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ABSTRACT

To gain insight into the mechanisms behind machine learning methods, it is cru-
cial to establish connections among the features describing data points. However,
these correlations often exhibit a high-dimensional and strongly nonlinear nature,
which makes them challenging to detect using standard methods. This paper
exploits the entanglement between intrinsic dimensionality and correlation to
propose a metric that quantifies the (potentially nonlinear) correlation between
high-dimensional manifolds. We first validate our method on synthetic data in
controlled environments, showcasing its advantages and drawbacks compared
to existing techniques. Subsequently, we extend our analysis to large-scale
applications in neural network representations. Specifically, we focus on latent
representations of multimodal data, uncovering clear correlations between paired
visual and textual embeddings, whereas existing methods struggle significantly
in detecting similarity. Our results indicate the presence of highly nonlinear
correlation patterns between latent manifolds.

1 INTRODUCTION

Modern machine learning models have the remarkable ability to extract subtle patterns from complex
datasets and use them to perform a wide variety of tasks in an astonishingly accurate way. However,
to date, we still lack a complete and accurate understanding of their inner workings, especially in the
case of deep neural networks. An active field of research in the interpretability of neural networks
is focused on characterizing and quantifying the similarity between different models. To this aim,
many works (Raghu et al., 2017; Kornblith et al., 2019; Nguyen et al., 2021) evaluate the statistical
correlation between the latent representations produced by the models. This quantification is key
because it allows, for example, to disentangle or tie together different aspects of data representations,
allowing a better interpretation of how the model makes its decisions. Moreover, assessing the
similarity between representations of different models is particularly useful to determine whether the
latent spaces are compatible, meaning that information extracted by one model can be successfully
transferred to others.

This point is crucial particularly when data points are represented by multiple interrelated modal-
ities, such as visual and textual. In recent times, it has been shown (Norelli et al., 2023; Moayeri
et al., 2023) that it is possible to build multimodal vision-language models starting from pre-trained
unimodal encoders, in an effort to match the outstanding performance of state-of-the-art vision-
language models such as CLIP (Radford et al., 2021). These findings indicate that modern deep
models can produce compatible representations when evaluated on aligned text-image data, hinting
at a strong functional similarity between those. However, we find that standard latent similarity met-
rics such as CKA (Kornblith et al., 2019) and Distance Correlation (Székely et al., 2007; Zhen et al.,
2022) find a very low structural correlation between paired multimodal representations. We hypoth-
esize that this is due to the strongly nonlinear nature of these correlations, making them difficult to
analyze with standard methods.

Our work tackles this challenge by introducing a novel metric, dubbed Intrinsic Dimension Corre-
lation (IdCor) that leverages the concept of intrinsic dimension (Id), i.e., the minimum number of
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Figure 1: Example usage of IdCor: we consider a 3D dataset in which the points lie on the surface
of a cylinder, hence whose intrinsic dimension (Id) is 2. We want to assess the correlation between
the 2D set of coordinates xy (which also has Id = 2, as shown in the top-right panel) and the 1D
set z. Intuitively, as x and z describe a circle, it is evident that knowledge of z (encoded by color)
is very informative in determining the x coordinate (e.g., a yellow point is sure to be found in the
central region of the x axis), but not in determining the y: hence, the correlation coefficient is 0.5,
according to equation 3. Conversely, when estimating the correlation between xz (whose Id is 1,
bottom-right panel) and y, we can see that having access to y (which is now represented by color)
does not give any information on the value of x nor z, hence the correlation is 0.

variables required to describe the data, to quantify the mutual information between high-dimensional
data manifolds. Intuitively, the metric is based on the concept that if two data representations are
correlated, the intrinsic dimension of a dataset created by concatenating the features of these repre-
sentations is reduced, because the information in one representation can describe some aspects of the
other. An example is provided in Fig. 1. It is worth noting that, to compute the correlation between
two representations, a simpler approach based on the difference between the embedding dimension
and the intrinsic dimension of the concatenated dataset would not suffice, since this would measure
the amount of correlated features, regardless of whether these correlations are intra or inter repre-
sentation. Computational experiments indicate that our method is effective at detecting nonlinear
relationships where traditional methods often fail.

Thus, the main contributions of this work can be summarized as follows:

• We propose a novel perspective that links the concepts of correlation and intrinsic dimen-
sion. The key idea is that, since the Id serves as a proxy for the information content of
a dataset, the Id of a dataset created by merging two datasets will represent their joint
information.

• Building on this idea, we propose IdCor, a novel correlation metric based on intrinsic di-
mension estimation, able to unveil nonlinear correlation between high-dimensional data
manifolds, even of unpaired dimensions. We evaluate our metric on synthetic data, show-
casing its strengths and limitations in comparison with existing methods.

• We then consider more complex scenarios and quantify the correlation between the repre-
sentations learned by different deep neural networks engaged in large datasets. Specifically,
we focus on multimodal data, demonstrating that we can find strong evidence of correlation
where standard methods struggle to identify any.
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2 BACKGROUND

2.1 CORRELATION IN LATENT REPRESENTATIONS

Understanding whether different neural networks can learn to process data in similar ways is a
crucial point when trying to make sense of their results. Despite the inherent difficulty in defining
what it means for two neural networks to be similar (or, at least, to behave similarly), research
in this field has made significant progress in the last few years. A well-established approach to
test if two neural networks are similar is that of measuring the statistical correlation between the
data representations (or embeddings) learned by them. Recent proposals in this direction include
Singular Value Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017), Projection Weighted
CCA (PWCCA) (Morcos et al., 2018), Centered Kernel Alignment (CKA) (Kornblith et al., 2019),
Distance Correlation (dCor) (Székely et al., 2007; Zhen et al., 2022), Aligned Cosine Similarity
(Hamilton et al., 2016) and Representation Topology Divergence (RTD) (Barannikov et al., 2022),
among others. For a more complete summary of current approaches to neural network similarity
measurement, we defer the reader to Klabunde et al. (2023).

These techniques have been widely employed to gain a deeper understanding of various aspects of
the way neural models process information: for instance to quantify how different vision architec-
tures encode spatial information (Raghu et al., 2021; Nguyen et al., 2021) or the relation between
learning disentangled features and adversarial robustness (Zhen et al., 2022). Taking a slightly dif-
ferent approach, Davari et al. (2023) provides an in-depth analysis of the sensitivity of CKA to
transformations that occur frequently in neural latent spaces, showcasing the importance of gather-
ing results from a broader range of similarity metrics to obtain reliable information.

2.2 MULTIMODAL LATENT SPACE ALIGNMENT

An example that highlights the importance of assessing similarity, quantified via correlation mea-
sures, between neural representations is further demonstrated by the recent empirical findings related
to the so-called latent communication. This concept, introduced by Moschella et al. (2023), builds
on the idea that it is possible to transfer knowledge between latent spaces, even when they are pro-
duced by different models and on different data modalities, provided that some semantic alignment
between the data exists (for example, images and their textual descriptions). The feasibility of this
knowledge transfer was shown in Moschella et al. (2023) through the introduction of relative repre-
sentations, where each point of the original representation is mapped according to its distance from
a set of fixed anchor points. Using this alternative representation of data, the authors show that it
is possible to stitch (Lenc & Vedaldi, 2015) together encoders and decoders coming from different
models, with little to no additional training.

Furthermore, numerous recent studies have demonstrated that large state-of-the-art visual and tex-
tual encoders can produce transferable representations when evaluated on aligned data (i.e., the same
data or data that share some semantics, such as image-caption pairs). Indeed, a simple linear trans-
formation is usually enough to map one latent space into another (Moayeri et al., 2023; Merullo
et al., 2023; Maiorca et al., 2023; Lähner & Moeller, 2024), at least in terms of performance on a
specific downstream task, e.g., classification. It is worth noting that, to perform the alignment of the
data, one assumes prior knowledge about the semantic correlation between the data representations
(in order to define the anchor points). Hence, while these findings suggest a remarkable similarity
between compatible latent spaces, the problem of detecting these correlations without relying on
any downstream evaluation is still an open problem. Indeed, our investigation into the connection
between aligned textual and visual embeddings reveals a very weak correlation using existing meth-
ods, calling for the development of methods that allow the identification of nonlinear correlations in
high-dimensional spaces.

2.3 INTRINSIC DIMENSION

The concept of the intrinsic dimension (Id) of a dataset is widely used in data analysis and Machine
Learning. Before providing a more formal definition, imagine a dataset where your data points
are the cities around the globe described by their 3D Cartesian coordinates. We will say that the
embedding dimension of this dataset is three. However, anyone familiar with cartography would
agree that nearly the same information can be encoded with only two coordinates (latitude and
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longitude). Therefore, its Id would be equal to two. Indeed, one of the definitions of Id is the
minimum number of coordinates needed to represent the data with minimal information loss. A
complementary definition is the dimension of the manifold in which the data lie, which in this case
would be a sphere.

A possible way of estimating the Id is to find a meaningful projection (i.e., with minimal information
loss) into the lowest dimensional space possible. A classical method for doing that is Principal Com-
ponent Analysis (Wold et al., 1987), but it has the drawback that the intrinsic dimension it estimates
is only correct if the manifold in which the data lie is a hyperplane. Therefore, the development
of methods that can estimate the Id in nonlinear manifolds is an active research field. Typically,
these approaches infer the Id from the properties of distances to the Nearest Neighbors. While a full
review of these methods is out of the scope of this work (the interested reader is referred to Cam-
padelli et al. (2015)), it is worth mentioning the Maximum Likelihood estimator (MLE) (Levina &
Bickel, 2004), the Dimensionality from Angle and Norm Concentration (DANCo) approach (Ceruti
et al., 2014) or the TwoNN (Facco et al., 2017). The last is the one employed in this work since it
is particularly fast and behaves well even in the case of datasets with a high non-uniformity on the
density of points. A brief description of TwoNN is provided in Appendix A.1.

More recently, several studies have estimated the intrinsic dimension of neural representations,
demonstrating that Id is a valuable tool for understanding the geometry of the latent manifolds
produced by deep models. This concept was initially explored in Ansuini et al. (2019), where the
authors estimated Id across different layers of CNNs, gaining insights into the sequential informa-
tion flow within these models. Later, Valeriani et al. (2023) and Cheng et al. (2023) analyzed the
representations of transformer models, across different domains, while Kvinge et al. (2023) stud-
ied the internal Id of generative diffusion models. In a slightly different direction, Brown et al.
(2022) unveiled a connection between generalization and the Id of the hidden representations, while
Kaufman & Azencot (2023) studied the relation between Id and curvature in latent manifolds.

3 CORRELATION THROUGH INTRINSIC DIMENSION

The intrinsic dimension of a dataset is closely linked to the correlations among the various fea-
tures that define the data points. These correlations determine the regions in which the data points
can exist, thereby shaping the underlying manifold. Let us consider the simplest example: a two-
dimensional dataset. If the two variables are uncorrelated, their linear correlation coefficient (R2)
approaches zero while, if one feature is a linear function of the other, R2 becomes equal to one. The
two scenarios differ by the Id of the data manifold: the first case corresponds to a plane (Id = 2),
while the second corresponds to a line (Id = 1). If we examine a slightly more complex case,
the advantage of exploiting the Id for correlation becomes evident. Let us consider a spiral-shaped
dataset embedded in two dimensions: it has R2 ≈ 0 due to the nonlinear nature of the correlation be-
tween the two variables, while the behavior of the Id is identical to the one observed on the linearly
correlated dataset, as reported in detail in section 4.1.

A formal framework that connects correlation and intrinsic dimension comes from information the-
ory (Romano et al., 2016). In this field, mutual information is the fundamental metric that quantifies
the relationship between simultaneously sampled random variables. Mutual information makes a
natural candidate to serve as a measure of correlation between data, and Horibe (1985) defined a
correlation coefficient between two random variables X and Y (known as Normalized Mutual In-
formation - NMI) as:

ϱ =
I(X,Y )

max(H(X), H(Y ))
(1)

where I(·, ·) is the mutual information and H(·) is the entropy.

In high dimensional datasets, computing the mutual information is challenging due to the curse
of dimensionality, so we introduce the intrinsic dimension as a proxy. Mutual information can be
expressed in terms of entropies as:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (2)

Recent research (Bailey et al., 2022; Ghosh & Motani, 2023) has shown that intrinsic dimension is a
metric that can satisfy the most desirable properties of entropy, while being easy and fast to compute
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on large-scale data (in Appendix A.2, we provide a test case where this relationship is exact). We
exploit this relation to define our correlation coefficient IdCor, based on the NMI formulation, but
using intrinsic dimension as a replacement for entropy. Given two standardized datasets (of possibly
different dimensionality) X ∈ Rn,d1 and Y ∈ Rn,d2 , we define their IdCor as:

IdCor(X,Y ) =
(Id(X) + Id(Y )− Id(X ⊕ Y ))

max(Id(X), Id(Y ))
(3)

where ⊕ denotes row-wise concatenation. Although various other versions of NMI have been pro-
posed over time (for a complete survey on variations of NMI we defer the reader to Vinh et al.
(2009)) we adopt the max normalization since it allows an interpretation as the fraction of features
of the most informative dataset that can be predicted using the less informative one (see Fig. 1 for
an intuitive explanation of this concept).

In practical applications, intrinsic dimension is calculated using estimators, which can be prone to
errors. To mitigate this, we assign a p-value to the observed correlation, employing a permutation
test (Davison & Hinkley, 1997) on Id(X ⊕ Y ). Specifically, we estimate the Id of several indepen-
dent samples of the joint dataset, created by concatenating the two original datasets and randomizing
the pairings to disrupt any existing correlations. This process allows us to determine a p-value that
represents the probability of the hypothesis of the two datasets being uncorrelated as p = L+1

S+1 ,
where L is the number of estimates lower than the original joint Id and S is the total number of
permuted samples considered.

4 RESULTS

In this section, we begin by assessing our proposed IdCor measure in simple, controlled settings
using synthetic data. Then, we move to applications to latent representations generated by different
neural networks on various datasets. We begin with a straightforward example that underscores the
difficulty faced by standard methods in identifying nonlinear relationships, then progress to more
extensive applications involving visual representations and multimodal text-image representations.
For some experiments, we do not report the correlation p-value returned by our method. In such
cases, the p-value is always the lowest possible according to the permutation test outlined in section 3
( 1
S+1 , where S is the number of permutations, 100 in most of our experiments).

4.1 SYNTHETIC EXPERIMENTS

As a first step, we produce three toy datasets, displayed in the Appendix in Fig. 5. Such datasets
are made of 5000 observations of two variables that are either linearly correlated, uncorrelated,
or nonlinearly correlated. The first setting is simply obtained by arranging x and y on a straight
line, in the second case both random variables are sampled independently from a normal Gaussian
distribution, while the last dataset contains data arranged on a spiral curve.

We report our correlation results in Table 1, aggregating results over 10 independent random sam-
plings of the datasets. In the simpler cases (linear and random data) our method agrees with linear
correlation and distance correlation, correctly identifying a very strong correlation in linear data and
the lack thereof in random data. The spiral dataset constitutes a more tricky testbed: while there is
a clear correlation between the two variables, it is a highly nonlinear one, and the linear correlation
coefficient is around 0. Even Distance Correlation, despite being a nonlinear method, fails to find
any strong signal of correlation, returning a value very close to 0. Instead, our method correctly
identifies the strong dependency between the two variables, with a mean correlation coefficient of
0.98, determined with high confidence, as witnessed by the p-value consistently equal to 0.01. We
note here that our method relies on an intrinsic dimension estimator (in this paper, we mainly em-
ploy TwoNN (Facco et al., 2017), but we also provide results on synthetic data using MLE (Levina
& Bickel, 2004) in section A.3.1 in the Appendix), and it inherits substantial properties from it. On
the negative side, Id estimators are not oracles, and they can return values that slightly differ from
what one would expect (e.g., Id lower than 1 in our linear dataset or higher than 2 in the random
case), or even totally fail (when the Id becomes large enough, the estimator is also affected by the
curse of dimensionality). Conversely, the choice of employing TwoNN makes our method extremely
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efficient (the correlation coefficient can be obtained with just 3 calls to the estimator), allowing it to
scale easily to large and high-dimensional datasets.

Table 1: Correlation in two-variable datasets. (R2): linear correlation coefficient; (dCor): distance
correlation coefficient; (Id⊕): intrinsic dimension of the concatenated (2D) dataset; (IdCor):
correlation coefficient (ϱ) returned by our method; (p-value): significance of the correlation
detected by our method (100 shuffles). Results are reported as mean ± std over 10 independent
random samplings of data, with the exclusion of p-value, which is reported as a range.

Data R2 dCor Id⊕ IdCor p-value
Linear 1.00± 0.00 1.00± 0.00 0.99± 0.02 1.00± 0.00 0.01

Random 0.00± 0.00 0.00± 0.00 2.02± 0.04 −0.02± 0.04 [0.03, 0.99]
Spiral 0.01± 0.00 0.02± 0.00 1.01± 0.02 0.98± 0.02 0.01

Then, we switch to a higher-dimensional setting, in which we test our method on correlating pairs
of synthetic datasets of 4 variables. We construct a first random dataset containing 4 independently
sampled variables, and then consider 3 correlation scenarios: in the first, we compute its correlation
with another likewise randomly sampled dataset, hence we expect no correlation; in the second,
we randomly sample 2 variables of the second dataset, while binding the other 2 to the original
dataset through trigonometric functions, establishing a partial correlation between the two; finally,
in the third scenario we set all variables of the second dataset to be trigonometric functions of the
original variables, thus making the datasets completely correlated, although in a strongly nonlinear
fashion. We compare our IdCor against Distance Correlation and Canonical Correlation Analysis
(CCA) (Hotelling, 1936), which is the direct analogous of R2 in multivariate correlation, and serves
as a linear baseline. As we report in Table 2, while all methods agree in correctly finding no corre-
lation in the first scenario, both CCA and dCor fail in the partially and completely correlated cases,
while IdCor returns substantially higher correlation coefficients, showcasing its robustness to non-
linear correlations. In the Appendix (sections A.3.2 and A.3.3), we report additional results in this
setting, obtained applying IdCor to differently sampled and noisy data.

Table 2: Correlation between high dimensional synthetic datasets in various scenarios. We consider
a first dataset with 5000 observations of 4 variables w, x, y and z, all sampled independently
from a Gaussian distribution with mean 0 and standard deviation π, and assess correlations in 3
different scenarios. In scenario A - absence of correlation we compute the correlation between
such dataset and another dataset built by independently sampling corresponding w′, x′, y′ and z′

from the same distribution. In scenario B - partial correlation, we randomly sample y′ and z′,
while we set w′ = cos(w + y) and x′ = sin(x). Finally, in scenario C - complete correlation, we
set w′ = cos(w + y), x′ = sin(x), y′ = sin(xz), z′ = cos(y). Results are reported as mean ± std
over 10 independent random samplings of data, with the exclusion of p-value, reported as a range.

Correlation CCA dCor Id⊕ IdCor p-value
(A) Absent 0.02± 0.01 0.00± 0.00 8.07± 0.17 0.01± 0.05 [0.25, 1.00]
(B) Partial 0.02± 0.01 0.00± 0.00 6.41± 0.10 0.35± 0.03 0.01

(C) Complete 0.02± 0.00 0.01± 0.00 4.88± 0.06 0.67± 0.02 0.01

4.2 A MOTIVATING EXAMPLE ON NEURAL REPRESENTATIONS

Across different layers, neural networks encode information in complex, high-dimensional repre-
sentations that differ significantly from the simpler datasets discussed earlier in this manuscript. In
particular, deep models are structured to learn nonlinear functions of the input data, typically through
the use of nonlinear activation functions like ReLU. This suggests that the representations produced
by different networks on the same data can be correlated in complex, nonlinear ways. Consequently,
methods used to detect such correlations need to be capable of capturing this degree of nonlinearity.

To illustrate this phenomenon, we showcase a simple example: we consider a randomly initialized
multilayer perceptron (MLP), made of 15 fully connected layers of 784 neurons, followed by a

6



Published as a conference paper at ICLR 2025

Nonlinearity

Figure 2: Average correlation results with different methods between MNIST data and their final
representations computed by a randomly initialized MLP, with variable degree of activation non-
linearity, increasing on the x axis. Shaded area represents standard deviation over 10 runs with
independent random initialization of MLP weights.

LeakyReLU activation. LeakyReLU is a parametric activation function, whose behavior depends
on a parameter called slope: if the slope is 1, it behaves like the identity function, rendering our
MLP a linear function of the input, while lower slope values make the network nonlinear, with 0
corresponding to the standard ReLU. We feed our MLP with the MNIST (LeCun et al., 1998) dataset
at increasing degrees of nonlinearity (which corresponds to decreasing the slope) and compute the
correlation between the representation at the final layer and the input data, both with our method
and with established baselines (SVCCA, Distance Correlation, linear kernel CKA, and RBF kernel
CKA).

As we report in Fig. 2, our method is weakly affected by the increasing nonlinearity in the corre-
lation, as it consistently returns correlation coefficients above 0.75. Existing baselines capture high
correlation in linear or quasi-linear cases (high slope), but the signal tends to degrade quickly as the
slope decreases. This is especially true for SVCCA, as it is a linear method, but even nonlinear alter-
natives see the initial correlation fade when the activation becomes ReLU, reaching values below 0.5.

Our method estimates a proxy of the normalized mutual information between representations, being
therefore largely insensitive to nonlinear transformations of the data (as opposed to other metrics
like CKA or dCor) and making it optimal to detect statistical dependencies between representa-
tions. However, this insensitivity makes it a less informative geometrical similarity index, since the
two representations will have a high mutual information regardless of the nature of the nonlinear
transformation.

4.3 IMAGENET REPRESENTATIONS

Moving to a more realistic setting, we test our method on measuring similarity between ImageNet
(Russakovsky et al., 2015) embeddings coming from different neural encoders. We consider a vari-
ety of pre-trained architectures, including CNNs (ResNet-18 (He et al., 2016) and EfficientNet-B0
(Tan & Le, 2019)), four variants of Vision Transformers (Dosovitskiy et al., 2020) (including a ViT-
CNN hybrid) and three ViT-based self-supervised vision-language models (CLIP-ViT-B (Radford
et al., 2021), SigLIP-ViT-B (Zhai et al., 2023) and BLIP-ViT-B (Li et al., 2022)). For all the models,
we consider the output of the last hidden representation produced by the encoder, before the clas-
sification head: in supervised ViTs this choice corresponds to the last class token, while in CNNs
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to the pooler output. For CLIP, SigLIP and BLIP, we consider instead the image representation in
the shared vision-language space. Since some of the correlation methods we employ as baselines

Figure 3: Correlation results on ImageNet representations, obtained using: left Distance Correlation
(dCor); right IdCor (ours). Both methods are able to detect non-negligible correlation. More base-
line results are reported in the Appendix.

(namely, CKA) are particularly expensive in terms of memory requirements, for all our experiments
we randomly sample a subset of 30000 data points.

We report the correlation results produced by our method in Fig. 3, along with the correlation scores
returned by Distance Correlation (dCor), as it is the baseline method that most closely matches ours
in terms of mean off-diagonal correlation (IdCor mean: 0.87, dCor mean: 0.50). Detailed results
for SVCCA (mean: 0.46), linear kernel CKA (0.43) and RBF kernel CKA (0.44) are reported in the
Appendix in Fig. 8. In this setting, all models are computing embeddings for the same data points,
hence we would expect significant correlation to be present for any given pair of models. Indeed, all
methods are clearly capturing such correlation (even if with higher variance than IdCor), including
SVCCA, which suggests that a relevant component of this correlation is actually linear.

4.3.1 COARSE ALIGNMENT

The previous section demonstrated that our method effectively identifies strong correlations within
perfectly aligned datasets of representations. We now aim to explore how the performance of the
method might vary when applied to coarsely aligned data. To test this, we utilize the inherent class
information of ImageNet data. Specifically, we randomly shuffle the embeddings generated by a
model while keeping the labels unchanged, and then compare this modified dataset with the original
dataset prior to shuffling. In other words, given a point index i of class Ci, we pair it with another
randomly chosen point j of class Cj with the condition that Ci = Cj .

This allows us to assess the robustness of our correlation estimation in less ideal conditions: we ex-
pect the correlation signal to decrease, as alignment is a crucial property for all correlation methods
to detect similarities. However, as we report in Table 3, we are still able to identify correlations with
high confidence, as demonstrated by the low p-values. The values of the correlation suggest that the
number of features needed to perform the classification task is between 50 and 75%. On average,
IdCor returns a correlation of 0.62, while baselines sit in the range 0.31 − 0.47. Interestingly, we
observe that the models that exhibit lower correlation are CLIP, BLIP and SigLIP, all contrastive
vision-language models. In two of the three cases, IdCor is even surpassed by Distance Correlation
and CKA. While we have no clear explanation for such behavior, these results align with very recent
results by Ciernik et al. (2024), highlighting the impact of the pre-training objective on representa-
tion similarity. For reference, we also report the IdCor results obtained when one of the two datasets
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is freely shuffled (irrespective of class labels). As witnessed by the high p-values, IdCor correctly
reports a lack of correlation in such case.

Table 3: Correlation between ImageNet representations when exact alignment is broken. Results are
shown, in terms of p-value and correlation coefficient, for the coarse alignment case, in which data
are shuffled while preserving the labeling. IdCor significantly outperforms all baseline methods,
with the exception of two models. The last two columns report the IdCor coefficient and p-value for
the fully shuffled case, in which no constraint is enforced on labels, and correlation is not present,
as identified by high p-values. All results are reported as means (excluding p-values, reported as
ranges) over 5 independent shufflings. Standard deviations are not reported as they are lower than
0.02 in all cases.

Model IdCor p-val. SVCCA CKA (lin.) CKA (RBF) dCor IdCor (rand) p-val. (rand)

EfficientNet 0.61 0.01 0.25 0.17 0.19 0.25 −0.10 [0.16, 0.97]
SigLIP 0.53 0.01 0.26 0.58 0.59 0.59 −0.01 [0.09, 0.86]

ViT-B-16 0.69 0.01 0.39 0.34 0.34 0.44 0.27 [0.27, 0.98]
ViT-B-32 0.68 0.01 0.40 0.40 0.40 0.47 0.22 [0.25, 0.99]
ViT-hyb. 0.63 0.01 0.39 0.51 0.52 0.55 0.27 [0.09, 0.97]

ViT-L 0.73 0.01 0.40 0.45 0.43 0.55 0.37 [0.18, 0.91]
ResNet 0.66 0.01 0.22 0.34 0.35 0.37 0.39 [0.46, 0.91]
CLIP 0.53 0.01 0.26 0.59 0.61 0.62 0.21 [0.08, 0.85]
BLIP 0.50 0.01 0.28 0.37 0.39 0.39 −0.10 [0.28, 0.95]

Average 0.62 0.01 0.31 0.42 0.42 0.47 0.17 [0.08, 0.99]

4.4 MULTIMODAL REPRESENTATIONS

We now shift our focus to a multimodal context, where we examine the similarities between hidden
spaces learned by text and image encoders. We use three datasets, N24News (Wang et al., 2022),
MS-COCO 2014 (Lin et al., 2014) and Flickr30k (Young et al., 2014), all consisting of image-
caption pairs. This analysis will help us understand how textual and visual representations correlate
when evaluated on related multimodal content. Images are encoded using a representative subset of
the vision models introduced in section 4.3: two CNNs (EfficientNet-B0 and ResNet-18), two ViTs
(ViT-B-16 and ViT-hybrid), and the visual branch of CLIP. For text we employ five architectures, all
taken pre-trained: BERT (Devlin et al., 2019), both cased and uncased, ALBERT (Lan et al., 2019),
Electra (Clark et al., 2020) and finally the text encoder of CLIP. For all text models, we consider the
last representation of the class token.

We report the correlation results obtained on N24News in Fig. 4, comparing our method against Dis-
tance Correlation (dCor), which is once again the closest-performing baseline method. Our IdCor
yields a mean off-diagonal correlation of 0.66, which is noticeably higher than those of baseline
methods, in the range (0.25−0.29). In fact, the correlation heatmaps for all baseline methods reveal
a clear block structure, as such methods are able to capture correlation only among same-modality
encoders, but fail on cross-modal correlation. Full results for baseline methods are available in the
Appendix (Fig. 9). Instead, our method returns significant correlation values even across differ-
ent modalities, in accordance with previous findings (Maiorca et al., 2023) that proved N24News
representations to be transferable across models and modalities. Experiments on Flickr30k and MS-
COCO confirm the behavior observed for N24News, as discussed in the Appendix (section A.5.2).
Moreover, in sections A.5.3 and A.6, we provide additional experiments on the discussed datasets
to show the discriminative power of IdCor in cases with low or no correlation, while section A.7
contains additional similarity results on N24News, obtained using RTD (Barannikov et al., 2022).

4.5 COMPUTATIONAL RESOURCES

We performed all the computations on a NVIDIA A100 GPU, equipped with 40GB of RAM. The
main computational hurdle of our method is the estimation of Id through TwoNN: our implementa-
tion follows closely that of Ansuini et al. (2019), which we translated to PyTorch to enable GPU ac-
celeration. With this setup, IdCor runs in the order of 1s on two 1024-dimensional datasets of 30000
points. Just like our correlation method, all the representation similarity baselines we employ greatly
benefit from GPU acceleration: we used them in their PyTorch implementations provided by Mi-
randa (2021) (SVCCA), Maiorca (2024) (CKA) and Zhen et al. (2022) (Distance Correlation), with
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Figure 4: Correlation results on N24News representations, obtained using: left Distance Corre-
lation (dCor); right IdCor (ours). Like all other baselines we evaluate, dCor is only able to spot
correlations between encoders of the same modality, while IdCor reveals significant correlation for
all model pairs.

minor adaptations. Pretrained models were obtained from the Transformers library by HuggingFace
(Wolf et al., 2020), details on the checkpoints we employed are provided in the Appendix (section
A.8). Our code is available at https://github.com/lorenzobasile/IDCorrelation.

5 DISCUSSION

Our work introduces Intrinsic Dimension Correlation (IdCor), a novel and robust method for detect-
ing complex nonlinear correlations in high-dimensional spaces. Due to its flexibility, this method
can be employed in a wide range of applications, from natural language processing to computer
vision and beyond (including other fields of science, like physics), offering a new type of analysis
to address how machine learning models represent data. Remarkably, our results show the effective-
ness of the method to detect a correlation signal in multimodal data where we know a correlation
should exist but where standard methods struggle to identify any.

Limitations Among the possible drawbacks of the method, it is worth mentioning that it is fully
dependent on the precision of the Id estimator, so, if the Id is wrongly predicted the method will fail
to find correlations. This would likely happen when the Ids involved are big, so even last-generation
estimators will be affected by the curse of dimensionality.

Future directions Our method lays the foundations for many interesting future research avenues.
For example, it can be used to disentangle data representations by minimizing the correlation be-
tween representations from two or more datasets, through the concept of Total Correlation (Watan-
abe, 1960). This approach could be highly relevant in applications such as multimedia analysis,
cross-modal retrieval, and data fusion, potentially resulting in more interpretable neural networks.

In its present form, IdCor is only applicable to datasets with uniform Id. However, some realistic
datasets can present more than one manifold with different intrinsic dimensionalities. With the
development of methods that allow estimating in a reliable way these local Ids (Allegra et al., 2020;
Dyballa & Zucker, 2023), we devise that IdCor can be applied to quantify the correlations locally.
We provide a proof-of-concept example in the Appendix A.9.

In conclusion, our method not only enhances the understanding of high-dimensional data correla-
tions but also paves the way for innovative solutions in representation learning and interpretability,
making it a valuable tool across many fields of machine learning.
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A APPENDIX

A.1 THE TWONN INTRINSIC DIMENSION ESTIMATOR

The TwoNN method (Facco et al., 2017) used in this work is a local intrinsic dimension (Id) es-
timation technique. Its distinguishing feature is that, by focusing solely on the first two nearest
neighbors, it minimizes the size of the Id-dimensional hyperspheres over which the density is as-
sumed to be constant. This method is based on the distribution functions of neighborhood distances,
which depend on Id.

Specifically, for each point x in the dataset, it considers the first and second nearest-neighbor dis-
tances, denoted as r1(x) and r2(x), respectively. Assuming that the dataset is locally uniform within
the range of second nearest neighbors, it has been shown by Facco et al. (2017) that the distribution
of the ratio µ = r2(x)/r1(x) follows:

f(µ) = Idµ
−Id−1. (4)

And using the corresponding cumulative distribution function, P (µ), one can write:

Id = − ln [1− P (µ)]

ln (µ)
, (5)

This relation allows for the estimation of Id by fitting the set S = {(ln(µ),− ln [1− P emp(µ)]}
with a straight line passing through the origin. Here, P emp(µ) represents the empirical cumulative
distribution, computed by sorting the values of µ in ascending order.

A.2 CORRELATION THROUGH THE INTRINSIC DIMENSION: AN EXACT EXAMPLE.

In order to provide an intuition of the relationship between the intrinsic dimension and the entropy
of a data set, let us imagine data sets generated in this way: 1) Sample a multivariate Gaussian
of dimension d and identity covariance matrix. This can be done by simply generating d series
of Gaussian distributed numbers with standard deviation equal to 1. 2) Embed them in a higher
dimensional space of dimension D and apply a random angle rotation around a random vector of
this dimension.

The entropy of such a dataset could be approximated by the differential entropy of a multivariate
Gaussian distribution

H =
d

2
log(2πe) +

1

2
log det(Cov) =

d

2
log(2πe) (6)

where the last equality derives from the use of an identity covariance matrix.

Another interesting property of such a dataset is that, since we have generated the dataset through
rotation, the quantity d can be recovered as the number of non-zero eigenvalues of the covariance
matrix. Please note that this is equivalent to identifying the intrinsic dimension using PCA.

Now let us imagine that we generate three datasets in this way (X1, X2 and X3) each of them with
its own intrinsic dimension d1, d2, d3 and embedding dimension D1, D2, D3. While datasets X1

and X2 are completely independent, dataset X3 is built using one of the series employed for building
dataset X1.

We will use PCA for estimating the Id and apply equation 3 to compute the correlation between
datasets these datasets. In the case of datasets X1 and X2, being fully independent, we will have
Id(X1) = d1, Id(X2) = d2, and Id(X1 ⊕X2) = d1 + d2. By applying PCA, we can recover our
datasets as multivariate normal Gaussian, therefore obtaining:

ϱ =
H(X1) +H(X2)−H(X1 ⊕X2)

max(H(X1), H(X2))
=

d1

2 log(2πe) + d2

2 log(2πe)− d1+d2

2 log(2πe)

max(d1

2 log(2πe), d2

2 log(2πe))
=

d1 + d2 − (d1 + d2))

max(d1, d2)
= IdCor(X1, X2) = 0 (7)
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The situation is identical for datasets X2 and X3 but, for X1 and X3, the situation changes a bit. In
this case, applying PCA to the combined dataset X1⊕X3 will also provide a multivariate Gaussian,
but with a dimension equal to d1 + d3 − 1, therefore obtaining ϱ = IdCor(X1, X3) =

1
max(d1,d3)

.

A.3 ADDITIONAL RESULTS ON SYNTHETIC DATA

In Fig. 5, we display the two-variable synthetic datasets we used in section 4.1 as a first validation
for our method.

 Id = 0.98  Id = 2.05  Id = 1.02

Figure 5: Synthetic datasets, each associated with its intrinsic dimension.

A.3.1 RESULTS USING THE MLE ESTIMATOR

IdCor is fundamentally powered by an intrinsic dimension estimator. In the main text, we employed
TwoNN (Facco et al., 2017), but this is only one of the possible choices. To highlight this point,
we provide here results on the synthetic experiments of section 4.1, using the Maximum Likelihood
Estimator (MLE) by Levina & Bickel (2004) instead of TwoNN. MLE relies fundamentally on a
hyperparameter k, the number of nearest neighbors to consider for each data point. As we show
in Fig. 6, k can significantly impact the estimated Id and, in general, there is no clear strategy to
choose it. Based on these curves, we opt for k = 100 in our experiments, to obtain a reasonable
trade-off between efficiency (the lower k the faster MLE is) and accuracy. We report in Table 4 the
IdCor results with MLE in the same datasets of Table 1.
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Figure 6: Intrinsic dimension estimation with the MLE estimator, varying the number of neearest
neighbors k. Horizontal red and green lines report the estimate found by TwoNN and the expected
Id of data, respectively.

In Table 5, we report the results of IdCor equipped with MLE Id estimation on the same datasets
employed in Table 2. We observe that IdCor equipped with MLE produces slightly worse results
with respect to TwoNN, as Id⊕ is estimated less accurately (expected values would be 8, 6 and 4
respectively for scenarios A, B and C).
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Table 4: Correlation in the two-variables datasets of Table 1. (Id⊕): intrinsic dimension of the
concatenated (2D) dataset, computed with MLE; (IdCor): correlation coefficient (ϱ) returned
by our method; (p-value): significance of the correlation detected by our method (100 shuffles).
Results are reported as mean ± std over 10 independent random samplings of data, with the
exclusion of p-value, which is reported as a range.

Data Id⊕ IdCor p-value
Linear 1.03± 0.00 1.00± 0.00 0.01

Random 2.07± 0.00 0.01± 0.00 [0.04, 0.76]
Spiral 1.02± 0.00 1.06± 0.00 0.01

Table 5: Correlation between high dimensional synthetic datasets in the scenarios of Table 2, when
TwoNN is replaced by MLE in the computation of IdCor. Results are reported as mean ± std over
10 independent random samplings of data, with the exclusion of p-value, which is reported as a
range.

Correlation Id⊕ IdCor p-value
(A) Absent 7.52± 0.01 0.17± 0.00 [0.17, 0.93]
(B) Partial 6.68± 0.01 0.27± 0.00 0.01

(C) Complete 5.81± 0.01 0.38± 0.01 0.01

A.3.2 RESULTS ON A DIFFERENT DATA DISTRIBUTION

In Table 6, we provide the results for the same experiment of Table 2, when data are sample from a
uniform distribution in [−π, π] instead of a Gaussian distribution. From this point, we switch back
to the TwoNN estimator.

Table 6: Correlation between high dimensional synthetic datasets in the scenarios of Table 2, when
the original dataset is sampled independently and uniformly in [−π, π]. Results are reported as
mean ± std over 10 independent random samplings of data, with the exclusion of p-value, which is
reported as a range.

Correlation CCA dCor Id⊕ IdCor p-value
(A) Absent 0.02± 0.01 0.00± 0.00 7.21± 0.12 0.15± 0.04 [0.09, 0.96]
(B) Partial 0.17± 0.05 0.06± 0.00 5.74± 0.11 0.48± 0.04 0.01

(C) Complete 0.23± 0.02 0.21± 0.00 4.03± 0.06 0.92± 0.02 0.01
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A.3.3 ROBUSTNESS TO NOISE

To evaluate how IdCor behaves in a more complex and noisy setting, we consider Scenario C (com-
plete correlation) from Table 2, and perturb the second dataset (x′, y′, w′, z′) with Gaussian noise
with mean 0 and increasing standard deviation, up to 3 times larger than the scale of the dataset (all
variables are obtained through sinusoidal functions, hence they are constrained in [−1, 1]. We report
in Fig. 7 the correlation results obtained with IdCor, averaging the correlation over 5 independent
random noise samplings for each standard deviation value. We also report the range of p-values for
each noise magnitude, showing that correlation is detected with high confidence approximately until
the point where noise and signal have similar amplitude.
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Figure 7: IdCor results (correlation coefficient and p-value) on completely correlated data from
Table 2, scenario C, perturbed with random Gaussian noise of variable magnitude.
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A.4 ADDITIONAL IMAGENET CORRELATION RESULTS

We provide detailed results for latent correlation in ImageNet (Fig. 8), using SVCCA, linear kernel
CKA and RBF kernel CKA.

A B

C

Figure 8: Additional baseline correlation results on ImageNet representations, obtained using: (A)
Linear CKA; (B) RBF CKA; (C) SVCCA
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A.5 ADDITIONAL CORRELATION RESULTS ON MULTIMODAL DATASETS

A.5.1 ADDITIONAL BASELINE RESULTS ON N24NEWS

In Fig. 9, we provide additional results for SVCCA, linear kernel CKA and RBF kernel CKA
on N24News representations. These methods perform similarly to Distance Correlation, and only
capture high correlation between representations belonging to the same data modality.

A B

C

Figure 9: Additional baseline correlation results on N24News representations, obtained using: (A)
Linear CKA; (B) RBF CKA; (C) SVCCA
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A.5.2 RESULTS ON OTHER MULTIMODAL DATASETS

In Fig. 10 and Fig. 11 we report the correlation results we obtain respectively on Flickr30k (Young
et al., 2014) and MS-COCO (Lin et al., 2014), two multimodal datasets containing images and the
corresponding captions. We employ the same models used for N24News (section 4.4). As for the
previous dataset, we observe that IdCor outperforms previous baselines, which significantly struggle
to find similarities between embeddings of different modalities.
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Figure 10: Correlation results on Flickr30k representations, obtained using: (A) our method IdCor;
(B) linear kernel CKA; (C) RBF kernel CKA; (D) SVCCA; (E) Distance Correlation
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Figure 11: Correlation results on MS-COCO representations, obtained using: (A) our method IdCor;
(B) linear kernel CKA; (C) RBF kernel CKA; (D) SVCCA; (E) Distance Correlation
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A.5.3 PARTIAL MULTIMODAL CORRELATION

In a multimodal setting, IdCor adapts to the strength of the correlation between textual and visual
representation. In this experiment, we consider again the Flickr30k dataset, which provides 5 human
annotated captions per image. Instead of computing the correlation between each image represen-
tation and a single corresponding caption set, we consider here an enriched textual representation,
containing the concatenated encoding for all 5 captions. Then, we progressively perturb the cor-
relation by shuffling an increasing number of textual representations. As we report in Fig. 12,
IdCor decreases almost linearly with the number of perturbed textual representations. Instead, the
p-value stays at the minimum (0.01) until the last step, where all caption embeddings are shuffled
and, consequently, correlation is totally lost.
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Figure 12: Correlation between visual and textual representations in Flickr30k, considering all 5
captions per image and shuffling an increasing number of textual encoding sets. Representations are
computed using CLIP-ViT (images) and BERT (text).
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A.6 CORRELATION BETWEEN DIFFERENT DATASETS

In this section, we provide an assessment of IdCor on unimodal image representations of different
input datasets, computed using CLIP-ViT-B. As we report in Fig. 13, IdCor scores significantly fall
off-diagonal (on different input data), and the corresponding p-values increase, indicating lack of
correlation.
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Figure 13: Correlation results between representations produced by the CLIP vision encoder on
different image datasets, reported in terms of IdCor coefficient (left) and p-value (right).

A.7 MULTIMODAL RTD SCORES

In this section, we report the divergence scores computed using Representation Topology Divergence
(RTD) (Barannikov et al., 2022) on N24News encodings. As reported in Fig. 14, RTD captures
stronger similarities within the visual domain (off-diagonal mean divergence is 26.8), while it finds
weaker similarities in the textual and cross-modal settings, with means slightly above 45.
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Figure 14: RTD (Barannikov et al., 2022) scores on N24News representations. Colormap is inverted
w.r.t. previous figures as RTD produces a divergence score, and not a similarity score.
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A.8 MODEL DETAILS

All models we employ are taken pre-trained from the HuggingFace transformers Wolf et al.
(2020) library. We report in Table 7 the full list of pre-trained models we employed in this work,
associated with the name of the corresponding checkpoint in the library.

Table 7: Reference guide for pre-trained model checkpoints in HuggingFace transformersWolf
et al. (2020) library.

Name in the paper pre-trained checkpoint name

ALBERT albert/albert-base-v2
BERT-C google-bert/bert-base-cased
BERT-U google-bert/bert-base-uncased
Electra google/electra-base-discriminator
CLIP (-T/-V) openai/clip-vit-base-patch16
BLIP Salesforce/blip-itm-base-flickr
EfficientNet google/efficientnet-b0
SigLIP google/siglip-base-patch16-224
ViT-B-16-224 (ViT) google/vit-base-patch16-224
ViT-B-32-384 google/vit-base-patch32-384
ViT-hybrid google/vit-hybrid-base-bit-384
ViT-L-16-224 google/vit-large-patch16-224
ResNet microsoft/resnet-18
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A.9 LOCAL IdCOR

In this section, we provide a proof-of-concept illustration of a local version of IdCor, that employs
IAN (Dyballa & Zucker, 2023), a local Id estimator.
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Figure 15: Local IdCor with IAN estimator. It can be seen that in the center of the spiral, where
the data is nearly uniformly distributed, the correlation is low, while in the outer region, where
correlations force the data to be in the arms of the spiral, the IdCor index is 1.
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