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This document provides additional materials to supplement our main manuscript. We first summarize
extra implementation details of LOGICHOI in §A. Qualitative results as well as analysis on typical
failure cases are provided in §B. Finally, we offer further discussion on the limitation and social
impact of LOGICHOI in §C.

A More Implementation Detail

The detection loss used for the output of human decoder (i.e., Dh) and object decoder (i.e., Do) is
implemented in accordance with DETR[1]. Specifically, we compute the object classification loss,
and adopt the ℓ1 loss as well as the generalized intersection over union (GIoU) loss for bounding box
regression during training. The final prediction of interaction decoder (i.e., Dp) is the category of
human-object interaction (i.e., ⟨human, action, object⟩ triplet) rather than a single action since the
inputs are three elements to construct the interaction and we aim to not only interpret the complex
relation between them, but also refine the object and action predictions. To facilitate the visual
knowledge transfer from CLIP[2], we follow previous work[3–8] to adopt the ViT-B/32 variant and
freeze its weights during training. Moreover, an auxiliary loss is applied to the intermediate outputs
of each decoder layer which contributes to improved results in the decoding process.

B Qualitative HOI Detection Result

We provide qualitative results of our method, including both success and failure cases in Fig. S2. It
can be observed that our method demonstrates remarkable improvements in HOI detection across a
wide range of scenarios. The integration of triplet reasoning and logic-guided knowledge learning
enables our model to effectively capture intricate relationships between humans and objects, leading
to enhanced detection accuracy. Nonetheless, there are certain scenarios where our method encounters
challenges. Specifically, in the last column of Figure S2, we observe that our model faces difficulties
when dealing with highly ambiguous relations, such as instances where a frisbee is held by a human
in a strange pose. The complex spatial arrangement and occlusion make it challenging for the model
to accurately infer the correct HOI. Additionally, our model may be inefficient when it needs to
deduce additional contextual cues. For example, in cases where a chair is partially occluded by a
human, the model may struggle to correctly recognize the interaction between the two entities due to
the lack of complete visual information.

C Discussion

C.1 Limitation

It is important to acknowledge a limitation regarding the scale of validation within our study. The
number of interactions included in the dataset for model evaluation is limited to fewer than 600
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Table S1: Comparison of efficiency and performance on HICO-DET[9] test and V-COCO[10] test.

DefaultMethod Backbone Params FLOPs FPS
Full Rare Non-Rare APS1

role APS2
role

Two-stages Detectors:
iCAN [11][BMVC18] R50 39.8 - 5.99 14.84 10.45 16.15 45.3 -
DRG [12][ECCV20] R50-FPN 46.1 - 6.05 19.26 17.74 19.71 51.0 -
SCG [13][ICCV21] R50-FPN 53.9 - 7.13 31.33 24.72 33.31 54.2 60.9
STIP [14][CVPR22] R50 50.4 - 6.78 32.22 28.15 33.43 65.1 69.7

One-stages Detectors:
PPDM [15][CVPR20] HG104 194.9 - 17.14 21.73 13.78 24.10 - -
HOTR [16][CVPR21] R50 51.2 90.78 15.18 25.10 17.34 27.42 55.2 64.4

HOITrans [17][CVPR21] R50 41.4 87.69 18.29 23.46 16.91 25.41 52.9 -
AS-Net [18][CVPR21] R50 52.5 87.86 17.21 28.87 24.25 33.14 53.9 -

QPIC [19][CVPR21] R50 41.9 88.87 16.79 29.07 21.85 31.23 58.8 61.0
CDN-S [20][NeurIPS21] R50 42.1 - 15.54 31.78 27.55 33.05 62.3 64.4

GEN-VLKs [8][CVPR22] R50 42.8 86.74 18.69 33.75 29.25 35.10 62.4 64.4

LOGICHOI (ours) R50 49.8 89.65 16.84 35.47 32.03 36.22 64.4 65.6

instances. This constrained sample size falls short of capturing the full spectrum of interactions that
take place in real-world scenarios. Consequently, the exploration of applications related to object and
interaction detection in more complex and diverse situations may be hindered.

C.2 Broader Impact

This work provides a feasible way to interpret complex relationships between human beings and
objects, and can thus benefit a variety of applications, including but not limited to robotics, health
care, and autonomous driving, etc. Nevertheless, there is a risk that LOGICHOI would be used
inappropriately, for instance, the constant monitoring and detection of human-object interactions
may raise concerns about intrusive surveillance and the collection of personal data without consent.
Therefore, it is imperative to duly consider ethical requirements and legal compliance when addressing
the apprehensions regarding individual privacy. Meanwhile, in order to prevent potential negative
social effects, it is crucial to develop robust security protocols and systems that effectively safeguard
sensitive information, eliminating the risk of cyber attacks and data breaches.

D License

The V-COCO [10] and HICO-DET [9] datasets are released under the MIT license and the CC0:
Public Domain license, respectively. We employ them for the purpose of research.
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Figure S1: Examples of the five spatial relations from V-COCO[10] and HICO-DET[9].
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Figure S2: Successful and failure cases selected from V-COCO[10] and HICO-DET[9].
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