhang, Yu Zhou, Guang Yang, and Taolue Chen. 2023. Syntax-aware
retrieval augmented code generation. The Conference on Empirical Methods in
Natural Language Processing.

[39] Yichi Zhang and Joyce Chai. 2021. Hierarchical task learning from language
instructions with unified transformers and self-monitoring. arXiv preprint
arXiv:2106.03427 (2021).

[40] Yusheng Zhao, Jinyu Chen, Chen Gao, Wenguan Wang, Lirong Yang, Haibing
Ren, Huaxia Xia, and Si Liu. 2022. Target-Driven Structured Transformer Planner
for Vision-Language Navigation. In Proceedings of the 30th ACM International
Conference on Multimedia. Association for Computing Machinery, New York, NY,
USA, 4194–4203. https://doi.org/10.1145/3503161.3548281

[41] Yifeng Zhuang, Qiang Sun, Yanwei Fu, Lifeng Chen, and Xiangyang Xue. 2022. Lo-
cal Slot Attention for Vision and Language Navigation. In Proceedings of the 2022
International Conference on Multimedia Retrieval. Association for Computing Ma-
chinery, New York, NY, USA, 545–553. https://doi.org/10.1145/3512527.3531366

9

https://doi.org/10.1145/3526024
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://doi.org/10.1145/3607540.3617143
https://doi.org/10.1145/3503161.3548281
https://doi.org/10.1145/3512527.3531366

	Abstract
	1 Introduction
	2 related work
	2.1 Embodied Everyday Task
	2.2 Retrieval Augmented Generation
	2.3 LLM for Planning

	3 Method
	3.1 Overview
	3.2 Agent Input Information
	3.3 Planning with LLM
	3.4 Database Construction and Retrieval
	3.5 Progressive Iteration

	4 experiment
	4.1 Experimental Setup
	4.2 Comparison Experiment with the State-of-the-art Methods
	4.3 Ablation Study & Parameter Analysis

	5 conclusion
	References

