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ABSTRACT

This paper studies the problem of training a two-layer ReLU network for binary
classification using gradient flow with small initialization. We consider a training
dataset with well-separated input vectors: Any pair of input data with the same label
are positively correlated, and any pair with different labels are negatively correlated.
Our analysis shows that, during the early phase of training, neurons in the first
layer try to align with either the positive data or the negative data, depending on
its corresponding weight on the second layer. A careful analysis of the neurons’
directional dynamics allows us to provide an O( logn√

µ ) upper bound on the time it
takes for all neurons to achieve good alignment with the input data, where n is the
number of data points and µ measures how well the data are separated. After the
early alignment phase, the loss converges to zero at a O( 1t ) rate, and the weight
matrix on the first layer is approximately low-rank. Numerical experiments on the
MNIST dataset illustrate our theoretical findings.

1 INTRODUCTION

Neural networks have shown excellent empirical performance in many application domains such
as vision (Krizhevsky et al., 2012), speech (Hinton et al., 2012) and video games (Silver et al.,
2016). Despite being highly overparametrized, networks trained by gradient descent with random
initialization and without explicit regularization enjoy good generalization performance. One possible
explanation for this phenomenon is the implicit bias or regularization induced by first-order algorithms
under certain initialization assumptions. For example, first-order methods applied to (deep) matrix
factorization models may produce solutions that have low nuclear norm (Gunasekar et al., 2017)
and/or low rank (Arora et al., 2019), and similar phenomena have been observed for deep tensor
factorization (Razin et al., 2022). Moreover, prior work such as (Saxe et al., 2014; Stöger &
Soltanolkotabi, 2021) has found that deep linear networks sequentially learn the dominant singular
values of the input-output correlation matrix.

It is widely known that these sparsity-inducing biases can often be achieved by small initialization.
This has motivated a series of works that theoretically analyze the training dynamics of first-order
methods for neural networks with small initialization. For linear networks, the implicit bias of small
initialization has been studied in the context of linear regression (Saxe et al., 2014; Gidel et al., 2019;
Min et al., 2021; Varre et al., 2023) and matrix factorization (Gunasekar et al., 2017; Arora et al., 2019;
Li et al., 2018; 2021; Stöger & Soltanolkotabi, 2021; Yaras et al., 2023; Soltanolkotabi et al., 2023).
Recently, the effect of small initialization has been studied for two-layer ReLU networks (Maennel
et al., 2018; Lyu et al., 2021; Phuong & Lampert, 2021; Boursier et al., 2022). For example, Maennel
et al. (2018) observes that during the early stage of training, neurons in the first layer converge to
one out of finitely many directions determined by the dataset. Based on this observation, Phuong &
Lampert (2021) shows that in the case of well-separated data, where any pair of input data with the
same label are positively correlated and any pair with different labels are negatively correlated, there
are only two directions the neurons tend to converge to: the positive data center and the negative one.
Moreover, Phuong & Lampert (2021) shows that if such directional convergence holds, then the loss
converges, and the resulting first-layer weight matrix is low-rank. However, directional convergence
is assumed in their analysis; there is no explicit characterization of how long it takes to achieve
directional convergence and how the time to convergence depends on the initialization scale.
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Paper contributions: In this paper, we provide a complete analysis of the dynamics of gradient flow
for training a two-layer ReLU network on well-separated data with small initialization. Specifically,
we show that if the initialization is sufficiently small, during the early phase of training the neurons
in the first layer try to align with either the positive data or the negative data, depending on its
corresponding weight on the second layer. Moreover, through a careful analysis of the neuron’s
directional dynamics we show that the time it takes for all neurons to achieve good alignment with
the input data is upper bounded by O( logn√

µ ), where n is the number of data points and µ measures
how well the data are separated. We also show that after the early alignment phase the loss converges
to zero at a O( 1t ) rate and that the weight matrix on the first layer is approximately low-rank.

Notation: We denote the Euclidean norm of a vector x by ∥x∥, the inner product between the vectors
x and y by ⟨x, y⟩ = x⊤y, and the cosine of the angle between them as cos(x, y) = ⟨ x

∥x∥ ,
y

∥y∥ ⟩. For
an n×m matrix A, we let A⊤ denote its transpose. We also let ∥A∥2 and ∥A∥F denote the spectral
norm and Frobenius norm of A, respectively. For a scalar-valued or matrix-valued function of time,
F (t), we let Ḟ = Ḟ (t) = d

dtF (t) denote its time derivative. Furthermore, we define 1A to be the
indicator for a statement A: 1A = 1 if A is true and 1A = 0 otherwise. We also let I denote the
identity matrix, and N (µ, σ2) denote the normal distribution with mean µ and variance σ2 .

2 PRELIMINARIES

In this section, we first discuss problem setting. We then present some key ingredients for analyz-
ing the training dynamics of ReLU networks under small initialization, and discuss some of the
weaknesses/issues from prior work.

2.1 PROBLEM SETTING

We are interested in a binary classification problem with dataset [x1, · · · , xn] ∈ RD×n (input data)
and [y1, · · · , yn]⊤ ∈ {−1,+1}n (labels). For the classifier, f : RD → R, we consider a two-layer
ReLU network:

f(x;W, v) = v⊤σ(W⊤x) =
∑h

j=1
vjσ(w

⊤
j x) , (1)

parametrized by network weights W := [w1, · · · , wh] ∈ RD×h, v := [v1, · · · , vh]⊤ ∈ Rh×1,
where σ(·) = max{·, 0} is the ReLU activation function. We aim to find the network weights that
minimize the training loss L(W, v) =

∑n
i=1 ℓ(yi, f(xi;W, v)), where ℓ : R× R→ R≥0 is either the

exponential loss ℓ(y, ŷ) = exp(−yŷ) or the logistic loss ℓ(y, ŷ) = log(1 + exp(−yŷ)). The network
is trained via the gradient flow (GF) dynamics

Ẇ ∈ ∂WL(W, v), v̇ ∈ ∂vL(W, v), (2)

where ∂WL, ∂vL are Clark sub-differentials of L. Therefore, (2) is a differential inclusion (Bolte
et al., 2010). For simplicity of presentation, instead of directly working on this differential inclusion,
our theoretical results will be stated for the Caratheodory solution (Reid, 1971) of (2) when the ReLU
subgradient is fixed as σ′(x) = 1x>0

1. In Appendix E, we show that under the data assumption of
our interest (to be introduced later), the Caratheodory solution (s) {W (t), v(t)} exists globally for all
t ∈ [0,∞), which we call the solution (s) of (2) throughout this paper.

To initialize the weights, we consider the following initialization scheme. First, we start from a
weight matrix W0 ∈ RD×h , and then and then initialize the weights as

W (0) = ϵW0, vj(0) ∈ {∥wj(0)∥,−∥wj(0)∥},∀j ∈ [h] . (3)

That is, the weight matrix W0 determines the initial shape of the first-layer weights W (0) and we use
ϵ to control the initialization scale and we are interested in the regime where ϵ is sufficiently small.
For the second layer weights v(0), each vj(0) has magnitude ∥wj(0)∥ and we only need to decide its
sign. Our results in later sections are stated for a deterministic choice of ϵ,W0, and v(0), then we
comment on the case where W0 is chosen randomly via some distribution.

The resulting weights in (3) are always "balanced", i.e., v2j (0)− ∥wj(0)∥2 = 0,∀j ∈ [h], because
vj(0) can only take two values: either ∥wj(0)∥ or −∥wj(0)∥. More importantly, under GF (2), this

1In Appendix F, we discuss how our results can be extended to the solution to differential inclusion.
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balancedness is preserved (Du et al., 2018): v2j (t)−∥wj(t)∥2 = 0,∀t ≥ 0,∀j ∈ [h]. In addition, it is
shown in Boursier et al. (2022) that sign(vj(t)) = sign(vj(0)),∀t ≥ 0,∀j ∈ [h], and the dynamical
behaviors of neurons will be divided into two types, depending on sign(vj(0)).
Remark 1. For our theoretical results, the balancedness condition is assumed for technical purposes:
it simplifies the dynamics of GF and thus the analysis. It is a common assumption for many existing
works on both linear (Arora et al., 2018b) and nonlinear (Phuong & Lampert, 2021; Boursier et al.,
2022) neural networks. For the experiments in Section 4, we use a standard Gaussian initialization
(not balanced) with a small variance to validate our theoretical findings.
Remark 2. Without loss of generality, we consider the case where all columns of W0 are nonzero,
i.e., ∥wj(0)∥ > 0,∀j ∈ [h]. We make this assumption because whenever wj(0) = 0, we also have
vj(0) = 0 from the balancedness, which together would imply v̇j ≡ 0, ẇj ≡ 0 under gradient flow.
As a result, wj and vj would remain zero and thus they could be ignored in the convergence analysis.
Remark 3. Our main results will depend on both maxj ∥wj(0)∥ and minj ∥wj(0)∥, as shown in
our proofs in Appendices C and D. Therefore, whenever we speak of small initialization, we will say
that ϵ is small without worrying about the scale of W0, which is already considered in our results.

2.2 NEURAL ALIGNMENT WITH SMALL INITIALIZATION: AN OVERVIEW

Prior work argues that the gradient flow dynamics (2) under small initialization (3), i.e., when ϵ
is sufficiently small, can be roughly described as "align then fit" (Maennel et al., 2018; Boursier
et al., 2022) : During the early phase of training, every neuron wj , j ∈ [h] keeps a small norm
∥wj∥2 ≪ 1 while changing their directions wj

∥wj∥ significantly in order to locally maximize a "signed
coverage" (Maennel et al., 2018) of itself w.r.t. the training data. After the alignment phase, part of
(potentially all) the neurons grow their norms in order to fit the training data, and the loss decreases
significantly. The analysis for the fitting phase generally depends on the resulting neuron directions
at the end of the alignment phase (Phuong & Lampert, 2021; Boursier et al., 2022). However, prior
analysis of the alignment phase either is based on a vanishing initialization argument that can not be
directly translated into the case finite but small initialization (Maennel et al., 2018) or assumes some
stringent assumption on the data (Boursier et al., 2022). In this section, we provide a brief overview
of the existing analysis for neural alignment and then point out several weaknesses in prior work.

Figure 1: Illustration of d
dt

wj

∥wj∥ dur-
ing the early alignment phase. x1
has +1 label, and x2, x3 have −1
labels, x1, x2 lie inside the halfs-
pace ⟨x,wj⟩ > 0 (gray shaded),
thus xa(wj) = x1 − x2. Since
sign(vj(0)) > 0, GF pushes wj to-
wards xa(wj).

Prior analysis of the alignment phase: Since during the align-
ment phase all neurons have small norm, prior work mainly
focuses on the directional dynamics, i.e., d

dt
wj

∥wj∥ , of the neu-
rons. The analysis relies on the following approximation of the
dynamics of every neuron wj , j ∈ [h]:

d

dt

wj

∥wj∥
≃ sign(vj(0))Pwj(t)xa(wj) , (4)

where Pw = I − ww⊤

∥w∥2 is the projection onto the subspace
orthogonal to w and

xa(w) :=
∑

i:⟨xi,w⟩>0
yixi (5)

denotes the signed combination of the data points activated by
w. First of all, (4) implies that the dynamics wj

∥wj∥ are approxi-
mately decoupled, and thus one can study each wj

∥wj∥ separately.
Moreover, as illustrated in Figure 1, if sign(vj(0)) > 0, the
flow (4) pushes wj towards xa(wj), since wj is attracted by its currently activated positive data and
repelled by its currently activated negative data. Intuitively, during the alignment phase, a neuron wj

with sign(vj(0)) > 0 would try to find a direction where it can activate as much positive data and as
less negative data as possible. If sign(vj(0)) < 0, the opposite holds.

Indeed, Maennel et al. (2018) claims that the neuron wj would be aligned with some "extreme
vectors", defined as vector w ∈ SD−1 that locally maximizes

∑
i∈[n] yiσ(⟨xi, w⟩) (similarly, wj

with sign(vj(0)) < 0 would be aligned with the local minimizer), and there are only finitely many
such vectors. The analysis is done under the limit ϵ→ 0, where the approximation in (4) is exact.
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Weakness in prior analyses: Although Maennel et al. (2018) provides great insights into the
dynamical behavior of the neurons in the alignment phase, the validity of the aforementioned
approximation for finite but small ϵ remains in question. First, one needs to make sure that the error∥∥∥ d
dt

wj

∥wj∥ − sign(vj(0))Pwj
xa(wj)

∥∥∥ is sufficiently small when ϵ is finite in order to justify (4) as a
good approximation. Second, the error bound needs to hold for the entire alignment phase. Maennel
et al. (2018) assumes ϵ→ 0; hence there is no formal error bound. In addition, prior analyses on small
initialization (Stöger & Soltanolkotabi, 2021; Boursier et al., 2022) suggest the alignment phase only
holds for Θ(log 1

ϵ ) time. Thus, the claim in Maennel et al. (2018) would only hold if good alignment
is achieved before the alignment phase ends. However, Maennel et al. (2018) provides no upper
bound on the time it takes to achieve good alignment. Therefore, without a finite ϵ analysis, Maennel
et al. (2018) fails to fully explain the training dynamics under small initialization. Understanding the
alignment phase with finite ϵ requires additional quantitative analysis. To the best of our knowledge,
this has only been studied under a stringent assumption that all data points are orthogonal to each
other (Boursier et al., 2022), or that there are effectively two data points Wang & Ma (2023).

Goal of this paper: In this paper, we want to address some of the aforementioned issues by developing
a formal analysis for the early alignment phase with a finite but small initialization scale ϵ. We first
discuss our main theorem that shows that a directional convergence can be achieved within bounded
time under data assumptions that are less restrictive and have more practical relevance. Then, we
discuss the error bound for justifying (4) in the proof sketch of the main theorem.

3 CONVERGENCE OF TWO-LAYER RELU NETWORKS WITH SMALL
INITIALIZATION

Figure 2: Neuron alignment un-
der Assumption 1. For neurons
in V+, 1⃝ if it lies inside S−,
then it gets repelled by x− and
escapes S−; Once outside S−,
it may 2⃝ get repelled by some
negative data and eventually en-
ters Sdead, or may 3⃝ gain some
activation on positive data and
eventually enter S+, then get
constantly attracted by x+.

Our main results require the following data assumption:

Assumption 1. Any pair of data with the same (different) label is
positively (negatively) correlated, i.e., mini,j

⟨xiyi,xjyj⟩
∥xi∥∥xj∥ :=µ> 0.

Given a training dataset, we define S+ := {z ∈ RD : 1⟨xi,z⟩>0 =
1yi>0,∀i} to be the cone in Rn such that whenever neuron w ∈
S+,w is activated exclusively by every xi with a positive label (see
Figure 2). Similarly, for xi with negative labels, we define S− :=
{z ∈ RD : 1⟨xi,z⟩>0 = 1yi<0,∀i}. Finally, we define Sdead :=

{z ∈ RD : ⟨z, xi⟩ ≤ 0,∀i} to be the cone such that whenever
w ∈ Sdead, no data activates w. Given Assumption 1, it can be
shown (see Appendix C) that S+ (S−) is a non-empty, convex cone
that contains all positive data xi, i ∈ I+ (negative data xi, i ∈ I−).
Sdead is a convex cone as well, but not necessarily non-empty. We
illustrate these cones in Figure 2 given some training data (red
solid arrow denotes positive data and blue denotes negative ones).

Moreover, given some initialization from (3), we define I+ :=
{i ∈ [n] : yi > 0} to be the set of indices of positive data, and
I− := {i ∈ [n] : yi < 0} for negative data. We also define
V+ := {j ∈ [h] : sign(vj(t)) > 0} to be the set of indices of neurons with positive second-layer
entry and V− := {j ∈ [h] : sign(vj(t)) < 0} for neurons with negative second-layer entry. Note
that, as discussed in Section 2.1, sign(vj(t)) does not change under balanced initialization, thus
V+,V− are time invariant. Further, as we discussed in Section 2.2 about the early alignment phase,
we expect that every neuron in V+ will drift toward the region where positive data concentrate and
thus eventually reach S+ or Sdead, as visualized in Figure 2 (x+, x− shown in the figure are defined
in Assumption 2). Similarly, all neurons in V− would chase after negative data and thus reach S− or
Sdead. Our theorem precisely characterizes this behavior.

3.1 MAIN RESULTS

Our main results are stated for solutions to the GF dynamics (2). However, in rare cases, solutions to
(2) could be non-unique and there are potentially “irregular solutions" (please refer to Appendix E.4
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for details) that allow some neurons to regain activation even after becoming completely deactivated
in Sdead. We deem such irregular solutions of little practical relevance since when implementing
gradient descent algorithm in practice, neurons in Sdead would receive zero update and thus stay in
Sdead. Therefore, our main theorem concerns some regular solutions to (2) (the existence of such
solutions is shown in Appendix E.2), as defined below.
Definition 1. A solution {W (t), v(t)} to (2) is regular if it satisfy that wj(t0) ∈ Sdead for some
j ∈ [h] and some t0 ≥ 0 implies wj(t) ∈ Sdead,∀t ≥ t0.

Before we present our main theorem, we also need the following assumption on the initialization, for
technical reasons, essentially asking the neuron wj(0), j ∈ V+ (or wj(0), j ∈ V−, resp.) to not be
completely aligned with x+ (or x−, resp.).

Assumption 2. The initialization from (3) satisfies that maxj∈V+⟨
wj(0)

∥wj(0)∥ ,
x−

∥x−∥ ⟩ < 1, and

maxj∈V−⟨
wj(0)

∥wj(0)∥ ,
x+

∥x+∥ ⟩ < 1, where x+ =
∑

i∈I+
xi and x− =

∑
i∈I−

xi.

We are now ready to present our main result (given Assumption 1 and Assumption 2):
Theorem 1. Given some initialization from (3), if ϵ = O( 1√

h
exp(− n√

µ log n)), then for any regular
solution to the gradient flow dynamics (2), we have

1. (Directional convergence in early alignment phase) ∃t1 = O( logn√
µ ), such that

• ∀j ∈ V+, either wj(t1) ∈ S+ or wj(t1) ∈ Sdead. Moreover, if maxi∈I+
⟨wj(0), xi⟩ > 0, then

wj(t1) ∈ S+.
• ∀j ∈ V−, either wj(t1) ∈ S− or wj(t1) ∈ Sdead. Moreover, if maxi∈I− ⟨wj(0), xi⟩ > 0, then
wj(t1) ∈ S−.

2. (Final convergence and low-rank bias) ∀t ≥ t1 and ∀j ∈ [h], neuron wj(t) stays within S+ (S−,
or Sdead) if wj(t1) ∈ S+ (S−, or Sdead resp.). Moreover, if both S+ and S− contains at least one
neuron at time t1, then

• ∃α > 0 and ∃t2 with t1 ≤ t2 = Θ( 1n log 1√
hϵ
), such that L(t) ≤ L(t2)

L(t2)α(t−t2)+1 , ∀t ≥ t2.

• As t→∞, ∥W (t)∥ → ∞ and ∥W (t)∥2F ≤ 2∥W (t)∥22 +O(ϵ). Thus, the stable rank of W (t)
satisfies lim supt→∞ ∥W (t)∥2F /∥W (t)∥22 ≤ 2.

We provide a proof sketch that highlights the technical novelty of our results in Section 3.3. Our
O(·) notations hide additional constants that depend on the data and initialization, for which we refer
readers to the complete proof of Theorem 1 in Appendix C and D. We make the following remarks:

Early neuron alignment: The first part of the Theorem 1 describes the configuration of all neurons
at the end of the alignment phase. Every neuron in V+ reaches either S+ or Sdead by t1, and stays
there for the remainder of training. Obviously, we care about those neurons reaching S+ as any
neuron in Sdead does not contribute to the final convergence at all. Luckily, Theorem 1 suggests that
any neuron in V+ that starts with some activation on the positive data, i.e., it is initialized in the union
of halfspaces ∪i∈I+

{w : ⟨w, xi⟩ > 0}, will eventually reach S+. A similar discussion holds for
neurons in V−. We argue that randomly initializing W0 ensures that with high probability, there will
be at least a pair of neurons reaching S+ and S− by time t1 (please see the next remark). Lastly, we
note that it is possible that Sdead = ∅, in which case every neuron reaches either S+ or S−.

Merits of random initialization: Our theorem is stated for a deterministic initialization (3) given
an initial shape W0. In practice, one would use random initialization to find a W0, for example,
[W0]ij

i.i.d.∼ N (0, 1/D). First, our Theorem 1 applies to this Gaussian initialization: Assumption 2 is

satisfied with probability one because the events
{
⟨ wj(0)
∥wj(0)∥ ,

x−
∥x−∥ ⟩ = 1

}
and

{
⟨ wj(0)
∥wj(0)∥ ,

x+

∥x+∥ ⟩ = 1
}

have probability zero. Moreover, any neuron in V+ has at least probability 1/2 of being initialized
within the union of halfspaces ∪i∈I+

{w : ⟨w, xi⟩ > 0}, which ensures that this neuron reaches
S+. Thus when there are m neurons in V+, the probability that S+ has at least one neuron at time
t1 is lower bounded by 1 − 2−m (same argument holds for S−), Therefore, with only very mild
overparametrization on the network width h, one can make sure that with high probability there is at
least one neuron in both S+ and S−, leading to final convergence.
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Importance of a quantitative bound on t1: The analysis for neural alignment relies on the ap-
proximation in (4), which, through our analysis (see Lemma 1), is shown to only hold before
T = Θ( 1n log 1√

hϵ
), thus if one proves, through the approximation in (4), that good alignment is

achieved within t1 time, then the initialization scale ϵ must be chosen to be O( 1√
h
exp(−nt1)) so

that t1 ≤ T , i.e. the proved alignment should finish before the approximation (4) fails. Therefore,
without an explicit bound on t1, one does not know a prior how small ϵ should be. Our quantitative
analysis shows that under (4), directional convergence is achieved within t1 = O( logn√

µ ) time. This
bound, in return, determines the bound for initialization scale ϵ. Moreover, our bound quantitatively
reveals the non-trivial dependency on the "data separation" µ for such directional convergence to
occur. Indeed, through a numerical illustration in Appendix A.2, we show that the dependence on the
data separability µ > 0 is crucial in determining the scale of the initialization: As µ approaches zero,
the time needed for the desired alignment increases, necessitate the use of a smaller ϵ.

Refined alignment within S+,S−: Once a neuron in V+ reaches S+, it never leaves S+. Moreover,
it always gets attracted by x+. Therefore, every neuron gets well aligned with x+, i.e., cos(wj , x+) ≃
1,∀wj ∈ S+. A similar argument shows neurons in S− get attracted by x−. We opt not to formally
state it in Theorem 1 as the result would be similar to that in (Boursier et al., 2022), and alignment
with x+, x− is not necessary to guarantee convergence. Instead, we show this refined alignment
through our numerical experiment in Section 4.

Final convergence and low-rank bias: We present the final convergence results mostly for the
completeness of the analysis. GF after t1 can be viewed as fitting positive data xi, i ∈ I+, with a
subnetwork consisting of neurons in S+, and fitting negative data with neurons in S−. By the fact that
all neurons in S+ activate all xi, i ∈ I+, the resulting subnetwork is linear, and so is the subnetwork
for fitting xi, i ∈ I−. The convergence analysis reduces to establishing O(1/t) convergence for
two linear networks (Arora et al., 2018a; Min et al., 2021; Yun et al., 2020). The non-trivial and
novel part is to show that right after the alignment phase ends, one can expect a substantial decrease
of the loss (starting from time t2 = Θ( 1n log 1√

hϵ
)). An alternative way of proving convergence is

by observing that at t1, all data has been correctly classified (w.r.t. sign of f ), which is sufficient
for showing O( 1

t log t ) convergence (Lyu & Li, 2019; Ji & Telgarsky, 2020) of the loss, but this
asymptotic rate does not suggest a time after which the loss start to decrease significantly. As for the
stable rank, our result follows the analysis in Le & Jegelka (2022), but in a simpler form since ours is
for linear networks. Although convergence is established partially by existing results, we note that
these analyses are all possible because we have quantitatively bound t1 in the alignment phase.

3.2 COMPARISON WITH PRIOR WORK

Our results provide a complete (from alignment to convergence), non-asymptotic (finite ϵ), quantita-
tive (bounds on t1, t2) analysis for the GF in (2) under small initialization. Similar neural alignment
has been studied in prior work for orthogonally separable data (same as ours) and for orthogonal
data, and we shall discuss them separately.

Alignment under orthogonally separable data: Phuong & Lampert (2021) assumes that there
exists a time t1 such that at t1, the neurons are in either S+,S− or Sdead and their main contribution
is the analysis of the implicit bias for the later stage of the training. they justify their assumption
by the analysis in Maennel et al. (2018), which does not necessarily apply to the case of finite ϵ,
as we discussed in Section 2.2. Later Wang & Pilanci (2022) shows t1 exists, provided that the
initialization scale ϵ is sufficiently small, but still with no explicit analysis showing how t1 depends
on the data separability µ and the size of the training data n. Moreover, there is no quantification on
how small ϵ should be. In our work, all the results are non-asymptotic and quantitative: we show
that good alignment is achieved within t1 = O( logn√

µ ) time and provide an explicit upper bound on
ϵ. Moreover, our results highlight the dependence on the separability µ > 0, (Further illustrated in
Appendix A.2) which is not studied in Phuong & Lampert (2021); Wang & Pilanci (2022).

Alignment under orthogonal data: In Boursier et al. (2022), the neuron alignment is carefully
analyzed for the case all data points are orthogonal to each other, i.e., ⟨xi, xj⟩ = 0,∀i ̸= j ∈ [n].
We point out that neuron behavior is different under orthogonal data (illustrated in Appendix A.3):
only the positive (negative) neurons initially activate all the positive (negative) data will end up in S+
(S−). In our case, all positive (negative) neurons will arrive at S+ (S−), unless they become a dead
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neuron. Moreover, due to such distinction, the analysis is different: Boursier et al. (2022) restrict
their results to positive (negative) neurons wj that initially activate all the positive (negative) data,
and there is no need for analyzing neuron activation. However, since our analysis is on all positive
neurons, regardless of their initial activation pattern, it utilizes novel techniques to track the evolution
of the activation pattern (see Section 3.3).

Other related work: Convergence of two-layer (leaky-)ReLU networks are also studied under non-
small initialization settings, mainly for gradient descent Wang & Ma (2022) and for training only the
first-layer weights Frei et al. (2022); Kou et al. (2023). There is no direct comparison to them as they
study the convergence in other regimes. Nonetheless, the analyses of neural alignment remain essential
in these works but are done through different tools (one no longer has an approximation in (4)). We
note that such analyses also require certain restrictive data assumptions. For example, Wang & Ma
(2022) assumes orthogonal separability, together with some geometric constraint on the data; Frei
et al. (2022); Kou et al. (2023) assumes high-dimensional near-orthogonal data.

3.3 PROOF SKETCH FOR THE ALIGNMENT PHASE

In this section, we sketch the proof for our Theorem 1. First of all, it can be shown that S+,Sdead
are trapping regions for all wj(t), j ∈ V+, that is, whenever wj(t) gets inside S+ (or Sdead), it
never leaves S+ (or Sdead). Similarly, S−,Sdead are trapping regions for all wj(t), j ∈ V−. The
alignment phase analysis concerns how long it takes for all neurons to reach one of the trapping
regions, followed by the final convergence analysis on fitting data with +1 label by neurons in S+
and fitting data with −1 label by those in S−. We have discussed the final convergence analysis in
the remark "Final convergence and low-rank bias", thus we focus on the proof sketch for the early
alignment phase here, which is considered as our main technical contribution.

Approximating d
dt

wj

∥wj∥ : Our analysis for the neural alignment is rooted in the following Lemma:

Lemma 1. Given some initialization from (3), if ϵ = O( 1√
h
), then there exists T = Θ( 1n log 1√

hϵ
)

such that any solution to the gradient flow dynamics (2) satisfies that ∀t ≤ T ,

max
j

∥∥∥∥ ddt wj(t)

∥wj(t)∥
− sign(vj(0))Pwj(t)xa(wj(t))

∥∥∥∥ = O
(
ϵn
√
h
)
. (6)

This Lemma shows that the error between d
dt

wj(t)
∥wj(t)∥ and sign(vj(0))Pwj(t)xa(wj(t)) can be arbi-

trarily small with some appropriate choice of ϵ (to be determined later). This allows one to analyze
the true directional dynamics wj(t)

∥wj(t)∥ using some property of Pwj(t)xa(wj(t)), which leads to a

t1 = O( logn√
µ ) upper bound on the time it takes for the neuron direction to converge to the sets S+,

S−, or Sdead. Moreover, it also suggests ϵ can be made sufficiently small so that the error bound holds
until the directional convergence is achieved, i.e. T ≥ t1. We will first illustrate the analysis for
directional convergence, then close the proof sketch with the choice of a sufficiently small ϵ.

Activation pattern evolution: Given a sufficiently small ϵ, one can show that under Assumption 1,
for every neuron wj that is not in Sdead we have:

d

dt

〈
wj

∥wj∥
,
xiyi
∥xi∥

〉∣∣∣∣
⟨wi,xi⟩=0

> 0,∀i ∈ [n], if j ∈ V+ , (7)

d

dt

〈
wj

∥wj∥
,
xiyi
∥xi∥

〉∣∣∣∣
⟨wi,xi⟩=0

< 0,∀i ∈ [n], if j ∈ V− . (8)

This is because if a neuron satisfies ⟨xi, wj⟩ = 0 for some i, and is not in Sdead, GF moves wj towards
xa(wj) =

∑
i:⟨xi,wj⟩>0 xiyi. Interestingly, Assumption 1 implies ⟨xiyi, xa(wj)⟩ > 0,∀i ∈ [n],

which makes d
dt

wj

∥wj∥ ≃ sign(vj(0))Pwjxa(wj) point inward (or outward) the halfspace ⟨xiyi, wj⟩ >
0, if sign(vj(0)) > 0 (or sign(vj(0)) < 0, respectively). See Figure 3 for illustration.

As a consequence, a neuron can only change its activation pattern in a particular manner: a neuron in
V+, whenever it is activated by some xi with yi = +1, never loses the activation on xi thereafter,
because (7) implies that GF pushes wj

∥wj∥ towards xi at the boundary ⟨wj , xi⟩ = 0. Moreover, (7)
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also shows that a neuron in V+ will never regain activation on a xi with yi = −1 once it loses the
activation because GF pushes wj

∥wj∥ against xi at the boundary ⟨wi, xi⟩ = 0. Similarly, a neuron in
V− never loses activation on negative data and never gains activation on positive data.

Figure 3: For j ∈ V+, Assump-
tion 1 enforces ⟨xiyi, xa(wj)⟩ > 0,
thus GF pushes wj inward the half-
space ⟨xiyi, wj⟩ > 0 at ⟨xi, wj⟩ =
0 (i.e. towards gaining activation on
xi, if yi = +1, or losing activation
on xi, if yi = −1.). S⊥xi

and S⊥wj

denotes the subspace orthogonal to
xi and wj , respectively.

Figure 4: Illustration of the activation pattern evolution. The
epochs on the time axis denote the time wj changes its ac-
tivation pattern by either losing one negative data (denoted
by "+") or gaining one positive data (denoted by "−"). The
markers are colored if it currently activates wj . During the
alignment phase 0 ≤ t ≤ t1, a neuron wj , j ∈ V+ starts with
activation on all negative data and no positive data, every
O (1/na) time, it must change its activation, unless either 1⃝
it reaches Sdead, or 2⃝ it activates some positive data at some
epoch then eventually reaches S+.

Bound on activation transitions and duration: Equations (7) and (8) are key in the analysis of
alignment because they limit how many times a neuron can change its activation pattern: a neuron in
V+ can only gain activation on positive data and lose activation on negative data, thus at maximum, a
neuron wj , j ∈ V+, can start with full activation on all negative data and no activation on any positive
one (which implies wj(0) ∈ S−) then lose activation on every negative data and gain activation on
every positive data as GF training proceeds (which implies wj(t1) ∈ S+), taking at most n changes
on its activation pattern. See Figure 4 for an illustration. Then, since it is possible to show that a
neuron wj with j ∈ V+ that has cos(wj , x−) < 1 (guaranteed by Assumption 2) and is not in S+ or
Sdead, must change its activation pattern after O( 1

na
√
µ ) time (that does not depend on ϵ), where na is

the number of data that currently activates wj , one can upper bound the time for wj to reach S+ or
Sdead by some t1 = O( logn√

µ ) constant independent of ϵ. Moreover, wj must reach S+ if it initially
has activation on at least one positive data, i.e., maxi∈I+ ⟨wj(0), xi⟩ > 0 since it cannot lose this
activation. A similar argument holds for wj , j ∈ V− that they reaches either S− or Sdead before t1.

Choice of ϵ: All the aforementioned analyses rely on the assumption that the approximation in
equation (4) holds with some specific error bound. We show in Appendix C that the desired bound
is
∥∥∥ d
dt

wj(t)
∥wj(t)∥ − sign(vj(0))Pwj(t)xa(wj(t))

∥∥∥ ≤ O(√µ), which, by Lemma 1, can be achieved

by a sufficiently small initialization scale ϵ1 = O(
√
µ√
hn

). Moreover, the directional convergence

(which takes O( logn√
µ ) time) should be achieved before the alignment phase ends, which happens

at T = Θ( 1n log 1√
hϵ
). This is ensured by choosing another sufficiently small initialization scale

ϵ2 = O( 1√
h
exp(− n√

µ log n)). Overall, the initialization scale should satisfy ϵ ≤ min{ϵ1, ϵ2}. We
opt to present ϵ2 in our main theorem because ϵ2 beats ϵ1 when n is large.

4 NUMERICAL EXPERIMENTS

We use a toy example in Appendix A.1 to clearly visualize the neuron alignment during training
(due to space constraints). In the main body of this paper, we validate our theorem using a binary
classification task for two MNIST digits. Such training data do not satisfy Assumption 1 since every
data vector is a grayscale image with non-negative entries, making the inner product between any
pair of data non-negative, regardless of their labels. However, we can preprocess the training data
by centering: xi ← xi − x̄, where x̄ =

∑
i∈[n] xi/n. The preprocessed data, then, approximately

satisfies our assumption (see the left-most plot in Figure 5): a pair of data points is very likely to
have a positive correlation if they have the same label and to have a negative correlation if they have
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Figure 5: Training two-layer ReLU network under small initialization for binary classification on
MNIST digits 0 and 1. (First Plot) Data correlation [⟨xi, xj⟩]ij as a heatmap, where the data are
reordered by their label (digit 1 first, then digit 0); (Second Plot) Alignment between neurons and
the aggregate positive/negative data x+ =

∑
i∈I+

xi, x− =
∑

i∈I−
xi. (Third Plot) The loss L, the

stable rank and the squared spectral norm of W during training; (Fourth Plot) Visualizing neuron
centers w̄+, w̄− and data centers x̄+, x̄− (at iteration 15000).
different labels. Thus we expect our theorem to make reasonable predictions on the training dynamics
with preprocessed data. For the remaining section, we use xi, i ∈ [n], to denote the preprocessed
(centered) data and use x̄ to denote the mean of the original data.

We build a two-layer ReLU network with h = 50 neurons and initialize all entries of the weights as
[W ]ij

i.i.d.∼ N
(
0, α2

)
, vj

i.i.d.∼ N
(
0, α2

)
,∀i ∈ [n], j ∈ [h] with α = 10−6. Then we run gradient

descent on both W and v with step size η = 2× 10−3. Notice that here the weights are not initialized
to be balanced as in (3). The numerical results are shown in Figure 5.

Alignment phase: Without balancedness, one no longer has sign(vj(t)) = sign(vj(0)). With a
little abuse of notation, we denote V+(t) = {j ∈ [h] : sign(vj(t)) > 0} and V+(t) = {j ∈ [h] :
sign(vj(t)) > 0}, and we expect that at the end of the alignment phase, neurons in V+ are aligned
with x+ =

∑
i∈I+

xi, and neurons in V− with x− =
∑

i∈I−
xi. The second plot in Figure 5

shows such an alignment between neurons and x+, x−. In the top part, the red solid line shows
cos(w̄+, x+) during training, where w̄+ =

∑
j∈V+

wj/|V+|, and the shaded region defines the
range between minj∈V+ cos(wi, x+) and maxj∈V+ cos(wi, x+). Similarly, in the bottom part, the
green solid line shows cos(w̄−, x−) during training, where w̄− =

∑
j∈V−

wj/|V−|, and the shaded
region delineates the range between minj∈V− cos(wi, x−) and maxj∈V− cos(wi, x−). Initially, every
neuron is approximately orthogonal to x+, x− due to random initialization. Then all neurons in V+
(V−) start to move towards x+ (x−) and achieve good alignment after ∼2000 iterations. When the
loss starts to decrease, the alignment drops. We conjecture that because Assumption 1 is not exactly
satisfied, neurons in V+ have to fit some negative data, for which x+ is not the best direction.

Final convergence: After ∼ 3000 iterations, the norm ∥W∥22 starts to grow and the loss decreases,
as shown in the third plot in Figure 5. Moreover, the stable rank ∥W∥2F /∥W∥22 decreases below 2.
For this experiment, we almost have cos(x+, x−) ≃ −1, thus the neurons in V+ (aligned with x+)
and those in V− (aligned with x−) are almost co-linear. Therefore, the stable rank ∥W∥2F /∥W∥22
is almost 1, as seen from the plot. Finally, at iteration 15000, we visualize the mean neuron
w̄+ =

∑
j∈V+

wj/|V+|, w̄− =
∑

j∈V−
wj/|V−| as grayscale images, and compare them with

x̄+ = x+/|I+|, x− = x−/|I−|, showing good alignment.

Comparison with other training schemes: For two-layer ReLU networks, there is another line of
work (Brutzkus et al., 2018; Wang et al., 2019) that studies GD/SGD only on the first-layer weights
W and keeping the second-layer v fixed throughout training. In Appendix A.5, we compare our
training schemes to those in Brutzkus et al. (2018); Wang et al. (2019), and show that while both
schemes achieve small training loss, the aforementioned two-phase training (alignment then final
convergence) does no happen if only the first-layer in trained.

5 CONCLUSION

This paper studies the problem of training a binary classifier via gradient flow on two-layer ReLU
networks under small initialization. We consider a training dataset with well-separated input vectors.
A careful analysis of the neurons’ directional dynamics allows us to provide an upper bound on the
time it takes for all neurons to achieve good alignment with the input data. Numerical experiment on
classifying two digits from the MNIST dataset correlates with our theoretical findings.
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A ADDITIONAL EXPERIMENTS

A.1 ILLUSTRATIVE EXAMPLE

We illustrate our theorem using a toy example: we train a two-layer ReLU network with h = 50
neurons under a toy dataset in R2 (See Figure. 6) that satisfies our Assumption 1, and initialize all
entries of the weights as [W ]ij

i.i.d.∼ N
(
0, α2

)
, vj

i.i.d.∼ N
(
0, α2

)
,∀i ∈ [n], j ∈ [h] with α = 10−6.

Then we run gradient descent on both W and v with step size η = 2 × 10−3. Our theorem well
predicts the dynamics of neurons at the early stage of the training: aside from neurons that ended up
in Sdead, neurons in V+ reach S+ and achieve good alignment with x+, and neurons in V− are well
aligned with x− in S−. Note that after alignment, the loss experiences two sharp decreases before it
gets close to zero, which is studied and explained in Boursier et al. (2022).

Figure 6: Illustration of gradient descent on two-layer ReLU network with small initialization. The
marker represents either a data point or a neuron. Solid lines represent the directions of neurons. (a)
at initialization, all neurons have small norm and are pointing in different directions; (b) around the
end of the alignment phase, all neurons are in S+,S−, or Sdead. Moreover, neurons in S+ (S−) are
well aligned with x+ (x−); (c) With good alignment, neurons in S−,S+ start to grow in norm and
the loss decreases. When the loss is close to zero, the resulting network has its first-layer weight
approximately low-rank.

A.2 EFFECT OF DATA SEPARABILITY µ

This section investigates the effect of data separability µ on the time required to achieve the desired
alignment as in Theorem 1, through a simple example. we consider a similar setting as in A.1,
and explore the cases when data separability µ ≪ 1. We expect that as separability µ decreases,
the time for neurons to achieve the desired alignment as in Theorem 1 increases, necessitating
a smaller initialization scale. For simplicity, we consider a dataset with only two positive data
(x1, y1 = +1), (x2, y2 = +1).

In Figure 7, we first set µ = ⟨x1, x2⟩ = sin(0.1), and the neuron alignment is consistent with
Theorem 1: positive neurons (that are not dead) eventually enters S+, activating both data points, and
then final convergence follows.

Figure 7: Neural alignment under two data points with small positive correlation: x1 = [1, 0], y1 =
+1, x2 = [sin(0.1), cos(0.1)], y2 = +1. The experimental setting is exactly the same as the illustra-
tive example in Appendix A.1 (initialization scale α = 10−6). The marker represents either a data
point or a neuron. Solid lines represent the directions of neurons. In the alignment phase, positive
neurons are aligned with x+, and then grow their norm for final convergence.
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However, in Figure 8, as we decrease the separability µ to sin(0.001) (other settings remain un-
changed), the neural alignment becomes slower: 1) at iteration 7000, there are still neurons (that
are not dead) outside S+, namely those aligned with either x1 or x2, while in our previous setting
(µ = sin(0.1)), all neurons (that are not dead) have reached S+; 2) In this particular instance of the
experiment, we also see one neuron remains outside S+ at the late stage of the training (at iteration
21000). This clearly shows that as data separability µ decreases, the time needed for all neurons
(that are not dead) to reach S+ increases, and if the initialization scale is not small enough for the
alignment phase to hold for a long time, there will be neurons remains outside S+.

Figure 8: Neural alignment under two data points with tiny positive correlation: x1 = [1, 0], y1 = +1,
x2 = [sin(0.001), cos(0.001)], y2 = +1. The experimental setting is exactly the same as the
illustrative example in Appendix A.1 (initialization scale α = 10−6). The marker represents either
a data point or a neuron. Solid lines represent the directions of neurons. In the alignment phase,
positive neurons are aligned with x+, but the alignment is slower

A.3 NEURON DYNAMICS UNDER ORTHOGONAL DATA

We have seen in the last section how a small µ affects the neuron dynamics. The orthogonal data
assumption studied in Boursier et al. (2022) is precisely the extreme case of µ→ 0, where the neuron
behavior changes substantially. We follow exactly the same setting in Appendix A.2 and consider the
case of µ = 0.

In Figure 9, we see that S+ is no longer the region that contains all (non-dead) positive neurons
at the end of the alignment phase. Depending on where each neuron is initialized, it could end up
being in S+, aligned with x1, or aligned with x2. Moreover, for final convergence, only the neurons
ended up in S+ grow their norms and fit the data, whose number is clearly less than that in the case
of µ > 0.

Figure 9: Neural alignment under two orthogonal data points: x1 = [1, 0], y1 = +1, x2 = [0, 1], y2 =
+1. The experimental setting is exactly the same as the illustrative example in Appendix A.1. The
marker represents either a data point or a neuron. Solid lines represent the directions of neurons. In
the alignment phase, positive neurons are aligned with one of these directions: x1, x2, x+, and only
those aligned with x+ grow their norm for final convergence.

This difference in neurons’ dynamical behavior makes the analysis in Boursier et al. (2022) different
than ours: First, Boursier et al. (2022) only studies the dynamics of the positive (negative) neurons
that initially activate all positive (negative) data, which will end up in S+ (S−) and fit the data, and
the analysis does not evolve the changes in their activation pattern. In our case, any positive (negative)
neurons could potentially end up in S+ (S−), and in particular, it will if it initially activates at least
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one positive (negative) data, thus it becomes necessary to track the evolution of the activation pattern
of all these neurons (novelty in our analysis). Moreover, consider the case that neurons are being
randomly initialized, Boursier et al. (2022) requires the set of positive (negative) neurons that initially
activate all positive (negative) data being non-empty, which needs the number of neurons h to scale
exponentially in number training data n (extremely overparametrized). In our case, we only require
h = Θ(1) (See Merits of overparametrization after Theorem 1), a mild overparamerization.

In summary, while Boursier et al. (2022) also provides quantitative analysis on neural alignment
under small initialization, it is done under the assumption that all data are orthogonal to each other,
leading to a different neuron dynamical behavior than ours. Due to such differences, their analysis
cannot be directly applied to the case of orthogonally separable data (ours), for which we develop
novel analyses on the evolution of neuron activation patterns (See proof sketch in Section 3.3).

A.4 ADDITIONAL EXPERIMENTS ON MNIST DATASET

We use exactly the same experimental setting as in the main paper and only use a different pair of
digits. The results are as follows:

Figure 10: Binary classification on MNIST Digits 3 and 8.

Figure 11: Binary classification on MNIST Digits 1 and 7.

A.5 DISCUSSION ON THE TWO-PHASE CONVERGENCE

With the same two-digit MNIST dataset in Section 4, we further discuss the two-phase convergence
under small initialization. We use a two-layer ReLU network with h = 50 neurons and initialize all
entries of the weights as [W ]ij

i.i.d.∼ N
(
0, α2

)
, vj

i.i.d.∼ N
(
0, α2

)
,∀i ∈ [n], j ∈ [h] with α = 10−6.

Then we run stochastic gradient descent (SGD) with batch size 2000 on both W and v with step
size η = 2 × 10−3. For comparison, we also consider the training schemes studied in Brutzkus
et al. (2018); Wang et al. (2019), where only the first-layer weight W is trained starting from a small
initialization [W ]ij

i.i.d.∼ N
(
0, α2

)
, and vj are chosen to be either +1 or −1 with equal probability,

then fixed throughout training.

We consider the changes in neuron norms and directions separately. In particular, these quantities are
defined as ∑

i

d

dt
∥wj∥2

∣∣∣∣
ẇj=−∇wj

L
=
∑
i

2
〈
−∇wj

L , wj

〉
(changes in neuron norms)
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Figure 12: Two-phase training under small initialization (SGD with a batch size of 2000, step size of
2 × 10−3). At the early phase of the training, only neuron directions are changing while neurons’
norms do not grow. In the second stage, neurons start to grow their norms and loss starts to decrease.
See Appendix A.5 for the precise definitions of “changes in neuron norms" and “changes in neuron
directions"

Figure 13: No two-phase training when only the first layer is trained (SGD with a batch size of 2000,
step size of 2× 10−3).

∑
i

∥∥∥∥∥ ddt wj

∥wj∥

∣∣∣∣
ẇj=−∇wj

L

∥∥∥∥∥ =
∑
i

∥∥∥∥Pwj

(−∇wjL
∥wj∥

)∥∥∥∥ , (changes in neuron directions)

and they measure, at the end of every epoch, how much the neuron norms and directions will change
if one uses a one-step full gradient descent with a small step size.

Training both layers: In Figure 12, we show the changes in neuron norms and directions over the
training trajectory when we run stochastic gradient descent (SGD) on both first- and second-layer
weights. The two-phase (alignment phase then final convergence) is clearly shown by comparing the
relative scale of changes in neuron norms and directions in different phases of the training.

Training only the first layer: In Figure 13, we show the changes in neuron norms and directions
over the training trajectory when we run stochastic gradient descent (SGD) on ONLY the first-layer
weights (Brutzkus et al., 2018; Wang et al., 2019). The plot indicates that two-phase training does not
happen in this case.
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B PROOF OF LEMMA 1: NEURON DYNAMICS UNDER SMALL INITIALIZATION

The following property of ℓ (exponential loss ℓ(y, ŷ) = exp(−yŷ) or logistic loss ℓ(y, ŷ) = 2 log(1+
exp(−yŷ))) will be used throughout the Appendix for proofs of several results:
Lemma 2. For ℓ, we have

| − ∇ŷℓ(y, ŷ)− y| ≤ 2|ŷ|,∀y ∈ {+1,−1}, ∀|ŷ| ≤ 1 . (9)

Proof. Exponential loss: when ℓ(y, ŷ) = exp(−yŷ):
| − ∇ŷℓ(y, ŷ)− y| = |y exp(−yŷ)− y|

≤ |y|| exp(−yŷ)− 1|
≤ | exp(−yŷ)− 1| ≤ 2|ŷ| ,

where the last inequality is due to the fact that 2x ≥ max{1− exp(−x), exp(x)− 1},∀x ∈ [0, 1].
Logistic loss: when ℓ(y, ŷ) = 2 log(1 + exp(−yŷ)):

| − ∇ŷℓ(y, ŷ)− y| =
∣∣∣∣2y exp(−yŷ)

1 + exp(−yŷ)
− y
∣∣∣∣

=

∣∣∣∣y exp(−yŷ)− y1 + exp(−yŷ)

∣∣∣∣
≤ |y|| exp(−yŷ)− 1|
≤ | exp(−yŷ)− 1| ≤ 2|ŷ| ,

Remark 4. More generally, our subsequent results regarding neuron dynamics under small initial-
ization hold for any loss function that satisfies the condition stated in Lemma 2, which includes the l2
loss ℓ(y, ŷ) = 1

2 (y − ŷ)
2 studied in Boursier et al. (2022).

B.1 FORMAL STATEMENT

Our results for neuron direction dynamics during the early phase of the training will be stated for
networks with any α-leaky ReLU activation σ(x) = max{x, αx} with α ∈ [0, 1]. In particular, it is
the ReLU activation when α = 0, which is the activation function we considered in the main paper,
and it is the linear activation when α = 1.

Denote: Xmax = maxi ∥xi∥,Wmax = maxj ∥[W0]:,j∥. The formal statement of Lemma 1 is as
follow:
Lemma 1. Let the activation function be an α-leaky ReLU activation σ(x) = max{x, αx}. Given
some initialization from (3), for any ϵ ≤ 1

4
√
hXmaxW 2

max

, then any solution to the gradient flow

dynamics (2) satisfies that ∀t ≤ T = 1
4nXmax

log 1√
hϵ

,

max
j

∥∥∥∥ ddt wj(t)

∥wj(t)∥
− sign(vj(0))Pwj(t)xa(wj(t))

∥∥∥∥ ≤ 4ϵn
√
hX2

maxW
2
max ,

where

xa(wj) =

n∑
i=1

xiyiσ
′(⟨xi, wj⟩) =

∑
i:⟨xi,wj⟩>0

xiyi + α
∑

i:⟨xi,wj⟩≤0

xiyi .

With Lemma 1, and set α = 0, we obtain the results stated in the main paper. Lemma 1 is a direct
result of the following two lemmas.
Lemma 3. Let the activation function be an α-leaky ReLU activation σ(x) = max{x, αx}. Given
some initialization in (3), then for any ϵ ≤ 1

4
√
hXmaxW 2

max

, any solution to the gradient flow dynamics
(2) satisfies

max
j
∥wj(t)∥2 ≤

2ϵW 2
max√
h

, max
i
|f(xi;W (t), v(t))| ≤ 2ϵ

√
hXmaxW

2
max , (10)

∀t ≤ 1
4nXmax

log 1√
hϵ

.
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Lemma 4. Let the activation function be an α-leaky ReLU activation σ(x) = max{x, αx}. Con-
sider any solution to the gradient flow dynamic (2) starting from initialization (3). Whenever
maxi |f(xi;W, v)| ≤ 1, we have, ∀i ∈ [n],∥∥∥∥∥ ddt wj

∥wj∥
− sign(vj(0))

(
I −

wjw
⊤
j

∥wj∥2

)
xa(wj)

∥∥∥∥∥ ≤ 2nXmax max
i
|f(xi;W, v)| , (11)

where

xa(wj) =

n∑
i=1

xiyiσ
′(⟨xi, wj⟩) =

∑
i:⟨xi,wj⟩>0

xiyi + α
∑

i:⟨xi,wj⟩≤0

xiyi .

Remark 5. By stating our approximation results for neuron directional dynamics with any α-leaky
ReLU activation function, we highlight that even for some networks with other activation functions
than ReLU, there is a similar notion of neuron alignment at the early stage of the training, and the
analytical tools used in this paper can be applied to them. However, we note that our main results
(Theorem 1) will not directly apply as the neuron directional dynamics have changed as we consider
an activation function different than ReLU (see the general definition of xa(wj)), and additional
efforts are required to establish the directional convergence for general leaky-ReLU functions.

B.2 PROOF OF LEMMA 3: BOUNDS ON NEURON NORMS

Proof of Lemma 3. Under gradient flow, we have

d

dt
wj = −

n∑
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v))xivj . (12)

Balanced initialization enforces vj = sign(vj(0))∥wj∥, hence

d

dt
wj = −

n∑
i=1

σ′(⟨xi, wj⟩)∇ŷℓ(yi, f(xi;W, v))xisign(vj(0))∥wj∥ . (13)

Let T := inf{t : maxi |f(xi;W (t), v(t))| > 2ϵ
√
hXmaxW

2
max}, then ∀t ≤ T, j ∈ [h], we have

d

dt
∥wj∥2 =

〈
wj ,

d

dt
wj

〉
= −2

n∑
i=1

σ′(⟨xi, wj⟩)∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ sign(vj(0))∥wj∥

≤ 2

n∑
i=1

|∇ŷℓ(yi, f(xi;W, v))| |⟨xi, wj⟩| ∥wj∥

≤ 2

n∑
i=1

(|yi|+ 2|f(xi;W, v)|) |⟨xi, wj⟩| ∥wj∥ (by Lemma 2)

≤ 2

n∑
i=1

(1 + 4ϵ
√
hXmaxW

2
max) |⟨xi, wj⟩| ∥wj∥ (Since t ≤ T )

≤ 2

n∑
i=1

(1 + 4ϵ
√
hXmaxW

2
max)∥xi∥∥wj∥2

≤ 2n(Xmax + 4ϵ
√
hX2

maxW
2
max)∥wj∥2 . (14)

Let τj := inf{t : ∥wj(t)∥2 > 2ϵW 2
max√
h
}, and let j∗ := argminj τj , then τj∗ = minj τj ≤ T due to

the fact that

|f(xi;W, v)| =

∣∣∣∣∣∣
∑
j∈[h]

σ′(⟨xi, wj⟩)vj ⟨wj , xi⟩

∣∣∣∣∣∣ ≤
∑
j∈[h]

∥wj∥2∥xi∥ ≤ hXmax max
j∈[h]

∥wj∥2 ,
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which implies "|f(xi;W (t), v(t))| > 2ϵ
√
hXmaxW

2
max ⇒ ∃j, s.t.∥wj(t)∥2 > 2ϵW 2

max√
h

".

Then for t ≤ τj∗ , we have
d

dt
∥wj∗∥2 ≤ 2n(Xmax + 4ϵ

√
hX2

maxW
2
max)∥wj∗∥2 . (15)

By Grönwall’s inequality, we have ∀t ≤ τj∗

∥wj∗(t)∥2 ≤ exp
(
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)t

)
∥wj∗(0)∥2 ,

= exp
(
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)t

)
ϵ2∥[W0]:,j∗∥2

≤ exp
(
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)t

)
ϵ2W 2

max .

Suppose τj∗ < 1
4nXmax

log
(

1√
hϵ

)
, then by the continuity of ∥wj∗(t)∥2, we have

2ϵW 2
max√
h
≤ ∥wj∗(τj∗)∥2 ≤ exp

(
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)τj∗

)
ϵ2W 2

max

≤ exp

(
2n(Xmax + 4ϵ

√
hX2

maxW
2
max)

1

4nXmax
log

(
1√
hϵ

))
ϵ2W 2

max

≤ exp

(
1 + 4ϵ

√
hXmaxW

2
max

2
log

(
1√
hϵ

))
ϵ2W 2

max

≤ exp

(
log

(
1√
hϵ

))
ϵ2W 2

max =
ϵW 2

max√
h

,

which leads to a contradiction 2ϵ ≤ ϵ. Therefore, one must have T ≥ τj∗ ≥ 1
4nXmax

log
(

1√
hϵ

)
.

This finishes the proof.

B.3 PROOF OF LEMMA 4: DIRECTIONAL DYNAMICS OF NEURONS

Proof of Lemma 4. As we showed in the proof for Lemma 3, under balanced initialization,

d

dt
wj = −

n∑
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v))xisign(vj(0))∥wj∥ . (16)

Then for any i ∈ [n],

d

dt

wj

∥wj∥
= −sign(vj(0))

n∑
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v))

(
xi −

⟨xi, wj⟩
∥wj∥2

wj

)
= −sign(vj(0))

∑
i:⟨xi,wj⟩>0

∇ŷℓ(yi, f(xi;W, v))

(
xi −

⟨xi, wj⟩
∥wj∥2

wj

)

= −sign(vj(0))

(
I −

wjw
⊤
j

∥wj∥2

)(
n∑

i=1

σ′(⟨xi, wj⟩)∇ŷℓ(yi, f(xi;W, v))xi

)
.

Therefore, whenever maxi |f(xi;W, v)| ≤ 1,∥∥∥∥∥ ddt wj

∥wj∥
− sign(vj(0))

(
I −

wjw
⊤
j

∥wj∥2

)
xa(wj)

∥∥∥∥∥
=

∥∥∥∥∥sign(vj(0))
(

n∑
i=1

σ′(⟨xi, wj⟩) (∇ŷℓ(yi, f(xi;W, v)) + yi)xi

)∥∥∥∥∥
≤

n∑
i=1

|∇ŷℓ(yi, f(xi;W, v)) + yi| · ∥xi∥

≤
n∑

i=1

2|f(xi;W, v)| · ∥xi∥ ≤ 2nMx max
i
|f(xi;W, v)| . (17)
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C PROOF FOR THEOREM 1: EARLY ALIGNMENT PHASE

We break the proof of Theorem 1 into two parts: In Appendix C we prove the first part regarding
directional convergence. Then in Appendix D we prove the remaining statement on final convergence
and low-rank bias.

C.1 AUXILIARY LEMMAS

The first several Lemmas concern mostly some conic geometry given the data assumption:

Consider the following conic hull

K = CH({xiyi, i ∈ [n]}) =

{
n∑

i=1

aixiyi : ai ≥ 0, i ∈ [n]

}
. (18)

It is clear that xiyi ∈ K,∀i, and xa(w) ∈ K,∀w. The following lemma shows any pair of vectors in
K is µ-coherent.
Lemma 5. cos(z1, z2) ≥ µ,∀0 ̸= z1, z2 ∈ K.

Proof. Since z1, z2 ∈ K, we let z1 =
∑n

i=1 xiyia1i, andz2 =
∑n

j=1 xjyja2j , where a1i, a2j ≥ 0
but not all of them.

cos(z1, z2) =
1

∥z1∥∥z2∥
⟨z1, z2⟩ =

1

∥z1∥∥z2∥
∑

i,j∈[n]

a1ia2j ⟨xiyi, xjyj⟩

=

∑
i,j∈[n] ∥xi∥∥xj∥a1ia2jµ

∥z1∥∥z2∥
≥ µ ,

where the last inequality is due to

∥z1∥∥z2∥ ≤

(
n∑

i=1

∥xi∥a1i

) n∑
j=1

∥xj∥a2j

 =
∑

i,j∈[n]

∥xi∥∥xj∥a1ia2j .

The following lemma is some basic results regarding S+ and S−:
Lemma 6. S+ and S− are convex cones (excluding the origin).

Proof. Since 1⟨xi,z⟩ = 1⟨xi,az⟩,∀i ∈ [n], a > 0, S+,S− are cones. Moreover, ⟨xi, z1⟩ > 0 and
⟨xi, z2⟩ > 0 implies ⟨xi, a1z1 + a2z2⟩ > 0,∀a1, a2 > 0, thus S+,S− are convex cones.

Now we consider the complete metric space SD−1 (w.r.t. arccos(⟨·, ·⟩)) and we are interested in its
subsets K ∩SD−1, S+ ∩SD−1, and S− ∩SD−1. First, we have (we use Int(S) to denote the interior
of S)
Lemma 7. K ∩ SD−1 ⊂ Int(S+ ∩ SD−1), and −K ∩ SD−1 ⊂ Int(S− ∩ SD−1)

Proof. Consider any xc =
∑n

j=1 ajxjyj ∈ K ∩ SD−1, For any xi, yi, i ∈ [n], we have

⟨xc, xi⟩ =
n∑

i=j

aj∥xj∥
〈
xjyj
∥xj∥

,
xiyi
∥xi∥

〉
∥xi∥
yi

≥ µyi∥xi∥
n∑

i=j

aj∥xj∥
{
≥ µXmin > 0, yi > 0

≤ −µXmin < 0, yi < 0
.

Depending on the sign of yi, we have either

⟨xc, xi⟩ =
n∑

i=j

aj∥xj∥
〈
xjyj
∥xj∥

,
xiyi
∥xi∥

〉
∥xi∥
yi
≥ µ∥xi∥

yi

n∑
i=j

aj∥xj∥ ≥ µXmin > 0 , (yi = +1)
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or

⟨xc, xi⟩ =
n∑

i=j

aj∥xj∥
〈
xjyj
∥xj∥

,
xiyi
∥xi∥

〉
∥xi∥
yi
≤ µ∥xi∥

yi

n∑
i=j

aj∥xj∥ ≤ −µXmin < 0 , (yi = −1)

where we use the fact that 1 = ∥xc∥ = ∥
∑n

j=1 ajxjyj∥ ≤
∑n

j=1 aj∥xj∥. This already tells us
xc ∈ S+ ∩ SD−1.

Since fi(z) = ⟨z, xi⟩ is a continuous function of z ∈ SD−1. There exists an open ball B (xc, δi)
centered at xc with some radius δi > 0, such that ∀z ∈ B (xc, δi), one have |fi(z)− fi (xc)| ≤
µXmin

2 , which implies

⟨z, xi⟩
{
≥ µXmin/2 > 0, yi > 0

≤ −µXmin/2 < 0, yi < 0
.

Hence ∩ni=1B
(

xc

∥xc∥ , δi

)
∈ S+ ∩ SD−1. Therefore, xc ∈ Int(S+ ∩ SD−1). This suffices to show

K ∩ SD−1 ⊂ Int(S+ ∩ SD−1). The other statement −K ∩ SD−1 ⊂ Int(S− ∩ SD−1) is proved
similarly.

The following two lemmas are some direct results of Lemma 7.
Lemma 8. ∃ζ1 > 0 such that

Sζ1x+
⊂ S+, Sζ1x−

⊂ S− , (19)

where Sζx := {z ∈ RD : cos(z, x) ≥
√
1− ζ}.

Proof. By Lemma 7, x+

∥x+∥ ∈ K ⊂ Int(S+). Since SD−1 is a complete metric space (w.r.t
arccos ⟨·, ·⟩), there exists a open ball centered at x+

∥x+∥ of some radius arccos(
√
1− ζ1) that is a

subset of S+, from which one can show Sζ1x+
⊂ S+. The other statement Sζ1x−

⊂ S− simply comes
from the fact that x+ = −x− and Int(S+) = −Int(S−).

Lemma 9. ∃ξ > 0, such that

sup
x1∈K∩SD−1,x2∈(S+∩SD−1)c∩(S−∩SD−1)c

| cos(x1, x2)| ≤
√
1− ξ . (20)

(Sc here is defined to be SD−1 − S, the set complement w.r.t. complete space SD−1)

Proof. Notice that

sup
x1∈K∩SD−1,x2∈(Int(S+∩SD−1))c

⟨x1, x2⟩ = inf
x1∈K∩SD−1,x2∈(Int(S+∩SD−1))c

arccos ⟨x1, x2⟩ .

Since SD−1 is a complete metric space (w.r.t arccos ⟨·, ·⟩) andK∩SD−1 and x2 ∈ (Int(S+∩SD−1))c

are two of its compact subsets. Suppose

inf
x1∈K∩SD−1,x2∈x2∈(Int(S+∩SD−1))c

arccos ⟨x1, x2⟩ = 0 ,

then ∃x1 ∈ K ∩SD−1, x2 ∈ (Int(S+∩SD−1))c such that arccos ⟨x1, x2⟩ = 0, i.e., x1 = x2, which
contradicts the fact that K ∩ SD−1 ⊆ Int(S+ ∩ SD−1) (Lemma 7). Therefore, we have the infimum
strictly larger than zero, then

sup
x1∈K∩SD−1,x2∈(S+∩SD−1)c

⟨x1, x2⟩ ≤ sup
x1∈K∩SD−1,x2∈(Int(S+∩SD−1))c

⟨x1, x2⟩ < 1 . (21)

Similarly, one can show that

sup
x1∈−K∩SD−1,x2∈(S−∩SD−1)c

⟨x1, x2⟩ < 1 . (22)

Finally, find ξ < 1 such that

max

{
sup

x1∈K∩SD−1,x2∈(S+∩SD−1)c
⟨x1, x2⟩ , sup

x1∈−K∩SD−1,x2∈(S−∩SD−1)c
⟨x1, x2⟩

}
=
√

1− ξ ,
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then for any x1 ∈ K ∩ SD−1 and x2 ∈ (S+ ∩ SD−1)c ∩ (S− ∩ SD−1)c, we have

−
√

1− ξ ≤ ⟨x1, x2⟩ ≤
√
1− ξ ,

which is the desired result.

The remaining two lemmas are technical but extensively used in the main proof.
Lemma 10. Consider any solution to the gradient flow dynamic (2) starting from initialization (3).
Let xr ∈ Sn−1 be some reference direction, we define

ψrj =

〈
xr,

wj

∥wj∥

〉
, ψra =

〈
xr,

xa(wj)

∥xa(wj)∥

〉
, ψaj =

〈
wj

∥wj∥
,
xa(wj)

∥xa(wj)∥

〉
, (23)

where xa(wj) =
∑

i:⟨xi,wj⟩>0 yixi.

Whenever maxi |f(xi;W, v)| ≤ 1, we have∣∣∣∣ ddtψrj − sign(vj(0)) (ψra − ψrjψaj) ∥xa(wj)∥
∣∣∣∣ ≤ 2nXmax max

i
|f(xi;W, v)| . (24)

Proof. A simple application of Lemma 4, together with Cauchy-Schwartz:∣∣∣∣ ddtψrj − sign(vj(0)) (ψra − ψrjψaj) ∥xa(wj)∥
∣∣∣∣

=

∣∣∣∣∣∣x⊤r
 d

dt

wj

∥wj∥
− sign(vj(0))

(
I −

wjw
⊤
j

∥wj∥2

) ∑
i:⟨xi,wj⟩>0

yixi

∣∣∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)| .

Lemma 11.
∥xa(w)∥ ≥

√
µna(w)Xmin , (25)

where na(w) = |{i ∈ [n] : ⟨xi, w⟩ > 0}|.

Proof. Let Ia(w) denote {i ∈ [n] : ⟨xi, w⟩ > 0}, then

∥xa(w)∥ =

∥∥∥∥∥∥
∑

i:⟨xi,w⟩>0

xiyi

∥∥∥∥∥∥ =

√√√√ ∑
i∈Ia(w)

∥xi∥2y2i +
∑

i,j∈Ia(w),i<j

∥xi∥∥xj∥
〈
xiyi
∥xi∥

,
xjyj
∥xj∥

〉

≥
√ ∑

i∈Ia(w)

∥xi∥2y2i +
∑

i,j∈Ia(w),i<j

∥xi∥∥xj∥|yi||yj |µ

≥
√
na(w)X2

min + µna(w) (na(w)− 1)X2
min

≥
√
na(w)(1 + µ(na(w)− 1))Xmin

≥ √µna(w)Xmin .

C.2 PROOF FOR EARLY ALIGNMENT PHASE

Proof of Theorem 1: First Part. Given some initialization in (3), by Assumption 2, ∃ζ2 > 0, such
that

max
j∈V+

cos(wj(0), x−) <
√
1− ζ2, max

j∈V−
cos(wj(0), x+) <

√
1− ζ2 . (26)

We define ζ := max{ζ1, ζ2}, where ζ1 is from Lemma 8. In addition, by Lemma 9, ∃ξ > 0, such
that

sup
x1∈K∩SD−1,x2∈Sc

−∩Sc
+∩SD−1

| cos(x1, x2)| ≤
√
1− ξ . (27)
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We pick a initialization scale ϵ that satisfies:

ϵ ≤ min

{
min{µ, ζ, ξ}√µXmin

4
√
hnX2

maxW
2
max

,
1√
h
exp

(
− 64nXmax

min{ζ, ξ}√µXmin
log n

)}
≤ 1

4
√
hXmaxW 2

max

.

(28)
By Lemma 3, ∀t ≤ T = 1

4nXmax
log 1√

hϵ
, we have

max
i
|f(xi;W, v)| ≤

min{µ, ζ, ξ}√µXmin

4nXmax
, (29)

which is the key to analyzing the alignment phase. For the sake of simplicity, we only discuss the
analysis of neurons in V+ here, the proof for neurons in V− is almost identical.

Activation pattern evolution: Pick any wj in V+ and pick xr = xiyi for some i ∈ [n], and consider
the case when ⟨wj , xi⟩ = 0. From Lemma 10,we have∣∣∣∣ ddtψrj − (ψra − ψrjψaj) ∥xa(wj)∥

∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)| .

⟨wj , xi⟩ = 0 implies ψrj =
〈

xiyi

∥xi∥ ,
wj

∥wj∥

〉
= 0, thus we have∣∣∣∣ ddtψrj |⟨wj ,xi⟩=0 − ψra∥xa(wj)∥

∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)| .

Then whenever wj /∈ Sdead, we have
d

dt
ψrj |⟨wj ,xi⟩=0 ≥ ψra∥xa(wj)∥ − 2nXmax max

i
|f(xi;W, v)|

≥ µ∥xa(wj)∥ − 2nXmax max
i
|f(xi;W, v)| (by Lemma 5)

≥ µ3/2Xmin − 2nXmax max
i
|f(xi;W, v)| (by Lemma 11)

≥ µ3/2Xmin/2 > 0 . (by (29))
This is precisely (7) in Section 3.3.

Bound on activation transitions and duration: Next we show that if at time t0 < T , wj(t0) /∈ S+∪
Sdead, and the activation pattern of wj is 1⟨xi,wj(t0)⟩>0, then 1⟨xi,wj(t0+∆t))⟩>0 ̸= 1⟨xi,wj(t0)⟩>0,
where ∆t = 4

min{ζ,ξ}√µXminna(wj(t0))
and na(wj(t0)) is defined in Lemma 11 as long as t0 +∆t <

T as well. That is, during the alignment phase [0, T ], wj must change its activation pattern within ∆t
time. There are two cases:

• The first case is when wj(t0) ∈ Sc+ ∩ Sc− ∩ Scdead. In this case, suppose that 1⟨xi,wj(t0+τ))⟩>0 =
1⟨xi,wj(t0)⟩>0,∀0 ≤ τ ≤ ∆t, i.e. wj fixes its activation during [t0, t0 + ∆t], then we have
xa(wj(t0 + τ)) = xa(wj(t0)),∀0 ≤ τ ≤ ∆t. Let us pick xr = xa(wj(t0)), then Lemma 10
leads to∣∣∣∣ ddt cos(wj , xa(wj))−

(
1− cos2(wj , xa(wj))

)
∥xa(wj)∥

∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)| .

Since xa(wj) is fixed, we have ∀t ∈ [t0, t0 +∆t],∣∣∣∣ ddt cos(wj , xa(wj(t0)))−
(
1− cos2(wj , xa(wj(t0)))

)
∥xa(wj(t0))∥

∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)| ,

d

dt
cos(wj , xa(wj(t0))) ≥

(
1− cos2(wj , xa(wj(t0)))

)
∥xa(wj(t0))∥

− 2nXmax max
i
|f(xi;W, v)|

≥ ξ∥xa(wj(t0))∥ − 2nXmax max
i
|f(xi;W, v)| (by (27))

≥ ξ
√
µna(wj(t0))Xmin − 2nXmax max

i
|f(xi;W, v)| (by Lemma 11)

≥ ξ
√
µna(wj(t0))Xmin/2 . (by (29))

≥ min{ξ, ζ}√µna(wj(t0))Xmin/2 ,
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which implies that, by the Fundamental Theorem of Calculus,

cos(wj(t0 +∆t), xa(wj(t0)))

= cos(wj(t0), xa(wj(t0))) +

∫ ∆t

0

d

dt
cos(wj(t0 + τ), xa(wj(t0)))dτ

≥ cos(wj(t0), xa(wj(t0))) + ∆t ·min{ξ, ζ}√µna(wj(t0))Xmin/2

= cos(wj(t0), xa(wj(t0))) + 2 ≥ 1 ,

which leads to cos(wj(t0 +∆t), xa(wj(t0))) = 1. This would imply wj(t0 +∆t) ∈ S+ because
xa(wj(t0)) ∈ S+, which contradicts our original assumption that wj fixes the activation pattern.
Therefore, ∃0 < τ0 ≤ ∆t such that 1⟨xi,wj(t0+τ0))⟩ ̸= 1⟨xi,wj(t0)⟩>0, due to the restriction on
how wj can change its activation pattern, it cannot return to its previous activation pattern, then
one must have 1⟨xi,wj(t0+∆t))⟩ ̸= 1⟨xi,wj(t0)⟩>0.

• The other case is when wj(t0) ∈ S−. For this case, we need first show that wj(t0 + τ) /∈
Sζx−

,∀0 ≤ τ ≤ ∆t, or more generally, Sζx−
does not contain any wj in V+ during [0, T ]. To see

this, let us pick xr = x−, then Lemma 10 suggests that∣∣∣∣ ddtψrj − (ψra − ψrjψaj) ∥xa(wj)∥
∣∣∣∣ ≤ 2nXmax max

i
|f(xi;W, v)| .

Consider the case when cos(wj , x−) =
√
1− ζ, i.e. wj is at the boundary of Sζx−

. We know that
in this case, wj ∈ Sζx−

⊆ S− thus xa(wj) = −x−, and∣∣∣∣∣ ddt cos(wj , x−)

∣∣∣∣
cos(wj ,x−)=

√
1−ζ

+
(
1− cos2(wj , x−)

)
∥x−∥

∣∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)| ,

which is∣∣∣∣∣ ddt cos(wj , x−)

∣∣∣∣
cos(wj ,x−)=

√
1−ζ

+ ζ∥x−∥

∣∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)|

⇒ d

dt
cos(wj , x−)

∣∣∣∣
cos(wj ,x−)=

√
1−ζ

≤ −ζ∥x−∥+ 2nXmax max
i
|f(xi;W, v)|

≤ −ζ√µXmin + 2nXmax max
i
|f(xi;W, v)| (by Lemma 11)

≤ −ζ√µXmin/2 < 0 . (by (29))

Therefore, during [0, T ], neuron wj in V+ cannot enter Sζx−
if at initialization, wj(0) /∈ Sζx−

,
which is guaranteed by (26).

With the argument above, we know that wj(t0 + τ) /∈ Sζx−
,∀0 ≤ τ ≤ ∆t. Again we suppose that

wj(t) ∈ S− − Sζx−
,∀t ∈ [t0, t0 +∆t], i.e.,wj fixes its activation during [t0, t0 +∆t]. Let us pick

xr = x−, then Lemma 10 suggests that∣∣∣∣ ddt cos(wj , x−) +
(
1− cos2(wj , x−)

)
∥x−∥

∣∣∣∣ ≤ 2nXmax max
i
|f(xi;W, v)| ,

which leads to ∀t ∈ [t0, t0 +∆t],

d

dt
cos(wj , x−) ≤ −

(
1− cos2(wj , x−)

)
∥x−∥+ 2nXmax max

i
|f(xi;W, v)|

≤ −ζ∥x−∥+ 2nXmax max
i
|f(xi;W, v)| (wj /∈ Sζx−

)

≤ −ζ√µna(wj(t0))Xmin + 2nXmax max
i
|f(xi;W, v)| (by Lemma 11)

≤ −ζ√µna(wj(t0))Xmin/2 . (by (29))
≤ −min{ξ, ζ}√µna(wj(t0))Xmin/2 ,
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Similarly, by FTC, we have
cos(wj(t0 +∆t), x−) ≤ −1 .

This would imply wj(t0 + ∆t) ∈ S+ because −x− = xa(wj(t0)) ∈ S+, which contra-
dicts our original assumption that wj fixes its activation pattern. Therefore, one must have
1⟨xi,wj(t0+∆t))⟩ ̸= 1⟨xi,wj(t0)⟩>0.

In summary, we have shown that, during [0, T ], a neuron in V+ can not keep a fixed activation pattern
for a time longer than ∆t = 4

min{ζ,ξ}√µXminna
, where na is the number of data points that activate

wj under the fixed activation pattern.

Bound on total travel time until directional convergence As we have discussed in Section 3.3 and
also formally proved here, during alignment phase [0, T ], a neuron in V+ must change its activation
pattern within ∆t = 4

min{ζ,ξ}√µXminna
time unless it is in either S+ or Sdead. And the new activation

it is transitioning into must contain no new activation on negative data points and must keep all
existing activation on positive data points, together it shows that a neuron must reach either S+ or
Sdead within a fixed amount of time, which is the remaining thing we need to formally show here.

For simplicity of the argument, we first assume T =∞, i.e., the alignment phase lasts indefinitely,
and we show that a neuron in V+ must reach S+ or Sdead before t1 = 16 logn

min{ζ,ξ}√µXmin
. Lastly, such

directional convergence can be achieved if t1 ≤ T , which is guaranteed by our choice of ϵ in (28).

• For a neuron in V+ that reaches Sdead, the analysis is easy: It must start with no activation on
positive data and then lose activation on negative data one by one until losing all of its activation.
Therefore, it must reach Sdead before
na(wj(0))∑

k=1

4

min{ζ, ξ}√µXmink
≤ 4

min{ζ, ξ}√µXmin

(
n∑

k=1

1

k

)
≤ 16 log n

min{ζ, ξ}√µXmin
= t1 .

• For a neuron in V+ that reaches S+, there is no difference conceptually, but it can switch its
activation pattern in many ways before reaching S+, so it is not straightforward to see its travel
time until S+ is upper bounded by t1.

To formally show the upper bound on the travel time, we need some definition of a path that keeps
a record of the activation patterns of a neuron wj(t) before it reaches S+.

Let n+ = |I+|, n− = |I−| be the number of positive, negative data respectively, then we call
P(k(0),k(1),··· ,k(L)) a path of length-L, if

1. ∀0 ≤ l ≤ L, we have k(l) = (k
(l)
+ , k

(l)
− ) ∈ N× N with 0 ≤ k(l)+ ≤ n+, 0 ≤ k(l)− ≤ n−;

2. For k(l1), k(l2) with l1 < l2, we have either k(l1)+ > k
(l2)
+ or k(l1)− < k

(l2)
− ;

3. k(L) = (n+, 0);
4. k(l) ̸= (0, 0),∀0 ≤ l ≤ L.

Given all our analysis on how a neuron wj(t) can switch its activation pattern in previous parts,
we know that for any wj(t) that reaches S+, there is an associated P(k(0),k(1),··· ,k(L)) that keeps an
ordered record of encountered values of

(|{i ∈ I+ : ⟨xi, wj(t)⟩ > 0}|, |{i ∈ I− : ⟨xi, wj(t)⟩ > 0}|) ,
before wj reaches S+. That is, a neuron wj starts with some activation pattern that activates k+(0)
positive data and k−(0) negative data, then switch its activation pattern (by either losing negative
data or gaining positive data) to one that activates k+(1) positive data and k−(1) negative data. By
keep doing so, it reaches S+ that activates k+(L) = n+ positive data and k−(L) = 0 negative data.
Please see Figure 14 for an illustration of a path.

Given a path P(k(0),k(1),··· ,k(L)) of neuron wj , we define the travel time of this path as

T (P(k(0),k(1),··· ,k(L))) =

L−1∑
l=0

4

min{ζ, ξ}√µXmin(k
(l)
+ + k

(l)
− )

,
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Figure 14: Illustration of a path of length-10.
Each dot on the grid represents one k(l).

Figure 15: Illustration of a path and the maxi-
mal path

which is exactly the traveling time from k(0) to k(L) if one spends 4

min{ζ,ξ}√µXmin(k
(l)
+ +k

(l)
− )

on the

edge between k(l) and k(l+1).

Our analysis shows that if wj reaches S+, then

inf{t : wj(t) ∈ S+} ≤ T (P(k(0),k(1),··· ,k(L))) .

Now we define the maximal path Pmax as a path that has the maximum length n = n+ + n−,
which is uniquely determined by the following trajectory of k(l)

(0, n−), (0, n− − 1), (0, n− − 2), · · · , (0, 1), (1, 1), (1, 0), · · · , (n+ − 1, 0), (n+, 0) .

Please see Figure 15 for an illustration.

The traveling time for Pmax is

T (Pmax) =
4

min{ζ, ξ}√µXmin

(
n−∑
k=1

1

k
+

1

2
+

n+−1∑
k=1

1

k

)

≤ 4

min{ζ, ξ}√µXmin

(
2

n∑
k=1

1

k
+

1

2

)

≤ 16 log n

min{ζ, ξ}√µXmin
= t1 .

The proof is complete by the fact that any path satisfies

T (P(k(0),k(1),··· ,k(L))) ≤ T (Pmax) .

This is because there is a one-to-one correspondence between the edges (k(l), k(l+1)) in
P(k(0),k(1),··· ,k(L)) and a subset of edges in Pmax, and the travel time from of edge (k(l), k(l+1))
is shorter than the corresponding edge in Pmax. Formally stating such correspondence is tedious
and a visual illustration in Figure 16 and 17 is more effective (Putting all correspondence makes a
clustered plot thus we split them into two figures):

Therefore, if wj reaches S+, then it reaches S+ within t1:

inf{t : wj(t) ∈ S+} ≤ T (P(k(0),k(1),··· ,k(L))) ≤ T (Pmax) ≤ t1 .

So far we have shown when the alignment phase lasts long enough, i.e., T large enough, the directional
convergence is achieved by t1. We simply pick ϵ such that

T =
1

4nXmax
log

1√
hϵ
≥ t1 =

16 log n

min{ζ, ξ}√µXmin
,

and (28) suffices.
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Figure 16: Correspondence between edges in
P(k(0),k(1),··· ,k(L)) and Pmax. (Part 1)

Figure 17: Correspondence between edges in
P(k(0),k(1),··· ,k(L)) and Pmax. (Part 2)

D PROOF FOR THEOREM 1: FINAL CONVERGENCE

Since we have proved the first part of Theorem 1 in Section C, we will use it as a fact, then prove the
remaining part of Theorem 1.

D.1 AUXILIARY LEMMAS

First, we show that S+,S−,Sdead are trapping regions.

Lemma 12. Consider any solution to the gradient flow dynamic (2), we have the following:

• If at some time t1 ≥ 0, we have wj(t1) ∈ Sdead, then wj(t1 + τ) ∈ Sdead, ∀τ ≥ 0;

• If at some time t1 ≥ 0, we have wj(t1) ∈ S+ for some j ∈ V+, then wj(t1 + τ) ∈ S+, ∀τ ≥ 0;

• If at some time t1 ≥ 0, we have wj(t1) ∈ S− for some j ∈ V−, then wj(t1 + τ) ∈ S−, ∀τ ≥ 0;

Proof. The first statement is simple, if wj ∈ Sdead, then one have ẇj = 0, thus wj remains in Sdead.

For the second statement, we have, since j ∈ V+,

d

dt
wj = −

n∑
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v))xi∥wj∥ .

When ℓ is the exponential loss, by the Fundamental Theorem of Calculus, one writes, ∀τ ≥ 0,

wj(t1 + τ) = wj(t1) +

∫ τ

0

d

dt
wjdτ

= wj(t1) +

∫ τ

0

−
n∑

i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v))xi∥wj∥dτ

= wj(t1) +

∫ τ

0

n∑
i=1

1⟨xi,wj⟩>0yi exp(−yif(xi;W, v))xi∥wj∥dτ

= wj(t1) +
∑
i∈I+

(∫ τ

0

exp(−yif(xi;W, v))∥wj∥dτ
)
xi︸ ︷︷ ︸

:=x̃+

.

Here wj(t1) ∈ S+ by our assumption, x̃+ ∈ K ⊆ S+ because x̃+ is a conical combination of
xi, i ∈ I+. Since S+ is a convex cone, we have wj(t1 + τ) ∈ S+ as well.
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When ℓ is the logistic loss, we have, similarly,

wj(t1 + τ) = wj(t1) +

∫ τ

0

n∑
i=1

1⟨xi,wj⟩>0yi
2 exp(−yif(xi;W, v))

1 + exp(−yif(xi;W, v))
xi∥wj∥dτ

= wj(t1) +
∑
i∈I+

(∫ τ

0

2 exp(−yif(xi;W, v))
1 + exp(−yif(xi;W, v))

∥wj∥dτ
)
xi︸ ︷︷ ︸

:=x̃+

∈ S+ .

The proof of the third statement is almost identical (we only show the case of exponential loss here):
when j ∈ V−, we have

d

dt
wj =

n∑
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v))xi∥wj∥ ,

and

wj(t1 + τ) = wj(t1) +
∑
i∈I−

(∫ τ

0

exp(−yif(xi;W, v))∥wj∥dτ
)
xi︸ ︷︷ ︸

:=x̃−

.

Again, here wj(t1) ∈ S− by our assumption, x̃− ∈ −K ⊆ S− because x̃− is a conical combination
of xi, i ∈ I−. Since S− is a convex cone, we have wj(t1 + τ) ∈ S+ as well.

Then the following Lemma provides a lower bound on neuron norms upon t1.
Lemma 13. Consider any solution to the gradient flow dynamic (2) starting from initialization (3).
Let t1 be the time when directional convergence is achieved, as defined in Theorem 1, and we define
Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. If both Ṽ+ and Ṽ− are non-empty, we have∑

j∈Ṽ+

∥wj(t1)∥2 ≥ exp(−4nXmaxt1)
∑
j∈Ṽ+

∥wj(0)∥2,

∑
j∈Ṽ−

∥wj(t1)∥2 ≥ exp(−4nXmaxt1)
∑
j∈Ṽ−

∥wj(0)∥2,

Proof. We have shown that

d

dt
∥wj∥2 = −2

n∑
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ sign(vj(0))∥wj∥ .

Then before t1, we have ∀j ∈ [h]

d

dt
∥wj∥2 = −2

n∑
i=1

1⟨xi,wj⟩>0∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ sign(vj(0))∥wj∥

≥ −2
n∑

i=1

(|yi|+ 2max
i
|f(xi;W, v)|)∥xi∥∥wj∥2

≥ −4
n∑

i=1

∥xi∥∥wj∥2 ≥ −4nXmax∥wj∥2 ,

where the second last inequality is because maxi |f(xi;W, v)| ≤ 1
2 before t1. Summing over j ∈ Ṽ+,

we have
d

dt

∑
j∈Ṽ+

∥wj∥2 ≥ −4nXmax

∑
j∈Ṽ+

∥wj∥2 .

Therefore, we have the following bound:∑
j∈Ṽ+

∥wj(t1)∥2 ≥ exp(−4nXmaxt1)
∑
j∈Ṽ+

∥wj(0)∥2 .
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Moreover, after t1, the neuron norms are non-decreasing, as suggested by
Lemma 14. Consider any solution to the gradient flow dynamic (2) starting from initialization (3).
Let t1 be the time when directional convergence is achieved, as defined in Theorem 1, and we define
Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. If both Ṽ+ and Ṽ− are non-empty, we have
∀τ ≥ 0 and t2 ≥ t1,∑

j∈Ṽ+

∥wj(t2 + τ)∥2 ≥
∑
j∈Ṽ+

∥wj(t2)∥,
∑
j∈Ṽ−

∥wj(t2 + τ)∥2 ≥
∑
j∈Ṽ−

∥wj(t2)∥ (30)

Proof. It suffices to show that after t1, the following derivatives:

d

dt

∑
j∈Ṽ+

∥wj(t)∥2,
d

dt

∑
j∈Ṽ−

∥wj(t)∥2 ,

are non-negative.

For j ∈ Ṽ+, wj stays in S+ by Lemma 12, and we have

d

dt
∥wj∥2 = −2

∑
i∈I+

∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ ∥wj∥ .

=

{
2
∑

i∈I+
yi exp(−yif(xi;W, v)) ⟨xi, wj⟩ ∥wj∥ (ℓ is exponential)

2
∑

i∈I+
yi

2 exp(−yif(xi;W,v))
1+exp(−yif(xi;W,v)) ⟨xi, wj⟩ ∥wj∥ (ℓ is logistic)

≥ 0 .

Summing over j ∈ Ṽ+, we have d
dt

∑
j∈Ṽ+

∥wj(t)∥2 ≥ 0. Similarly one has d
dt

∑
j∈Ṽ−

∥wj(t)∥2 ≥
0.

Finally, the following lemma is used for deriving the final convergence.
Lemma 15. Consider the following loss function

Llin(W, v) =

n∑
i=1

ℓ
(
yi, v

⊤W⊤xi)
)
,

if {xi, yi}, i ∈ [n] are linearly separable, i.e., ∃γ > 0 and z ∈ SD−1 such that yi ⟨z, xi⟩ ≥ γ,∀i ∈
[n], then under the gradient flow on Llin(W, v), whenever yiv⊤W⊤xi ≥ 0, ∀i, we have

L̇lin ≤ −
1

4
∥v∥2L2γ2 . (31)

Proof. For ℓ being exponential loss, we have:

L̇ = −∥∇WL∥2F − ∥∇vL∥2F ≤ −∥∇WL∥2F

= −

∥∥∥∥∥
n∑

i=1

yiℓ(yi, v
⊤W⊤xi)xiv

⊤

∥∥∥∥∥
2

F

= −∥v∥2
∥∥∥∥∥

n∑
i=1

yiℓ(yi, v
⊤W⊤xi)xi

∥∥∥∥∥
2

≤ −∥v∥2
∣∣∣∣∣
〈
z,

n∑
i=1

yiℓ(yi, v
⊤W⊤xi)xi

〉∣∣∣∣∣
2

≤ −∥v∥2
∣∣∣∣∣

n∑
i=1

ℓ(yi, v
⊤W⊤xi)γ

∣∣∣∣∣
2

≤ −∥v∥2L2γ2 ≤ −1

4
∥v∥2L2γ2 .
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For ℓ being logistic loss, we have:

L̇ = −∥∇WL∥2F − ∥∇vL∥2F ≤ −∥∇WL∥2F

= −

∥∥∥∥∥
n∑

i=1

yi
2 exp(−yiv⊤W⊤xi)

1 + exp(−yiv⊤W⊤xi)
xiv

⊤

∥∥∥∥∥
2

F

= −∥v∥2
∥∥∥∥∥

n∑
i=1

yi
2 exp(−yiv⊤W⊤xi)

1 + exp(−yiv⊤W⊤xi)
xi

∥∥∥∥∥
2

≤ −∥v∥2
∣∣∣∣∣
〈
z,

n∑
i=1

yi
2 exp(−yiv⊤W⊤xi)

1 + exp(−yiv⊤W⊤xi)
xi

〉∣∣∣∣∣
2

≤ −∥v∥2
∣∣∣∣∣

n∑
i=1

2 exp(−yiv⊤W⊤xi)

1 + exp(−yiv⊤W⊤xi)
γ

∣∣∣∣∣
2

= −∥v∥2γ2
∣∣∣∣∣

n∑
i=1

2 exp(−yiv⊤W⊤xi)

1 + exp(−yiv⊤W⊤xi)

∣∣∣∣∣
2

≤ −∥v∥2γ2
∣∣∣∣∣

n∑
i=1

log(1 + exp(−yiv⊤W⊤xi))

∣∣∣∣∣
2

= −1

4
∥v∥2L2γ2 ,

where the last inequality uses the fact that 2 z
1+z ≥ log(1 + z) when z ∈ [0, 1].

D.2 PROOF OF FINAL CONVERGENCE

Proof of Theorem 1: Second Part. By Lemma 12, we know that after t1, neurons in S+ (S−) stays
in S+ (S−). Thus the loss can be decomposed as

L =
∑
i∈I+

ℓ

yi, ∑
j∈Ṽ+

vj ⟨wj , xi⟩


︸ ︷︷ ︸

L+

+
∑
i∈I−

ℓ

yi, ∑
j∈Ṽ−

vj ⟨wj , xi⟩


︸ ︷︷ ︸

L−

, (32)

where Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. Therefore, the training after t1 is
decoupled into 1) using neurons in Ṽ+ to fit positive data in I+ and 2) using neurons in Ṽ− to fit
positive data in I−.

We define f+(xi;W, v) =
∑

j∈Ṽ+
vj ⟨wj , xi⟩ and let t+2 = inf{t : maxi∈I+

|f+(xi;W, v)| >
1
4}. Similarly, we also define f−(xi;W, v) =

∑
j∈Ṽ+

vj ⟨wj , xi⟩ and let t−2 = inf{t :

maxi∈I− |f−(xi;W, v)| > 1
4}. Then t1 ≤ min{t+2 , t

−
2 }, by Lemma 3.

O (1/t) convergence after t2: We first show that when both t+2 , t
−
2 are finite, then it implies O(1/t)

convergence on the loss. Then we show that they are indeed finite and t2 := max{t+2 , t
−
2 } =

O( 1n log 1
ϵ ).

At t2 = max{t+2 , t
−
2 }, by definition, ∃i+ ∈ I+ such that

1

4
≤ f+(xi+ ;W, v) ≤

∑
j∈Ṽ+

vj
〈
wj , xi+

〉
≤
∑
j∈Ṽ+

∥wj∥2∥xi+∥ , (33)

which implies, by Lemma 14, ∀t ≥ t2∑
j∈Ṽ+

∥wj(t)∥2 ≥
∑
j∈Ṽ+

∥wj(t2)∥2 ≥
1

4∥xi+∥
≥ 1

4Xmax
. (34)
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Similarly, we have ∀t ≥ t2, ∑
j∈Ṽ−

∥wj(t)∥2 ≥
1

4Xmax
. (35)

Under the gradient flow dynamics (2), we apply Lemma 15 to the decomposed loss (32)

4L̇ ≤ −

∑
j∈Ṽ+

v2j

 · L2
+ · (µXmin)

2 −

∑
j∈Ṽ+

v2j

 · L2
− · (µXmin)

2 .

Here, we can pick the same γ = µXmin for both L+ and L− because {xi, yi}, i ∈ I+ is linearly
separable with z = y1x1

∥x1∥ : ⟨z, xiyi⟩ ≥ µ∥xi∥ ≥ µXmin by Assumption 1. And similarly, {xi, yi}, i ∈
I− is linearly separable with ⟨z, xiyi⟩ ≥ µ∥xi∥ ≥ µXmin. Replace v2i by ∥wj∥2 from balancedness,
together with (34)(35), we have

4L̇ ≤ −

∑
j∈Ṽ+

∥wj∥2
 · L2

+ · (µXmin)
2 −

∑
j∈Ṽ+

∥wj∥2
 · L2

− · (µXmin)
2

≤ − (µXmin)
2

4Xmax
(L2

+ + L2
−) ≤ −

(µXmin)
2

8Xmax
(L+ + L−)

2 = − (µXmin)
2

8Xmax
L2 ,

which is
1

L2
L̇ ≤ − (µXmin)

2

32Xmax
.

Integrating both side from t2 to any t ≥ t2, we have

1

L

∣∣∣∣⊤
t2

≤ − (µXmin)
2

32Xmax
(t− t2) ,

which leads to

L(t) ≤ L(t2)
L(t2)α(t− t2) + 1

, where α =
(µXmin)

2

32Xmax
.

Showing t2 = O( 1n log 1
ϵ ): The remaining thing is to show t2 is O( 1n log 1

ϵ ).

Since after t1, the gradient dynamics are fully decoupled into two gradient flow dynamics (on L+

and on L−), it suffices to show t+2 = O( 1n log 1
ϵ ) and t−2 = O( 1n log 1

ϵ ) separately, then combine
them to show t2 = max{t+2 , t

−
2 } = O( 1n log 1

ϵ ). The proof is almost identical for L+ and L−, thus
we only prove t+2 = O( 1n log 1

ϵ ) here.

Suppose

t2 ≥ t1 +
6

√
µn+Xmin

+
4

√
µn+Xmin

(
log

2

ϵ2
√
µXminW 2

min

+ 4nXmaxt1

)
, (36)

where n+ = |I+|. It takes two steps to show a contradiction: First, we show that for some ta ≥ 0,
a refined alignment cos(wj(t1 + ta), x+) ≥ 1

4 ,∀j ∈ Ṽ+ is achieved, and such refined alignment is
maintained until at least t+2 : cos(wj(t), x+) ≥ 1

4 ,∀j ∈ Ṽ+ for all t1 + ta ≤ t ≤ t+2 . Then, keeping
this refined alignment leads to a contradiction.

• For j ∈ Ṽ+, we have

d

dt

wj

∥wj∥
=

(
I −

wjw
⊤
j

∥wj∥2

)∑
i∈I+

−∇ŷℓ(yi, f+(xi;W, v))xi


︸ ︷︷ ︸

:=x̃a

.

Then
d

dt
cos(x+, wj) = (cos(x+, x̃a)− cos(x+, wj) cos(x̃a, wj)) ∥x̃a∥

≥ (cos(x+, x̃a)− cos(x+, wj)) ∥x̃a∥ .
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We can show that cos(x+, x̃a) ≥ 1
3 and ∥x̃a∥ ≥

√
µn+Xmin/2 when t1 ≤ t ≤ t+2 (we defer the

proof to the end as it breaks the flow), thus within [t1, t
+
2 ], we have

d

dt
cos(x+, wj) ≥

(
1

3
− cos(x+, wj)

)
√
µn+Xmin/2 . (37)

We use (37) in two ways: First, since

d

dt
cos(x+, wj)

∣∣∣∣
cos(x+,wj)=

1
4

≥
√
µn+Xmin

24
> 0 ,

cos(x+, wj) ≥ 1
4 is a trapping region for wj during [t1, t

+
2 ]. Define ta := inf{t ≥ t1 :

minj∈Ṽ+
cos(x+, wj(t)) ≥ 1

4}, then clearly, if ta ≤ t+2 , then cos(wj(t), x+) ≥ 1
4 ,∀j ∈ Ṽ+

for all t1 + ta ≤ t ≤ t+2 .

Now we use (37) again to show that ta ≤ t1 +
6√

µn+Xmin
: Suppose that ta ≥ t1 +

6√
µn+Xmin

,

then ∃j∗ such that cos(x+, wj∗(t)) <
1
4 ,∀t ∈ [t1, t1 +

6√
µn+Xmin

], and we have

d

dt
cos(x+, wj∗) ≥

(
1

3
− cos(x+, wj)

)
√
µn+Xmin/2 ≥

√
µn+Xmin

24
. (38)

This shows

cos(x+, wj∗(t1 + 1)) ≥ cos(x+, wj∗(t1)) +
1

4
≥ 1

4
,

which contradicts that cos(x+, wj∗(t)) <
1
4 . Hence we know ta ≤ t1 + 6√

µn+Xmin
.

In summary, we have cos(wj(t), x+) ≥ 1
4 ,∀j ∈ Ṽ+ for all t1 + 6√

µn+Xmin
≤ t ≤ t+2 .

• Now we check the dynamics of
∑

j∈Ṽ+
∥wj(t)∥2 during t1 + 6√

µn+Xmin
≤ t ≤ t+2 . For simplicity,

we denote t1 + 6√
µn+Xmin

:= t′1.

For j ∈ Ṽ+, we have, for t′1 ≤ t ≤ t+2 ,

d

dt
∥wj∥2 = 2

∑
i∈I+

−∇ŷℓ(yi, f(xi;W, v)) ⟨xi, wj⟩ ∥wj∥

≥
∑
i∈I+

⟨xi, wj⟩ ∥wj∥ (by (40))

= ⟨x+, wj⟩ ∥wj∥
= ∥x+∥∥wj∥2 cos(x+, wj)

≥ 1

4
∥x+∥∥wj∥2 (Since t ≥ t′1)

≥
√
µn+Xmin

4
∥wj∥2 , (by Lemma 11)

which leads to (summing over j ∈ Ṽ+)

d

dt

∑
j∈Ṽ+

∥wj∥2 ≥
√
µn+Xmin

4

∑
j∈Ṽ+

∥wj∥2 .
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By Gronwall’s inequality, we have

∑
j∈Ṽ+

∥wj(t
+
2 )∥2

≥ exp

(√
µn+Xmin

4
(t+2 − t′1)

) ∑
j∈Ṽ+

∥wj(t
′
1)∥2

≥ exp

(√
µn+Xmin

4
(t+2 − t′1)

) ∑
j∈Ṽ+

∥wj(t1)∥2 (By Lemma 14)

≥ exp

(√
µn+Xmin

4
(t+2 − t′1)

)
exp (−4nXmaxt1)

∑
j∈Ṽ+

∥wj(0)∥2 (By Lemma 13)

≥ exp

(√
µn+Xmin

4
(t+2 − t′1)

)
exp (−4nXmaxt1) ϵ

2W 2
min ≥

2
√
µXmin

. (by (36))

However, at t+2 , we have

1

4
≥ 1

n+

∑
i∈I+

f+(xi;W, v) =
1

n+

∑
i∈I+

∑
j∈Ṽ+

vj ⟨wj , xi⟩

=
1

n+

∑
j∈Ṽ+

vj ⟨wj , x+⟩ ∗

=
1

n+

∑
j∈Ṽ+

∥wj∥2 cos(wj , x+)∥x+∥

≥ 1

4n+

∑
j∈Ṽ+

∥wj∥2∥x+∥ (Since t ≥ t′1)

≥ 1

4

∑
j∈Ṽ+

∥wj∥2
√
µXmin , (by Lemma 11)

which suggests
∑

j∈Ṽ+
∥wj∥2 ≤ 1√

µXmin
. A contradiction.

Therefore, we must have

t+2 ≤ t1 +
6

√
µn+Xmin

+
4

√
µn+Xmin

(
log

2

ϵ2
√
µXminW 2

min

+ 4nXmaxt1

)
. (39)

Since the dominant term here is 4√
µn+Xmin

log 2
ϵ2

√
µXminW 2

min
, we have t+2 = O( 1n log 1

ϵ ). A similar

analysis shows t−2 = O( 1n log 1
ϵ ). Therefore t2 = max{t+2 , t

−
2 } = O( 1n log 1

ϵ )

Complete the missing pieces We have two claims remaining to be proved. The first is cos(x+, x̃a) ≥
1
2 when t1 ≤ t ≤ t+2 . Since x+ =

∑
i∈I+

xi and x̃a =
∑

i∈I+
−∇ŷℓ(yi, f+(xi;W, v))xi. We

simply use the fact that before t+2 , we have, by Lemma 2,

1

2
≤ −∇ŷℓ(yi, f+(xi;W, v)) =≤

3

2
, (40)
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to show the following

cos(x+, x̃a) =
⟨x+, x̃a⟩
∥x+∥∥x̃a∥

=

∑
i,j∈I+

(−∇ŷℓ(yi, f+(xi;W, v))) ⟨xi, xj⟩√∑
i,j∈I+

⟨xi, xj⟩
√∑

i,j∈I+
(−∇ŷℓ(yi, f+(xi;W, v)))2 ⟨xi, xj⟩

≥
1
2

∑
i,j∈I+

⟨xi, xj⟩√∑
i,j∈I+

⟨xi, xj⟩
√∑

i,j∈I+
(−∇ŷℓ(yi, f+(xi;W, v)))2 ⟨xi, xj⟩

≥
1
2

∑
i,j∈I+

⟨xi, xj⟩√∑
i,j∈I+

⟨xi, xj⟩
√∑

i,j∈I+
( 32 )

2 ⟨xi, xj⟩
≥ 1

3
,

since all ⟨xi, xj⟩ , i, j ∈ I+ are non-negative.

The second claim is ∥x̃a∥ ≥
√
µn+Xmin/2 is due to that

∥x̃a∥ =
√ ∑

i,j∈I+

(−∇ŷℓ(yi, f+(xi;W, v)))2 ⟨xi, xj⟩ ≥
1

2

√ ∑
i,j∈I+

⟨xi, xj⟩ =
∥x+∥
2
≥
√
µn+Xmin

2
,

where the last inequality is from Lemma 11.

D.3 PROOF OF LOW-RANK BIAS

So far we have proved the directional convergence at the early alignment phase and final O(1/t)
convergence of the loss in the later stage. The only thing that remains to be shown is the low-rank
bias. The proof is quite straightforward but we need some additional notations.

As we proved above, after t1, neurons in S+ (S−) stays in S+ (S−). Thus the loss can be decomposed
as

L =
∑
i∈I+

ℓ

yi, ∑
j∈Ṽ+

vj ⟨wj , xi⟩


︸ ︷︷ ︸

L+

+
∑
i∈I−

ℓ

yi, ∑
j∈Ṽ−

vj ⟨wj , xi⟩


︸ ︷︷ ︸

L−

,

where Ṽ+ : {j : wj(t1) ∈ S+} and Ṽ− : {j : wj(t1) ∈ S−}. Therefore, the training after t1 is
decoupled into 1) using neurons in Ṽ+ to fit positive data in I+ and 2) using neurons in Ṽ− to fit
positive data in I−. We use

W+ = [W ]:,Ṽ+
, W− = [W ]:,Ṽ−

to denote submatrices of W by picking only columns in Ṽ+ and Ṽ−, respectively. Similarly, we
define

v+ = [v]Ṽ+
, v− = [v]Ṽ−

for the second layer weight v. Lastly, we also define

Wdead = [W ]:,Ṽdead
, vdead = [v]Ṽdead

,

where Ṽdead := {j : wj(t1) ∈ Sdead}. Given these notations, after t1 the loss is decomposed as

L =
∑
i∈I+

ℓ
(
yi, x

⊤
i W+v+

)
︸ ︷︷ ︸

L+

+
∑
i∈I−

ℓ
(
yi, x

⊤
i W−v−

)
︸ ︷︷ ︸

L−

,

and the GF on L is equivalent to GF on L+ and L− separately. It suffices to study one of them. For
GF on L+, we have the following important invariance Arora et al. (2018b) ∀t ≥ t1:

W⊤
+ (t)W+(t)− v+(t)v⊤+(t) =W⊤

+ (t1)W+(t1)− v+(t1)v⊤+(t1) ,
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from which one has

∥W⊤
+ (t)W+(t)− v+(t)v⊤+(t)∥2 = ∥W⊤

+ (t1)W+(t1)− v+(t1)v⊤+(t1)∥2
≤ ∥W⊤

+ (t1)W+(t1)∥2 − ∥v+(t1)v⊤+(t1)∥2
≤ tr(W⊤

+ (t1)W+(t1)) + ∥v+(t1)∥2

= 2
∑
j∈Ṽ+

∥wj(t1)∥2 ≤
4ϵW 2

max√
h
|Ṽ+| ,

where the last inequality is by Lemma 3. Then one can immediately get

∥v+(t)v⊤+(t)∥2 − ∥W⊤
+ (t)W+(t)∥2 ≤ ∥W⊤

+ (t)W+(t)− v+(t)v⊤+(t)∥2 ≤
4ϵW 2

max√
h
|Ṽ+| ,

which is precisely

∥W+(t)∥2F ≤ ∥W+(t)∥22 +
4ϵW 2

max√
h
|Ṽ+| . (41)

Similarly, we have

∥W−(t)∥2F ≤ ∥W−(t)∥22 +
4ϵW 2

max√
h
|Ṽ−| . (42)

Lastly, one has

∥Wdead∥2F =
∑

j∈Ṽdead

∥wj(t1)∥2 ≤
4ϵW 2

max√
h
|Ṽdead| (43)

Adding (41)(42)(43) together, we have

∥W (t)∥2F = ∥W+(t)∥2F + ∥W−(t)∥2F + ∥Wdead∥2F

≤ ∥W+(t)∥22 + ∥W−(t)∥22 +
4
√
hϵW 2

max√
h

≤ 2∥W (t)∥22 + 4
√
hϵW 2

max .

Finally, since we have shown L → 0 as t→∞, then ∀i ∈ [n], we have ℓ(yi, f(xi;W, v))→ 0. This
implies

f(xi;W, v) = −
1

yi
log ℓ(yi, f(xi;W, v))→∞ .

Because we have shown that

f(xi;W, v) ≤
∑
j∈[h]

∥wj∥2∥xi∥ ≤ ∥W∥2FXmax ,

f(xi;W, v)→∞ enforces ∥W∥2F →∞ as t→∞, thus ∥W∥22 →∞ as well. This gets us

lim sup
t→∞

∥W∥2F
∥W∥22

= 2 .
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E EXISTENCE OF CARATHEODORY SOLUTION UNDER FIXED SUBGRADIENT
σ′(x) = 1x>0

In this Appendix, we first introduce the notion of solution we are interested in for the GF (2):
Caratheodory solutions that satisfy (2) for almost all time t. Next, in Appendix E.2, we show that if
we fix the ReLU subgradient as σ′(x) = 1x>0, then global Caratheodory solutions exists for (2) under
Assumption 1. Finally, we use simple examples to illustrate two points: 1) Caratheodory solutions
cease to exist when ReLU subgradient at zero is chosen to be a fixed non-zero value, highlighting the
importance of choosing the right subgradient for analysis; 2) Caratheodory solutions are potentially
non-unique, the neurons’ dynamical behavior could become somewhat irregular if certain solutions
are not excluded, justifying the introduction of regular solutions (Definition 1).

E.1 CARATHEODORY SOLUTIONS

Given an differential equation
θ̇ = F (θ), θ(0) = θ0 , (44)

with F potentially be discontinuous, θ(t) is said to be a Caratheodory solution of (44) if it satisfies
the following integral equation

θ(t) = θ0 +

∫ t

0

F (θ(τ))dτ , (45)

for all t ∈ [0, a), where a ∈ R≥0 ∪ ∞. In this section, we are interested in global Caratheodory
solutions: θ(t) that satisfies (45) for all time t ≥ 0.

E.2 PROOF OF EXISTENCE OF REGULAR CARATHEODORY SOLUTIONS UNDER ASSUMPTION 1

In this section, we show the existence of global regular (Definition 1) Caratheodory solutions to
θ̇ = F (θ), θ(0) = θ0, where θ := {W, v} and F := ∇W,vL defined from a fixed choice of ReLU
subgradient σ′(x) = 1x>0, under Assumption 1. For the sake of a clear presentation, we first discuss
the case of Sdead = ∅, where all solutions are regular. then discuss the modifications one needs to
make when Sdead ̸= ∅.
Existence of Caratheodory solutions when Sdead = ∅: First of all, notice that∇W,vL is continuous
almost everywhere except for a zero measure set A = {W, v : ∃i ∈ [n], j ∈ [h] s.t. ⟨xi, wj⟩ = 0},
since discontinuity only happens when one has to evaluate σ′(⟨xi, wj⟩) at ⟨xi, wj⟩ = 0 for some i, j.
Being a finite union of hyperplanes, A has zero measure.

For points outside A, the existence of a local solution is guaranteed by the generalized Caratheodory
existence theorem in Persson (1975) (We refer readers to Appendix E.5 for the construction of
such a local solution). The local solution can be extended to a global solution, as long as it does
not encounter any point in A (the set where the flow is discontinuous). Whenever a point in A is
reached, one requires extra certificates to extend the solution beyond that point. Simply speaking,
the existence of a local solution around a point in A requires that the flow around this point does not
push trajectories towards A from both sides of the zero measure set, causing an infinite number of
crossings of A, called Zeno behavior (van der Schaft & Schumacher, 2000; Maennel et al., 2018).
See Figure 18 and 19 for an illustration. In Appendix E.5, we formally show that if there is no Zeno
behavior, then a solution can be extended until reaching discontinuity in A, and gets extended by
leaving A immediately.2

One sufficient condition for avoiding Zeno behavior is to show: For each hyperplane Aij :=
{⟨xi, wj⟩ = 0}, all points in a neighborhood around this hyperplane Aij must satisfy that the inner
products between the normal vector of Aij and the flow F have the same sign. Formally speaking,
we need that there exists δ > 0, such that for all pair of θk, θl ∈ {θ = (W, v) : 0 < | ⟨xi, wj⟩ | < δ},
we have

〈
NAij , F (θk)

〉 〈
NAij , F (θl)

〉
> 0, hereNAij should be a fixed choice of the normal vector

of hyperplane Aij .

2Strictly speaking, Appendix E.5 is part of the proof but discussing the technical part right now disrupts the
presentation.
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Figure 18: Non-existence of Caratheodory so-
lution around points of discontinuity (Does
not happen under Assumption 1). Since flow
F (θ) is continuous The solution θ(t) can be
extended until it reaches the points of dis-
continuity in A, after which the solution is
forced to stay within A (often referred as
Zeno behavior: the solution is crossing A
infinitely many times), and Caratheodory so-
lution ceases to exist.

Figure 19: Existence of Caratheodory solu-
tion around points of discontinuity (Guaran-
teed by Assumption 1). When the solution
θ(t) reachesA, it immediately leavesA since
the flow on the opposite side is flowing out-
ward. This is a valid Caratheodory solution.

This inner product
〈
NAij

, F (θk)
〉

between the normal vector and the flow is exactly computed as〈
xi,∇wjL

〉
. Under Assumption 1, we have a much stronger result than what is required in the last

paragraph: we can show that on the entire parameter space, we have (shown in Appendix E.5)

yisign(vj)
〈
xi,∇wj

L
〉
> 0 , (46)

As such, since vj(t) does not change sign, Assumption 1 prevents Zeno behavior and ensures the
existence of local solution around points in A.

In summary, from any initialization, the Caratheodory solution can be extended (Persson, 1975)
until the trajectory encounters points of discontinuity in A, then the existence of a local solution is
guaranteed by ensuring that the flow forces the solution to leave A immediately. Moreover, (46)
ensures that A can only be crossed a finite number of times (every hyperplane can only be crossed
once), after which no discontinuity is encountered and the solution can be extended to t = ∞.
Therefore a global Caratheodory solution always exists.

Existence of Caratheodory solutions when Sdead ̸= ∅: Notice that when Sdead ̸= ∅. A contains
boundary of Sdead. If the solution gets extended to A where one neuron lands on the boundary of
Sdead, then this neuron stays at the boundary of Sdead, i.e. the solution stays at A. Therefore, the
previous argument about existence does not apply.

However, one only needs very a minor modification: If at time t0, the solution enters A by having
one neuron (say wj(t)) land on the boundary of Sdead, set wj(t) ≡ wj(t0) and vj(t) ≡ vj(t0) for
t ≥ t0, then exclude {wj , vj} from the parameter space and continue constructing and extending
local solutions for other parameters via the previous argument. This shows the existence of the
Caratheodory solution under non-empty Sdead, and by our construction, the solution is regular.

E.3 NON-EXISTENCE OF CARATHEODORY SOLUTION UNDER OTHER FIXED SUBGRADIENT

Consider the following simple example: The training data consists of a single data point x = [1, 0]⊤,
y = −1, and the network consists of a single neuron {w, v} initialized at {w(0) = [0, 1]⊤, v(0) = 1}.
See Figure 20 for an illustration.

When the ReLU subgradient is chosen to be σ′(x) = 1x>0, the Caratheodory solution {w(t) ≡
[0, 1], v(t) ≡ 1} exists, i.e. the neuron stays at the boundary of Sdead := {w : ⟨x,w⟩ ≤ 0}.
If the ReLU subgradient is chosen to be σ′(0) = a > 0, then the Caratheodory solution ceases to
exist: the neuron cannot stay at the boundary ⟨x,w⟩ = 0 of Sdead, because the non-zero σ′(0) pushes
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Figure 20: Non-existence of Caratheodory so-
lution under fixed ReLU subgradient σ′(0) =
a > 0. For any t > 0, w(t) cannot stay
at [0, 1]⊤, because the subgradient σ′(0) =
a > 0 is positive, leading to non-zero ẇ. At
the same time, it cannot enter the interior of
Sdead, because there is no flow in the interior.

Figure 21: Non-uniqueness of Caratheodory
solutions. One solution is that w(t) ≡
w(0), v(t) ≡ v(0), i.e. the neuron stays
within Sdead. However, the neuron can leave
Sdead at any time t0 > 0 then follow the
flow outside Sdead, which is also a valid
Caratheodory solution.

it towards the interior of Sdead. However, the neuron cannot enter the interior of Sdead because the
flow is all zero within the interior of Sdead.

To see this formally, suppose {w(t) = w(0), v(t) = v(0)} for t ∈ [0, t0] (neuron stay at
{w(0), v(0)}), then by definition of Caratheodory solution, we have∫ t0

0

∇w,vL(w(0), v(0))dt = t0∇w,vL(w(0), v(0)) = 0 ,

suggesting ∇w,vL(w(0), v(0)) = 0, which is not true when σ′(0) > 0, thus a contradiction. Now
suppose w(t0) ∈ Int(Sdead) for some t0, then it must be that w(t) ∈ Int(Sdead),∀0 < t ≤ t0,
otherwise it leads to the same contradiction as in previous paragraph. By definition of Caratheodory
solution, we have ∫ t0

0

∇w,vL(w(t), v(t))dt = w(t0)− w(0) .

The left-hand side is zero because w(t) ∈ Int(Sdead)⇒ ∇w,vL(w(t), v(t)) = 0,∀0 < t ≤ t0. The
right-hand side is non-zero because w(t0) ∈ Int(Sdead), thus a contradiction. Similarly, w(t) cannot
enter Scdead. Therefore, the Caratheodory solution {w(t), v(t)} does not exist for any t > 0.

E.4 NON-UNIQUENESS OF CARATHEODORY SOLUTIONS

Consider the following simple example: The training data consists of a single data point x = [1, 0]⊤,
y = 1, and the network consists of a single neuron (w, v) initialized at w(0) = [0, 1]⊤, v(0) = 1.
See Figure 21 for an illustration.

We consider the case when the ReLU subgradient is chosen to be σ′(x) = 1x>0. There exists
one Caratheodory solution w(t) ≡ [0, 1]⊤, v(t) ≡ 1, i.e. the neuron stays at the boundary of
Sdead := {w : ⟨x,w⟩ ≤ 0}. However, consider w̃(t), ṽ(t) being the solution to the following ode
(the one that neuron follows once enters the positive orthant):

˙̃w = y exp(−yṽ ⟨x, w̃⟩)ṽx, ˙̃v = y exp(−yṽ ⟨x, w̃⟩) ⟨x, w̃⟩ , w̃(0) = w(0), ṽ(0) = v(0) . (47)

Then for any t0 ≥ 0,

w(t) = 1t<t0w(0) + 1t≥t0w̃(t− t0) , v(t) = 1t<t0v(0) + 1t≥t0 ṽ(t− t0)

is a Caratheodory solution. This example shows that the Caratheodory solution could be non-unique.

This is somewhat troublesome for our analysis, one would like that all neurons in Sdead stay within
Sdead, but Caratheodory solutions do not have this property, and in fact, as long as the neuron is on

39



Published as a conference paper at ICLR 2024

the boundary of Sdead, and the flow outside Sdead is pointing away from the boundary, the neuron can
leave Sdead at any time and it does not violate the definition of a Caratheodory solution. Therefore,
for our main theorem, we added an additional regularity condition (Definition 1) on the solution,
forcing neurons to stay within Sdead.
Remark 6. This issue of having irregular solutions is not specific to our choice of the notion
of solutions. Even if one considers more generally the Filippov solution Filippov (1971) of the
differential inclusion in (2), the same issue of non-uniqueness persists and needs attention when
analyzing neuron dynamics.
Remark 7. Although irregular solutions are not desired for analyzing neuron behaviors, as we see
in this example, they are rare cases under very specific initialization of the neurons and thus can be
avoided by randomly initializing the weights.

E.5 CONSTRUCTING GLOBAL CARATHEODORY SOLUTION

In this section, we formally show that if there is no Zeno behavior, then a solution can be extended until
reaching discontinuity inA, and gets extended by leavingA immediately, leading to a construction of
global Caratheodory solution. The only ingredient that is needed is the existence theorem in Persson
(1975, Theorem 2.3), showing that if F (θ) is continuous and ∀θ

∥F (θ)∥F ≤M(1 + ∥θ∥F ) , (48)

for some M > 0, then global solution of θ̇ = F (θ) exists. Obviously, this result cannot be applied
directly for two reasons: a) it requires continuity of the flow; b) it requires linear growth of ∥F (θ)∥F
w.r.t. ∥θ∥F . The key idea is constructing a local solution by restricting the flow to a neighborhood of
initial conditions where a) and b) are satisfied, and then extending this solution to a global one.

As we discussed in Appendix E.2, we can assume Sdead = ∅ without loss of generality. Moreover,
it suffices to show that starting from an initialization θ(0) = {W (0), v(0)} outside A3, we can
construct either: 1) a global solution without encountering any point in A; or 2) a local solution that
lands on A at some t0 then leave A immediately. Because if 2) happens, we take the end of this local
solution as a new initial condition and repeat this argument. Importantly, 2) cannot happen infinitely
many times because we have shown in Appendix E.2 that A can only be crossed finitely many times,
thus 1) must happen, resulting in a global solution.

Construct local solution from initial condition: Now given an initial condition θ(0) =
{W (0), v(0)}, define the following two sets (Notation-wise, we drop the dependency on
{W (0), v(0)} for simplicity):

Θ0 := {θ = (W, v) : L(W, v) ≤ L(W (0), v(0)), sign(vj) = sign(vj(0)),∀j ∈ [h]} ,
Θ1 := {θ = (W, v) : ∀i ∈ [n], j ∈ [h], ⟨xi, wj⟩ ⟨xi, wj(0)⟩ > 0} ,

Θ1 is the positive invariant set of {W (0), v(0)}: all solutions from {W (0), v(0)} never leaves Θ1, so
it suffices to study the flow within Θ1 for the existence of solutions. Moreover, Θ0 is the intersection
of a closed set {v : sign(vj) = sign(vj(0))} and the pre-image of a continuous function L on the
range [0,L(W (0), v(0))] thus closed. Θ2 is the largest connected set that contains {W (0), v(0)}
without point of discontinuity.

Consider the following set
Θ̃1 := Θ0 ∩ cl(Θ1) . (49)

Then Θ̃1 is closed. Consider a new flow F cl
1 on Θ̃1 such that F cl

1 = F = ∇W,vL for all θ ∈ Int(Θ̃1),
and F cl

1 (θ) = limk→∞ F (θk) for all θ ∈ Θ̃ \ Int(Θ̃1), where θk ∈ Int(Θ̃1), k = 1, 2, · · · is a
convergent sequence to θ.

F cl
1 |Θ̃1

is continuous by construction, and we can show that (at the end of this section)

∥F cl
1 (θ)∥F ≤ C∥θ∥F ,∀θ ∈ Θ̃1 . (50)

By a generalized version of the Tietze extension theorem (Ercan, 1997), there exists continuous F̃1

on the entire parameter space, such that

F cl
1 (θ) = F̃1(θ),∀θ ∈ Θ̃1 , (51)

3initial condition within A is taken care of by 2).
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and
∥F̃1(θ)∥F ≤ C∥θ∥F ,∀θ . (52)

Because now F = F cl
1 = F̃1 on Int(Θ̃1), any solution θ̃1(t) of ˙̃

θ1 = F̃1(θ̃1), θ̃1(0) = θ(0) (existence
guaranteed by Persson (1975)) gives a local solution of θ̇ = F (θ), θ(0) = θ(0), for t ≤ t0, where
t0 := inf{t : θ̃1(t) /∈ Θ̃1}.
If t0 = ∞, one has a global solution and the construction is finished. If t0 < ∞, it must be that
θ̃1(t0) ∈ A (since θ̃1 must leave Θ̃ via the boundary of Θ2). Now we need to construct a solution
that leaves A immediately.

Construct local solution that leavesA: As we discussed,A is a union of hyperplanes. For simplicity,
let us assume θ̃(t0) is not at the intersection of two hyperplanes (the treatment is similar but tedious,
we will make remarks in the end).

Now θ̃(t0) lands on a single hyperplane, let it be {θ : ⟨xi∗ , wj∗⟩ = 0}, we define

Θ2 := {θ = (W, v) : ∀i ̸= i∗, j ̸= j∗, ⟨xi, wj⟩ ⟨xi, wj(0)⟩ > 0 ,

and ⟨xi∗ , wj∗⟩ ⟨xi∗ , wj∗(0)⟩ < 0} ,
and we let

Θ̃2 := Θ0 ∩ cl(Θ2) , (53)
It is clear that, from the definition of Θ2, any solution we construct that leaves A immediately after
t0 must enter Int(Θ̃2). To construct the solution, we just need to repeat the first part, but now for Θ̃2:
We construct F cl

2 that is continuous on Θ̃2 and agrees with F on the interior, then extends F cl
2 to F̃

on the entire parameter space. Consider the solution θ̃2(t) of

˙̃
θ2 = F (θ̃2), θ̃2(0) = θ̃1(t0) , (54)

gives a local solution of
θ̇ = F (θ), θ(0) = θ̃1(t0) . (55)

Because we have shown that Zeno behavior does not happen, θ̃2(t) leaves A immediately and enters
Int(Θ̃2). We just pick any τ0 > 0 such that θ̃2(τ0) ∈ Int(Θ̃2) then

θ(t) = 1t≤t0 θ̃1(t) + 1t0<t≤t0+τ0 θ̃2(t− t0) , (56)

is a Caratheodory solution to θ̇ = F (θ), θ(0) = θ(0) for t ≤ t0 + τ0. This is exactly what we
intended to show.
Remark 8. When θ̃(t0) lands at the intersection of two (or more) hyperplanes, the only difference
is that now there could be more regions to escape to. But under Assumption 1, (46) suggests that
the solution must cross all hyperplanes after t0, leaving one unique region similar to Θ2. Then one
constructs the local solution following previous procedures.

Complete the missing pieces To complete the proof, there are two statements ((46) and (50)) left to
be shown.

To show (46), we start from the derivative

∇wjL = −
n∑

k=1

1⟨xk,wj⟩>0∇ŷℓ(yk, f(xk;W, v))xksign(vj(0))∥wj∥ ,

=

n∑
k=1

1⟨xk,wj⟩>0yk exp(−ykf(xk;W, v))xksign(vj(0))∥wj∥ ,

and we have

yisign(vj)
〈
xi,∇wj

L
〉
=

n∑
k=1

1⟨xk,wj⟩>0 exp(−ykf(xk;W, v)) ⟨yixi, ykxk⟩ ∥wj∥

≥
n∑

k=1

1⟨xk,wj⟩>0 exp(−ykf(xk;W, v))µ∥xk∥∥xi|∥wj∥ > 0 ,
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since there is at least one summand (Sdead = ∅), the summation is always positive.

To show (50)4, we first consider θ ∈ Int(Θ̃1), and we have

h∑
j=1

∥∇wjL∥2 =

h∑
j=1

∥∥∥∥∥
n∑

k=1

1⟨xk,wj⟩>0yk exp(−ykf(xk;W, v))xkvj

∥∥∥∥∥
2

≤
h∑

j=1

(
n∑

k=1

exp(−ykf(xk;W, v))∥xk∥|vj |

)2

≤
h∑

j=1

|vj |2 ·

(
Xmax

n∑
k=1

exp(−ykf(xk;W, v))

)2

=

h∑
j=1

|vj |2 · (XmaxL(W, v))2

≤
h∑

j=1

|vj |2 · (XmaxL(W (0), v(0)))
2
= X2

maxL2(W (0), v(0))∥v∥2 ,

similarly, we also have

h∑
j=1

∥∇vjL∥2 =

h∑
j=1

∥∥∥∥∥
n∑

k=1

1⟨xk,wj⟩>0yk exp(−ykf(xk;W, v)) ⟨xk, wj⟩

∥∥∥∥∥
2

≤
h∑

j=1

(
n∑

k=1

exp(−ykf(xk;W, v))∥xk∥∥wj∥

)2

≤
h∑

j=1

∥wj∥2 ·

(
Xmax

n∑
k=1

exp(−ykf(xk;W, v))

)2

=

h∑
j=1

∥wj∥2 · (XmaxL(W, v))2

≤
h∑

j=1

∥wj∥ · (XmaxL(W (0), v(0)))
2
= X2

maxL2(W (0), v(0))∥W∥2F .

Therefore, we have ∀θ ∈ Int(Θ̃1)

∥F cl
1 (θ)∥2F = ∥F (θ)∥2F =

h∑
j=1

(∥∇wj
L∥2 + ∥∇vjL∥2)

≤ X2
maxL2(W (0), v(0))(∥W∥2F + ∥v∥2) = X2

maxL2(W (0), v(0))∥θ∥2F ,

which gives (50) with C = XmaxL(W (0), v(0)).

Then for θ ∈ Θ̃ \ Int(Θ̃1), ∥F cl
1 (θ)∥ = limk→∞ ∥F (θk)∥ ≤ C limk→∞ ∥θk∥ = C∥θ∥, given some

Cauchy sequence θk ∈ Int(Θ̃1), k = 1, 2, · · · convergent to θ. This finishes proving (50).

4We show it for exponential loss, the case of logistic loss is similar
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F EXTEND MAIN RESULTS TO SOLUTIONS TO DIFFERENTIAL INCLUSION

For Filippov (1971) solutions (regular according to Definition 1) to the differential inclusion (2), our
Theorem 1 remains the same. The only difference is that the notion of xa(w) in (4) is no longer a
singleton, but rather an element from a set:

xa(w) ∈
{∑

i
σ′(⟨xi, w⟩)yixi

}
, (57)

where σ′(⟨xi, w⟩) is a subgradient of ReLU activation σ(z) at z = ⟨xi, w⟩. Therefore, the proof of
Theorem 1 shall be modified (which can be done) to consider all possible choices of xa(w).

In the case of σ′(z)|z=0 = 0, xa(w) become a singleton
∑

i:⟨xi,w⟩>0 yixi, which simplifies our
discussions. This is the main reason we opt to fix this subgradient σ′(z) in the main paper.

43


	Introduction
	Preliminaries
	Problem setting
	Neural alignment with small initialization: an overview

	Convergence of Two-layer ReLU Networks with Small Initialization
	Main results
	Comparison with prior work
	Proof sketch for the alignment phase

	Numerical Experiments
	Conclusion
	Additional Experiments
	Illustrative example
	Effect of data separability 
	Neuron dynamics under orthogonal data
	Additional experiments on MNIST dataset
	Discussion on the two-phase convergence

	Proof of Lemma 1: Neuron Dynamics under Small Initialization
	Formal statement
	Proof of Lemma 3: Bounds on Neuron Norms
	Proof of Lemma 4: Directional Dynamics of Neurons

	Proof for Theorem 1: Early Alignment Phase
	Auxiliary lemmas
	Proof for early alignment phase

	Proof for Theorem 1: Final Convergence
	Auxiliary lemmas
	Proof of final convergence
	Proof of low-rank bias

	Existence of Caratheodory Solution under Fixed Subgradient '(x)=1x>0
	Caratheodory Solutions
	Proof of existence of Regular Caratheodory solutions under Assumption 1
	Non-existence of Caratheodory solution under other fixed Subgradient
	Non-uniqueness of Caratheodory solutions
	Constructing Global Caratheodory Solution

	Extend main results to solutions to differential inclusion

