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ABSTRACT

It has recently been conjectured that neural network solution sets reachable via
stochastic gradient descent (SGD) are convex, considering permutation invariances
(Entezari et al., 2021). This means that a linear path can connect two independent
solutions with low loss, given the weights of one of the models are appropriately
permuted. However, current methods to test this theory often require very wide
networks to succeed (Ainsworth et al., 2022; Benzing et al., 2022). In this work, we
conjecture that more generally, the SGD solution set is a star domain that contains
a star model that is linearly connected to all the other solutions via paths with low
loss values, modulo permutations. We propose the Starlight algorithm that finds
a star model of a given learning task. We validate our claim by showing that this
star model is linearly connected with other independently found solutions. As an
additional benefit of our study, we demonstrate better uncertainty estimates on
Bayesian Model Averaging over the obtained star domain. Further, we demonstrate
star models as potential substitutes for model ensembles. Our code is available at
https://github.com/aktsonthalia/starlight.

1 INTRODUCTION

The learning problem for a neural network is inherently characterized by a non-convex loss landscape,
leading to multiple possible solutions rather than a singular one. Efforts to comprehend this landscape
and the set of solutions have been ongoing.

A significant early discovery in this area (Garipov et al., 2018) demonstrated that almost any two
independent solutions could be connected through a simple low-loss curve. While this finding
highlighted the vastness of the solution set, other research has focused on its complexity. For
instance, permutation symmetries allow neuron positions in different layers to be jointly swapped
without changing the function represented by the neural network (Brea et al., 2019; Singh & Jaggi,
2020; Ainsworth et al., 2022; Guerrero Peña et al., 2023). Entezari et al. (2021) proposed that
when accounting for these symmetries, the solution set found by stochastic gradient descent (SGD)
essentially becomes convex, i.e., any pair of independent solutions can be connected through a
low-loss line segment after an appropriate permutation is applied to one of the models. Notably,
Sharma et al. (2024) investigate the stronger property of simultaneous linear connectivity, wherein
permuting a given model linearly connects it to several other models. However, recent works like
Ainsworth et al. (2022) study convexity in the context of the formulation in Entezari et al. (2021).
Our work therefore refers to their conjecture as the “convexity conjecture” (Conjecture 1) while
acknowledging that other, stronger forms of convexity can be formulated.

The convexity conjecture has faced challenges. Subsequent studies (Juneja et al., 2022; Benzing et al.,
2022; Ainsworth et al., 2022; Altintas et al., 2023; Guerrero Peña et al., 2023) revealed that even after
the application of permutation-finding algorithms, two distinct solutions in the parameter space might
still be separated by a high loss barrier (Frankle et al., 2020; Entezari et al., 2021) upon performing
linear interpolation. These studies attribute this discrepancy to various factors, including network
depth and width, dataset complexity (Ainsworth et al., 2022) and high learning rates (Altintas et al.,

∗Corresponding author: ankit.sonthalia@uni-tuebingen.de

1

https://github.com/aktsonthalia/starlight


Published as a conference paper at ICLR 2025

2023). Theoretical investigation (Entezari et al., 2021; Ferbach et al., 2024) suggests that in general,
the conjecture needs wide networks to hold.

In response to these findings, our research introduces the star domain conjecture. We propose that
more generally, solutions in deep neural networks (DNNs) form a star domain rather than a convex
set, modulo permutation symmetries. A star domain is a set A with at least one special element,
known as a star point, a0 ∈ A that is connected to every other element in A. A convex set is a specific
instance of a star domain. The star domain conjecture thus proposes that in cases where convexity
(Entezari et al., 2021) does not hold, a weaker form of convexity (i.e., star-shaped connectivity) still
exists.

Convexity conjecture (Entezari et al.) 
holds only for wide networks.

Star domain conjecture (ours) 
holds even for narrower networks.

low loss

high loss
The star domain conjec-
ture is still a stronger as-
sertion than mode connec-
tivity (Garipov et al., 2018)
which states that any two
models θA and θB can be
connected through a possi-
bly non-linear path in the so-
lution space. As a special
case, this path could be as
simple as a piece-wise lin-
ear path comprising a third
point θC such that (θA, θC)
and (θB , θC) are linearly
connected. In contrast, our
conjecture implies that all pairs of solutions are interconnected via a shared third solution, the star
point, which is common to all solution pairs: ∃θC such that ∀θA, θB ∈ S, (θA, θC) and (θB , θC) are
linearly connected, where S is the solution set.

We substantiate our star domain conjecture with empirical evidence by introducing the Starlight
algorithm to identify a candidate star model for a given learning task. Starlight finds a model that is
linearly connected with a finite set of independent solutions. We demonstrate that these star model
candidates have low loss barriers with an arbitrary set of solutions that were not used in constructing
the star model candidates. This provides strong evidence that there exist star models that are linearly
connected with other solutions.

In addition to validating the conjecture, our research delves into the distinctive characteristics of star
models. We find that sampling from the star domain for Bayesian Model Averaging (BMA) leads to
better uncertainty estimates than ensembles. Additionally, we demonstrate star models as a possible
substitute to model ensembles, with lower inference time and memory footprint. These differences
highlight the potential advantages of star models in various neural network applications.

We summarise our contributions:

1. The star domain conjecture for characterizing connectivity in neural network solution sets.

2. The Starlight algorithm for identifying a star model for a gradient-based learning task.

3. Analysis of practical benefits shown by the star models.

2 RELATED WORK

We introduce the relevant development of findings toward the understanding of DNN solution sets.

Mode Connectivity. Garipov et al. (2018) and Draxler et al. (2018) concurrently discovered mode
connectivity. Gotmare et al. (2018) soon followed, showing non-linear connectivity even between
networks obtained using different training schemes. Kuditipudi et al. (2019) explained mode connec-
tivity via dropout stability and noise stability. Benton et al. (2021) went on to show that there exist
not only simple paths, but also volumes of low loss, connecting several DNN solutions. These works
focus on general, non-linear connectivity, while we study a stricter condition, viz., linear connectivity.
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Linear Mode Connectivity (LMC). Frankle et al. (2020) were the first to study LMC. Later, Entezari
et al. (2021) proposed that SGD solution sets are convex modulo permutations, while Singh & Jaggi
(2020); Ainsworth et al. (2022); Guerrero Peña et al. (2023) introduced "re-basin" methods, i.e.,
methods for bringing different solutions into the same basin. Recent work (Ainsworth et al., 2022;
Altintas et al., 2023; Benzing et al., 2022) also noted failure cases for LMC, while Ferbach et al.
(2024) theoretically investigated convexity for sufficiently wide nets. Our analysis builds upon these
findings and reveals evidence for a weaker property, viz., star-shaped connectivity, in cases where
convexity does not hold.

Star-shaped connectivity (SSC). Zhou et al. (2019) show that SGD follows an epochwise star-convex
path but they focus on the optimization trajectory rather than the structure of the loss landscape.
Annesi et al. (2023) provide valuable insights for SSC in the loss landscape for the simple case of
the negative spherical perceptron. In contrast, we consider more complex models and learning tasks,
and propose a novel verification method for SSC. Lin et al. (2024) explore star-shaped connectivity
to finitely many solutions. Our work, in contrast, additionally considers permutation invariances
(Ainsworth et al., 2022; Entezari et al., 2021) and provides evidence that star models trained this way
might be connected to infinitely many other solutions.

Practical Applications. Mode connectivity has found applications in model fusion (Garipov et al.,
2018; Singh & Jaggi, 2020), adversarial robustness (Zhao et al., 2019; Wang et al., 2023), continual
learning (Mirzadeh et al., 2020; Wen et al., 2023), and federated learning (Wang et al., 2019;
Ainsworth et al., 2022). In contrast, our work focuses on understanding the surface of the loss
landscape. However, we also explore potential applications, e.g., Bayesian Model Averaging.

3 THE STAR DOMAIN CONJECTURE

In this section, we introduce our star domain conjecture before discussing its practical applications in
Bayesian model averaging and model ensembling in Section 4.

3.1 BACKGROUND: THE CONVEXITY CONJECTURE

Here, we formally state the convexity conjecture, starting with basic notations. A neural network is
a function fθ(·) parameterized by θ ∈ Θ, where Θ is the parameter space. Given a dataset D, we
formulate a non-negative loss L(θ) = L (θ;D) ≥ 0 and minimize L (θ) to find a solution in Θ. The
solution set is S := {θ | L (θ) ≈ 0}.
The loss barrier was first defined by Frankle et al. (2020). We use the formulation in Entezari et al.
(2021), i.e., the barrier between θA, θB ∈ Θ is B (θA, θB) := maxt∈[0,1] L̃t(θA, θB), where

L̃t(θA, θB) :=L ((1− t) · θA + t · θB)− ((1− t) · L (θA) + t · L (θB)) (1)

is the difference between the loss value at t, and the linear interpolation of the losses at the end-points.
Two solutions θA, θB ∈ Θ are said to be linearly mode-connected, or
LMC (Frankle et al., 2020), when their loss barrier is approximately zero:
B (θB , θA) ≈ 0.

The convexity conjecture is constructed upon a parameter space where
the permutation symmetries are factored out. A permutation invariance
(Brea et al., 2019) can be formulated as an equivalence relation∼ between
two points θA, θB in the parameter space such that θA ∼ θB if and only if there exists a permutation
π of the parameters such that π(θA) = θB and the functions represented by them are identical:
fθA(x) = fθB (x) for all x. Given two points θA and θB , we look for the permutation of θB that
connects it to θA (or vice versa) with as low a loss barrier as possible (Ainsworth et al., 2022; Entezari
et al., 2021; Guerrero Peña et al., 2023). A winning permutation (Entezari et al., 2021) for models
θA and θB is defined as

π
θA→θB

:= argmin
π∈PθA

B (π(θA), θB) (2)

where Pθ := {π |π(θ) ∼ θ} is the set of all function-preserving permutations of θ.
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Conjecture 1. Convexity Conjecture (Entezari et al., 2021). Let S be the set of SGD-reachable
solutions for a deep neural network f(θ) trained for a certain task. Let θA, θB ∈ S be two solutions.
Then, there exists a minimum width h such that if f(θ) is wider than h, then with high probability,
θB can be permuted to obtain θ̃B = π

θB→θA
(θB) such that θA and θ̃B are highly likely to be linearly

mode-connected, i.e., B
(
θ̃B , θA

)
≈ 0.

We refer to this as the (quasi-) convexity conjecture, because, by definition, a convex set is precisely a
set where the line segment between any two elements is included in the set. The conjecture provides
a geometric intuition that the solution set is generally convex, modulo permutations.

Theoretical results only validate the conjecture in limited settings, given sufficiently wide networks
(Entezari et al., 2021; Ferbach et al., 2024). Empirical validations exhibit mixed accounts. Ainsworth
et al. (2022) notably achieve zero barrier between two ResNet-20-32 models trained on CIFAR-10,
but there remains a loss barrier between narrower models, even after weight matching. They further
report network depth and dataset complexity as aggravating factors. Benzing et al. (2022) provide
interesting insights using their activation-matching permutation algorithm. While fully connected
networks (FCNs) live in the same loss valley even at initialization, convolutional nets (CNNs) are
usually not connected even after considering permutation invariances. Guerrero Peña et al. (2023)
introduce Sinkhorn re-basin, a differentiable permutation-finding approach; however, even with
two-layer NNs, the barrier between CIFAR-10 models, albeit low, remains non-zero. For CNN
architectures like VGG, the barrier is substantially high. Altintas et al. (2023) show that aggravating
factors for LMC include the Adam optimizer (Kingma & Ba, 2017), absence of warmup, and task
complexity.

Hence, in cases where strong evidence for the convexity conjecture is absent, it is important to
consider other possible topologies for general DNN solution sets. To this end, we propose the star
domain conjecture for characterizing DNN solution sets that do not enjoy convexity (Entezari et al.,
2021) modulo permutations.

3.2 THE STAR DOMAIN CONJECTURE

We propose a weaker form of convexity for characterizing DNN solution sets. We argue that DNN
solution sets are generally star domains, modulo function-preserving permutations. While Annesi et al.
(2023) demonstrate this property for simple spherical negative perceptrons (without permutations),
we argue that it holds for even deeper, more complex nets after considering permutation invariances.

We start with the necessary definitions to make a formal description of the conjecture. A set A ⊂ Rn

is a star domain if there exists an element a0 ∈ A such that for any other element a ∈ A and
∀t such that 0 ≤ t ≤ 1, we have that (1 − t) · a0 + t · a ∈ A, i.e., all points on the line segment
between a0 and a lie in A. We call such a0 a star point. In the context of the parameter space, we
refer to the star point of a star-domain-shaped solution set as a star model.

A “solution” in our work refers to global minima theoretically reachable by SGD, unless stated
otherwise (please also refer to Appendix B.4).
Conjecture 2. Star Domain Conjecture. Consider a neural network f : X → Y , where X ⊂ Rd,
Y ⊂ R. Assume that f is parameterized by θ ∈ Rm. Define S ⊂ Rm, the solution set of f
as the set of parameters such that every θ ∈ S minimizes a given loss L over a given dataset
D = {(xi, yi), xi ∈ X , yi ∈ Y, 1 ≤ i ≤ N}. Define B(θ1, θ2) as the loss barrier encountered upon
linearly interpolating between θ1 and θ2.

Then, for any ϵ > 0, there exists a network width h ∈ N such that if f(·) is wider than h, then S is a
star domain modulo permutation symmetries, up to a tolerance of ϵ. Specifically, there exists a star
model θ∗ ∈ S such that for any other solution θ ∈ S, there exists a function-preserving permutation
θ̃ = πθ→θ∗(θ) such that B(θ̃, θ∗) < ϵ.

A convex set is a special case of a star domain, where all the elements are star points. Thus, according
to the convexity conjecture (Entezari et al., 2021), every member of a DNN solution set is a star
model, given sufficient width. In contrast, the central thesis of our work is that as network width
increases, star-domainness (where some models are star models) arises before convexity (where all
models are star models, in agreement with the convexity conjecture).
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Our conjecture concerns deep neural networks, where theoretical validation remains difficult. How-
ever, for the simpler case of two-layer neural networks with one-dimensional inputs, we state
Theorem 1 here. We defer the proof of this theorem to Appendix A. Additionally, in Appendix A.2,
we empirically validate our theoretical result under simple settings.

Assumption 1. Consider a two-layer linear network fθ(x) = θ⊤1 θ2x, parameterized by θ =
(θ1, θ2) ⊂ Θ where θ1, θ2 ∈ Rm. m is the network width. Assume that the inputs are bounded
|x| ≤ 1. Define L(θ; (xi, yi)

I
i=1) :=

1
2|I|

∑
i(θ

⊤
1 θ2xi−yi)

2 to be the MSE loss. Let S be the solution
set with unit norms ∥θ1∥2 = ∥θ2∥2 = 1 that satisfy L(θ) = 0. Given two solutions ϕ, θ ∈ S, we
define the barrier as B(ϕ, θ) := max

t∈[0,1]
L((1− t)ϕ+ tθ)− (1− t)L(ϕ)− tL(θ).

Let λ be the uniform distribution over the solution set S, which is well-defined as the solution set S is
measurable. We define the probability

P (m, ϵ) := Pϕ1,ϕ2∼λ (∀θ ∈ S, ∃ permutation of neurons π s.t. B(ϕ, π(θ)) ≤ ϵ) .

Theorem 1. Given Assumption 1 and an arbitrary ϵ > 0, P (m, ϵ)→ 1 as m→∞.

Theorem 1 guarantees the existence of star models for two-layer linear networks, under the constraints
laid out in Assumption 1. This result implies that for a fixed tolerance level ϵ, as m increases, more
and more models in the solution set become star models. Eventually, virtually all solutions will be
star models, implying the convexity of the solution set (in agreement with the convexity conjecture).

3.3 FINDING A STAR MODEL

We provide empirical evidence for the star domain conjecture via two steps. First, we present a
method for finding a star model. Second, we verify that the model found is indeed a star model: it
has a low loss barrier with an arbitrary solution in S. Here, we focus on the first step.

We consider a necessary condition for a star model θ⋆: given an arbitrary set of models Z =
{θ1, θ2, . . . , θN} ⊂ S, θ⋆ has to be connected to all of them, modulo permutation invariances.

We present a recipe for finding such a θ⋆.

We first obtain a finite set Z = {θ1, θ2, . . . , θN} of models, independently trained with different
random seeds controlling the initialization, batch composition, and augmentation. We then formulate
a loss function that, for fixed Z, encourages low loss barriers between θ and some permuted versions
of {θ1, θ2, . . . , θN}. The objective may be expressed as

θ⋆Z = argmin
θ

1

N

∑
θn∈Z

B

(
θ, π

θn→θ
(θn)

)
(3)

where π
θn→θ

is the winning permutation defined in Section 3.1 that permutes θn without changing

the represented function, and while minimizing the loss barrier against θ. To solve this optimization
problem, we propose to minimize the expected loss on the linear interpolation between the model
in question θ and each source model θn, after permutations. We modify the training objective as
θ⋆Z = argminθ L̃Z(θ) where

L̃Z(θ) :=
1

N

N∑
n=1

∫ 1

0

L
(
(1− t) · θ + t · π

θn→θ
(θn)

)
dt (4)

This expresses the expected loss on the set of line segments between θ and π
θn→θ

(θn), where each

source model θn ∼ Unif(Z) is chosen at random and then each point on the line segment is sampled
as t ∈ Unif[0, 1]. The optimization problem in eq. (4) involves computational challenges. Resolving
the continuous integral over t is non-trivial for complex learning problems. Furthermore, π

θn→θ

assumes access to the winning permutation. However, the winning permutation depends on θ, which
is constantly changing over the course of optimization. We introduce the following solutions.
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Figure 1: Starness of a star model vs source models. We plot the loss barriers B(θ⋆, θh) between
star models θ⋆ and heldout models θh ∈ H at different numbers of source models Z used for learning
the star model θ⋆ (orange points). The heldout set is disjoint with the source models: H ∩ Z = ∅.
We provide a reference point given by the loss barrier between two regular solutions B(θA, θB) for
θA, θB ∈ S (blue plot). The error bars indicate one standard deviation across five held-out models
|H| = 5. Incorporating more source models |Z| enables finding a better star model with a lower loss
barrier against an arbitrary solution.

Algorithm 1 Starlight: Training a Star Model.
Input. dataset D = {(xi, yi)}Ii=1, source models Z = {θ1, θ2, . . . , θN},
initial model θ0, learning rate λ, number of batches m, number of steps K.
Set θ ← θ0.

Output. θ

for k = 1 to K do
if (k − 1) mod m == 0

for n = 1 to N do
Step 1. Update θn ← π

θn→θ
(θn)

endfor
endif
Step 2. Sample θn ∼ Unif(Z), t ∼ Unif[0, 1], and a batch B from D.
Step 3. Compute loss L((1− t) · θ + t · θn ; B).
Step 4. Compute gradients v ← ∇θL((1− t) · θ + t · θn).
Step 5. Update θ ← θ − λ(1− t) · v.

endfor

Monte-Carlo opti-
mization scheme.
Instead of estimating
L̃Z(θ) precisely at
every iteration, we
rely on a Monte-
Carlo estimation
scheme, inspired by
the parameter-curve
fitting method by
Garipov et al. (2018).
At iteration k ≥ 1,
we sample θn(k)

uniformly from Z and
t(k) from Unif[0, 1]
Hence, we obtain a
single point on the
manifold, calculate
the cross-entropy
loss at this point, and
subsequently the gradients for updating θ.

Finding optimal permutations. We perform weight matching (Ainsworth et al., 2022), i.e., we seek
a permutation πn that maximizes the dot product θ · πn(θn), for each θn ∈ Z. This procedure aligns
each source model θn with the candidate star model θ. This operation is performed at the beginning
of every epoch instead of every iteration, speeding up the optimization process significantly.

Algorithm 1 describes the detailed procedure. Once we find a θ that has a low expected loss L̃Z(θ)
on the linear paths to a finite set of source models Z, we may verify if this θ is likewise linearly
connected with an arbitrary solution θN+1 /∈ Z.

3.4 EMPIRICAL EVIDENCE

We introduced Starlight to find a candidate star model. Now, we propose a method to verify if the
model found in Section 3.3 is a star model by checking its linear connection to an arbitrary solution
θN+1 /∈ Z, i.e., not part of the set of source models used for finding the star model. We refer to such
models as held-out solutions H that are disjoint from the source models: H ∩ Z = ∅.
We describe our main findings with reference to ResNet-18 (He et al., 2016) models trained on CIFAR
(Krizhevsky et al., 2012) using SGD, using 50 source models and 5 held-out models. We present
results for additional architectures (e.g., VGG (Simonyan & Zisserman, 2015) and DenseNet (Huang
et al., 2017)), a large-scale dataset (ImageNet-1k (Deng et al., 2009)) and settings (for instance, Adam

6



Published as a conference paper at ICLR 2025

Table 1: Empirically verifying the star domain conjecture. “Regular loss” and “Star loss” indicate training
losses for regular models in Z and star models θ⋆, respectively. “Star-regular” refers to the barrier B (θ⋆, θh)
between a star model and one of the heldout models in H . For comparison, “Regular-regular” is the loss barrier
B (θA, θB) between two arbitrary models. We report values up to one standard deviation over several runs,
except for ImageNet. In each case, star models exhibit significantly lower loss barriers with other models, than
the corresponding average loss barrier between two regular models.

Dataset Architecture Regular loss Star loss Regular-regular Star-regular

CIFAR-10 ResNet-18 0.001± 0.000 0.001± 0.000 0.383± 0.056 0.078± 0.007

CIFAR-10 ResNet-18 (Adam) 0.001± 0.000 0.015± 0.000 1.368± 0.551 0.335± 0.022

CIFAR-10 VGG11 0.003± 0.000 0.022± 0.000 0.515± 0.034 0.131± 0.005

CIFAR-10 VGG19 0.001± 0.000 0.059± 0.000 1.281± 0.153 0.336± 0.078

CIFAR-10 DenseNet 0.001± 0.000 0.157± 0.000 4.634± 0.727 1.729± 0.409

CIFAR-100 ResNet-18 0.004± 0.001 0.005± 0.000 2.905± 0.047 0.756± 0.049

CIFAR-100 DenseNet 0.006± 0.000 0.635± 0.000 6.920± 0.216 3.735± 0.180

ImageNet-1k ResNet-18 0.711 1.380 5.948 2.794
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Figure 2: Loss barriers for star models. We interpolate between a star model θ⋆ and regular models
that are trained with SGD. There are two types of regular models, depending on whether they are
used for finding the star model: source models Z are used, and heldout models H are not. Along the
interpolation, we visualize the loss barrier by plotting the loss and accuracy values (orange curves).
For these curves, t = 0 corresponds to the star model θ⋆. For reference, we plot the interpolation
between two arbitrary regular models (blue curves). The error bands correspond to one standard
deviation.

(Kingma & Ba, 2017)) in Table 1 and Appendix E. Likewise, our empirical findings are built upon
the training loss and accuracy, but we confirm that they also transfer over to test loss and accuracy
in Appendix D.1. We largely use standard recipes to train the models in our experiments, with the
exception of star models where we additionally incorporate the steps in Algorithm 1. We further
describe our experimental setup in Appendix B. We summarize our observations below.

Convexity conjecture does not hold. In Figure 2, we show loss barriers between two independently
trained solutions (blue “regular-regular” curves). We observe that the loss increases and accuracy
drops significantly at around t = 0.5, even after applying the algorithm (Ainsworth et al., 2022) to
find the winning permutation. We present another piece of evidence that the convexity conjecture
does not hold for thin ResNets, reconfirming the findings of Ainsworth et al. (2022).

Star model has low loss barriers with other solutions. In Figure 2, we show the training losses
and accuracies along linear paths between the candidate star model θ⋆ and other types of solutions
(either source models Z or held-out models H). They are indicated with red curves. As a reference,
we always plot the confidence interval of loss and accuracy values along the line segments between
two regular solutions (blue curves). We observe that, for the source models in Z, star-to-regular
connections enjoy essentially zero loss barriers, in contrast with regular-to-regular connections, which
remain significantly higher at 0.381, for CIFAR-10. This demonstrates that it is possible to find a
model θ⋆ connected to |Z| = 50 models simultaneously. The same is true for the line segments
between the star model θ⋆ and a held-out model picked from |H| = 5 models; although the barrier
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Figure 3: “Starness” vs. model width and depth. For starness vs. model width (left), we vary
the width of a WideResNet (depth 22) from 1× to 8×. For starness vs. model depth, we vary the
depth of a WideResNet (width 1×) from 22 to 40 layers. For each depth-width combination, we plot
the loss barriers B(θ⋆, θh) between star models θ⋆ and heldout models θh ∈ H on the y-axis. As
a reference point, we plot the barrier between two regular solutions B(θA, θB), on the x-axis. The
points are annotated with the corresponding widths or depths. Star models consistently enjoy better
linear connections with regular models, than do the regular models amongst each other.

between the star model and the heldout model is non-zero, it remains as low as 0.077 compared to
0.381 for the regular-to-regular case.

A greater number of source models enhances “starness”. Our star model is constructed from
the set of source models Z. We question whether greater |Z| induces greater “starness” of the
solution found by Starlight. In Figure 1, we plot the loss barrier against the number of source models
2 ≤ |Z| ≤ 50 used to construct the star model. For statistical significance, we include loss barrier
statistics between two regular, independently trained models in S with error bars indicating one
standard deviation. We observe that the loss barriers between these star models and the held-out
models decrease as |Z| increases. The decreasing trend has not saturated after |Z| = 50. We stopped
there because of computational limits. However, including more source models is likely to enhance
connectivity between the obtained star model and the other solutions even further.

Effect of model width and depth. Prior work stresses the importance of model width and depth
(Ainsworth et al., 2022; Entezari et al., 2021) in determining loss barriers between two solutions. We
investigate the effect of model width and depth for residual nets. Specifically, we consider WideRes-
Nets (Zagoruyko & Komodakis, 2017) of widths 1×, 2×, 4×, and 8× that of a normal ResNet (depth
22). We also consider ResNets of depths 22, 28, 34, and 40. We compare the barriers achieved
by “regular-regular” and “star-regular” pairs for each case Figure 3. Our investigation confirms
existing reports of decreasing loss barriers as model width increases. We observe significantly lower
star-regular barriers than regular-regular barriers for models of identical widths (e.g., roughly 0.004
compared to 0.012 at width 8x). In fact, it is possible to fit a linear regression line to the observed
barrier values, wherein the star-regular barriers are about a third of the regular-regular barriers at
any given width (Figure 3, left). We draw similar conclusions from varying depth (Figure 3, right),
although the change in barriers as we change the model depth is not quite as pronounced as it is for
the varying width case.

Effect of optimizer. While both the convexity conjecture and the star domain conjecture involve
solution sets obtained through SGD, we also investigate the impact of using the Adam optimizer.
Specifically, we train 15 regular models, with |H| = 5 and (|Z| = 10). We then train a star model and
evaluate its barriers with the models in the held-out set. Results can be found in Table 1 (second row).
We observe that Adam-trained regular solutions have a higher loss barrier between them (1.368)
compared to SGD-trained regular solutions (0.383). Likewise, the barrier between the star model and
regular models also increases from 0.078 for SGD solutions to 0.335 for Adam solutions. While both
“regular-regular” and “star-regular” connections suffer with this change of optimizer, “star-regular”
connections still fare significantly better than “regular-regular” connections. This finding suggests
that Adam solutions are also highly likely to enjoy star-shaped connectivity.

Caveats. Despite the promising observations above, our star domain conjecture lacks theoretical
verification, except for the simple case of two-layer linear networks (Appendix A). Hence, for deep
neural networks, it remains a conjecture. From the empirical perspective, loss barriers between the
star model and other solutions often yield values that are significantly greater than zero. However, we
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Table 2: Model fusion performances. “Regular” indicates single models; Ensemble indicates a
vanilla average of the probability vectors across the member models; “Star” indicates a model found
using Starlight using the regular models as the source set Z. ResNet18 has been used throughout.
We show one standard deviation for the error bars. In addition, we report the accuracy of the best
member in the ensemble (“Best of n”) and the accuracy of the best star model (“Best of 3”). Star
models perform better than single, regular models but use only a fraction of the compute required by
the ensemble at test time.

Dataset #Models Regular Best of n Ensemble Star Best of 3

2 95.21± 0.03 95.24 95.76 95.30± 0.16 95.43

CIFAR-10 5 95.07± 0.14 95.24 96.02 95.17± 0.15 95.27

50 95.13± 0.16 95.44 96.27 95.32± 0.20 95.54

2 77.32± 0.16 77.49 79.58 77.96± 0.24 78.14

CIFAR-100 5 77.36± 0.21 77.68 80.38 78.12± 0.02 78.15

50 77.33± 0.28 77.94 81.30 78.38± 0.10 78.48

Train / test complexity O(1)/O(1) O(n)/O(n) O(n)/O(1)
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Figure 4: Bayesian model averaging. The star model was trained using 50 source models. The
x-axis denotes the number of models sampled from the star domain for Bayesian model averaging or
from the set of source models.

emphasize that this paper is focused on providing the lower bound in evidence supporting the star
domain conjecture. Considering a larger number of source models for the star model construction,
improving Starlight, and developing a better algorithm for finding the winning permutations will
potentially contribute to the discovery of better star models in the solution set.

Conclusion. Our experimental results confirm existing reports that the convexity conjecture requires
very wide networks to hold, and has otherwise several failure cases for which we propose a relaxed
version, viz., the star domain conjecture. We obtain strong empirical evidence that the star model
found through Starlight is likely to be a true star model. Our analysis thus sheds further light on
solution set geometry for narrower and deeper networks, as well as for complex learning tasks
where the convexity conjecture struggles. We invite the community to expand upon our findings and
converge toward a more accurate understanding of the loss landscape.

4 PRACTICAL APPLICATIONS

The star domain conjecture introduces a novel dichotomy of solution types: “star” and “non-star”
models. Most solutions are non-star and lack linear connections with other solutions. However, in
Section 3, we have presented strong evidence for the existence of star models. In this section, we
examine the properties and potential benefits of star models in practice. Section 4.1 explores whether
star models and the surrounding star domain provide a better posterior for Bayesian Model Averaging.
In Section 4.2, we propose star models as a practical alternative to model ensembling.

4.1 BAYESIAN MODEL AVERAGING

Bayesian model averaging (BMA) enhances uncertainty estimation by averaging predictions from
the posterior of models in the parameter space. Posterior families in the literature range from simple
Gaussian (Blundell et al., 2015) and Bernoulli (Gal & Ghahramani, 2016) distributions to more
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complex geometries like splines (Garipov et al., 2018) and simplices (Benton et al., 2021). Here, we
examine if the star domain provides a good posterior family for BMA-based uncertainty estimation.

Setup. The posterior of interest is the collection of line segments between the star model θ⋆ and other
solutions {θ1, · · · , θN} that are independently found. Similarly to Starlight, we sample first from
the model index of {1, · · · , N} uniformly and then sample from the line segment Unif[0, 1]. As in
standard BMA, we consider a set of models sampled from the posterior and the post-softmax average
of their outputs. We use ResNet-18 models trained on CIFAR-10. As a baseline, we present the BMA
for the independent solutions {θ1, · · · , θN}.
Evaluation. We assess the predictive uncertainty of the BMA-based confidence estimates. For the
ranking metric, we use the area under ROC curve (AUROC), considering both max-probability and
entropy-based confidence measures. We also show results based on expected calibration error (ECE).

Results. Figure 4 shows uncertainty quantification at different numbers of posterior samples from 2
to 19. BMA using the star domain posterior consistently exhibits better AUROC values than baseline
deep-ensemble estimates. However, ECE is worse than that of the deep ensemble. The star domain
posterior provides avenues for more precisely ranked uncertainty estimates, albeit absolute-value
uncertainty quantification may not be precise.

Conclusion. Our proposed star domain posterior offers better uncertainty estimates than the deep
ensemble baseline in rank-based predictive uncertainty evaluation.

4.2 POTENTIAL USAGE IN MODEL FUSION

Given a fixed amount of training data, a popular approach to maximize model generalizability is
ensembling, i.e., fusing predictions from multiple independent models. This basic approach suffers
from computational complexities during both training and inference. Every input has to be processed
by individual member models at test time. Storing multiple models also leads to a higher memory
footprint, scaling linearly with the number of ensemble members.

Starlight can also be understood as a method for aggregating multiple source models Z =
{θ1, · · · , θN} into a single model θ⋆. From a computational perspective, star models reduce the
necessary time and storage complexity during inference. We investigate whether the star models
provide an enhanced generalization compared to the individual models.

Setup. We slightly modify the training objective of Starlight to align it with a better generalization
capability of the star model. We add a cross-entropy term L (θ) so that Ltotal(θ, Z) = L̃Z(θ) +L (θ),
where L̃Z(θ) is the original optimization objective for the star model discovery in eq. (4).

Evaluation. We evaluate test accuracies for star models trained with varying numbers of source
models (|Z|) and compare them to ensembles using the same source models.

Results. Results in Table 2 show that star models consistently outperform regular models (78.4%
vs. 77.3%) for CIFAR-100 with |Z| = 50). While less accurate than ensembles over Z, star models
require only a fraction of the compute during inference.

Conclusion. "Starness" of a solution may enhance generalization. In scenarios where test-time
inference costs are critical, star models could be a promising alternative to vanilla ensembles.

5 CONCLUSION

This paper proposes a novel understanding of SGD loss landscapes. The traditional picture before
Garipov et al. (2018) was one of extreme non-convexity, in contrast with the current picture of near-
perfect convexity in a canonical, modulo-permutations space (Entezari et al., 2021) for extremely
wide nets. Our claim becomes relevant when narrower and deeper nets, complex datasets, and
different optimization schemes are considered. We propose a weaker form of convexity in these
cases, i.e., the solution set is a star domain modulo permutations. Our empirical findings support this
hypothesis. We propose the Starlight algorithm to find candidate “star models” and verify that they
are indeed linearly connected to other solutions. In addition to the empirical evidence for the star
domain conjecture, we present potential use cases for star models in practice, including uncertainty
estimation through Bayesian model averaging, and model fusion.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of Education and Research (BMBF):
Tübingen AI Center, FKZ: 01IS18039A. The authors thank the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for supporting Alexander Rubinstein. The authors would
also like to thank Arnas Uselis and Bálint Mucsányi for helpful insights.

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging Models mod-
ulo Permutation Symmetries. The Eleventh International Conference on Learning Representations,
September 2022. URL https://openreview.net/forum?id=CQsmMYmlP5T.

Gul Sena Altintas, Gregor Bachmann, Lorenzo Noci, and Thomas Hofmann. Disentangling Lin-
ear Mode-Connectivity, December 2023. URL http://arxiv.org/abs/2312.09832.
arXiv:2312.09832 [cs].

Brandon Livio Annesi, Clarissa Lauditi, Carlo Lucibello, Enrico M. Malatesta, Gabriele Perugini,
Fabrizio Pittorino, and Luca Saglietti. Star-Shaped Space of Solutions of the Spherical Negative Per-
ceptron. Physical Review Letters, 131(22):227301, November 2023. doi: 10.1103/PhysRevLett.131.
227301. URL https://link.aps.org/doi/10.1103/PhysRevLett.131.227301.
Publisher: American Physical Society.

Gregory Benton, Wesley Maddox, Sanae Lotfi, and Andrew Gordon Gordon Wilson. Loss Surface
Simplexes for Mode Connecting Volumes and Fast Ensembling. In Proceedings of the 38th
International Conference on Machine Learning, pp. 769–779. PMLR, July 2021. URL https:
//proceedings.mlr.press/v139/benton21a.html. ISSN: 2640-3498.

Frederik Benzing, Simon Schug, Robert Meier, Johannes Von Oswald, Yassir Akram, Nicolas Zucchet,
Laurence Aitchison, and Angelika Steger. Random initialisations performing above chance and
how to find them. OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop),
November 2022. URL https://openreview.net/forum?id=HS5zuN_qFI.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty
in Neural Network. In Proceedings of the 32nd International Conference on Machine Learn-
ing, pp. 1613–1622. PMLR, June 2015. URL https://proceedings.mlr.press/v37/
blundell15.html. ISSN: 1938-7228.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in
deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss
landscape, July 2019. URL http://arxiv.org/abs/1907.02911. arXiv:1907.02911 [cs,
stat].

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs), February 2016. URL http://arxiv.org/
abs/1511.07289. arXiv:1511.07289 [cs].

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially No Barriers
in Neural Network Energy Landscape. In Proceedings of the 35th International Conference on
Machine Learning, pp. 1309–1318. PMLR, July 2018. URL https://proceedings.mlr.
press/v80/draxler18a.html. ISSN: 2640-3498.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The Role of Permutation Invari-
ance in Linear Mode Connectivity of Neural Networks. International Conference on Learning Rep-
resentations, October 2021. URL https://openreview.net/forum?id=dNigytemkL.

11

https://openreview.net/forum?id=CQsmMYmlP5T
http://arxiv.org/abs/2312.09832
https://link.aps.org/doi/10.1103/PhysRevLett.131.227301
https://proceedings.mlr.press/v139/benton21a.html
https://proceedings.mlr.press/v139/benton21a.html
https://openreview.net/forum?id=HS5zuN_qFI
https://proceedings.mlr.press/v37/blundell15.html
https://proceedings.mlr.press/v37/blundell15.html
http://arxiv.org/abs/1907.02911
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://proceedings.mlr.press/v80/draxler18a.html
https://proceedings.mlr.press/v80/draxler18a.html
https://openreview.net/forum?id=dNigytemkL


Published as a conference paper at ICLR 2025

Damien Ferbach, Baptiste Goujaud, Gauthier Gidel, and Aymeric Dieuleveut. Proving Linear Mode
Connectivity of Neural Networks via Optimal Transport. In Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, pp. 3853–3861. PMLR, April 2024. URL
https://proceedings.mlr.press/v238/ferbach24a.html. ISSN: 2640-3498.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear Mode
Connectivity and the Lottery Ticket Hypothesis. In Proceedings of the 37th International
Conference on Machine Learning, pp. 3259–3269. PMLR, November 2020. URL https:
//proceedings.mlr.press/v119/frankle20a.html. ISSN: 2640-3498.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In Proceedings of The 33rd International Conference on Machine
Learning, pp. 1050–1059. PMLR, June 2016. URL https://proceedings.mlr.press/
v48/gal16.html. ISSN: 1938-7228.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G
Wilson. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://papers.nips.cc/paper_files/paper/2018/hash/
be3087e74e9100d4bc4c6268cdbe8456-Abstract.html.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. Using Mode
Connectivity for Loss Landscape Analysis, June 2018. URL http://arxiv.org/abs/
1806.06977. arXiv:1806.06977 [cs, stat].

Fidel A. Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit Sinkhorn differentiation. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20237–20246, Vancouver,
BC, Canada, June 2023. IEEE. ISBN 9798350301298. doi: 10.1109/CVPR52729.2023.01938.
URL https://ieeexplore.ieee.org/document/10203740/.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.
2016.90. URL http://ieeexplore.ieee.org/document/7780459/.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely Con-
nected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 2261–2269, July 2017. doi: 10.1109/CVPR.2017.243. URL
https://ieeexplore.ieee.org/document/8099726. ISSN: 1063-6919.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on
Machine Learning, pp. 448–456. PMLR, June 2015. URL https://proceedings.mlr.
press/v37/ioffe15.html. ISSN: 1938-7228.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear Connectivity
Reveals Generalization Strategies. September 2022. URL https://openreview.net/
forum?id=hY6M0JHl3uL.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. In Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL https://papers.nips.cc/paper_files/paper/
2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong
Ge, and Sanjeev Arora. Explaining Landscape Connectivity of Low-cost Solutions for
Multilayer Nets. In Advances in Neural Information Processing Systems, volume 32.
NeurIPS, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
46a4378f835dc8040c8057beb6a2da52-Abstract.html.

12

https://proceedings.mlr.press/v238/ferbach24a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://papers.nips.cc/paper_files/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html
http://arxiv.org/abs/1806.06977
http://arxiv.org/abs/1806.06977
https://ieeexplore.ieee.org/document/10203740/
http://ieeexplore.ieee.org/document/7780459/
https://ieeexplore.ieee.org/document/8099726
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://openreview.net/forum?id=hY6M0JHl3uL
https://openreview.net/forum?id=hY6M0JHl3uL
http://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html


Published as a conference paper at ICLR 2025

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
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A SPECIAL CASE STUDY: L-LAYER LINEAR NETWORKS

Here, we analyse the case of an L-layer linear network, focusing on L = 2. This relatively simpler
case enables us to perform theoretical analysis that would have been significantly more challenging
for deep neural networks.

Our theoretical and empirical analyses suggest that the geometry of the solution set for 2-layer linear
networks is approximately star-shaped. More precisely, the solution set of such a network will have
increasingly many star models as the width increases; eventually, at sufficient width, almost all
models are star models, naturally implying convexity of the solution set. As promised in Section 3.2,
we share our theoretical and empirical findings in detail below.

A.1 THEORETICAL VERIFICATION

We re-state and prove our claim for 2-layer linear networks (Theorem 1).

Assumption 2. (re-stating Assumption 1) Consider a two-layer linear network fθ(x) = θ⊤1 θ2x,
parameterized by θ = (θ1, θ2) ⊂ Θ where θ1, θ2 ∈ Rm. m is the network width. Assume that the
inputs are bounded |x| ≤ 1. Define L(θ; (xi, yi)

I
i=1) :=

1
2|I|

∑
i(θ

⊤
1 θ2xi − yi)

2 to be the MSE loss.
Let S be the solution set with unit norms ∥θ1∥2 = ∥θ2∥2 = 1 that satisfy L(θ) = 0. Given two
solutions ϕ, θ ∈ S, we define the barrier as B(ϕ, θ) := max

t∈[0,1]
L((1−t)ϕ+tθ)−(1−t)L(ϕ)−tL(θ).

Let λ be the uniform distribution over the solution set S, which is well-defined as the solution set S is
measurable. We define the probability

P (m, ϵ) := Pϕ1,ϕ2∼λ (∀θ ∈ S, ∃ permutation of neurons π s.t. B(ϕ, π(θ)) ≤ ϵ) (5)

Theorem 2. (re-stating Theorem 1) Given Assumption 2 and an arbitrary ϵ > 0, P (m, ϵ)→ 1 as
m→∞.

Proof. Observe that the output of the dot product θ⊤1 θ2 is a scalar C. Considering the MSE loss
defined in terms of the dot product,

∑
i(Cxi − yi)

2, the solution is unique due to strong convexity.
We may thus write down the solution set as {(θ1, θ2)|θ1θ2 = C} where C minimises the MSE loss.

Now, define

Q(m, ϵ) := Pϕ1,ϕ2∼λ

(
∀θ ∈ S, ∃ permutation of neurons π s.t. |ϕ1π(θ2) + π(θ1)ϕ2 − 2C|2 ≤ ϵ

)
(6)

and prove the lemma below:

Lemma 1. Assume the conditions of Assumption 2. Then for any ϵ > 0,m ∈ N, we have that
P (m, ϵ) ≥ Q(m, ϵ).

It follows that it is sufficient to prove: Q(m, ϵ)→ 1 as m→∞ for all ϵ > 0.

Lemma 2. Consider the solution set S := {(ϕ1, ϕ2) |ϕ1, ϕ2 ∈ Rm, ϕ⊤
1 ϕ2 = C , ∥ϕ1∥2 = ∥ϕ2∥2 =

1}, where |C| ≤ 1. Let λ be the Lebesgue measure confined to S ⊂ Rm × Rm. Let ϵ > 0. Then,

Pϕ1,ϕ2∼λ

[
sup

θ1,θ2:θ⊤
1 θ2=C

min
π∈Sn

∣∣ϕ⊤
1 π(θ2) + π(θ1)

⊤ϕ2 − 2C
∣∣2 ≤ ϵ

]
→ 1

as m→∞, where Sm is the set of permutations on {1, · · · ,m}.

Proving the lemmas will conclude the proof.

Now, let us prove the lemmas.

Lemma 1. Assume the conditions of Assumption 2. Then for any ϵ > 0 and m ∈ N, we have that
P (m, ϵ) ≥ Q(m, ϵ).
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Proof. Fix the width m and tolerance ϵ > 0. We show that for all solutions θ ∈ S, there exists a
permutation π such that

|ϕ⊤
1 π(θ2) + π(θ1)

⊤ϕ2 − 2C|2 < ϵ, (7)

then ϕ is a star model with tolerance ϵ. Specifically, we will prove that if equation 7 holds, then

B(ϕ, θ) < ϵ. (8)

This implies that the event of ϕ satisfying equation 7 is a subset of the event of ϕ being a star model,
proving that P (m, ϵ) ≥ Q(m, ϵ).

Let x be an input and y be the corresponding label. Since ϕ and π(θ) are solutions, L(ϕ, x) =
L(π(θ), x) = 0. We are interested in the linear interpolation between ϕ = (ϕ1, ϕ2) and π(θ) =
(π(θ1), π(θ2)) in the space Rm × Rm. For any t ∈ [0, 1], consider:

((1− t)ϕ1 + tπ(θ1))
⊤((1− t)ϕ2 + tπ(θ2))x = (1− t)2ϕ⊤

1 ϕ2x+ t(1− t)(ϕ⊤
1 π(θ2)x+ π(θ1)

⊤ϕ2x) + t2π(θ1)
⊤π(θ2)x

= (1− 2t+ 2t2)y + t(1− t)(ϕ⊤
1 π(θ2)x+ π(θ1)

⊤ϕ2x)

:= ft(ϕ, π(θ), x),

where we used y = ϕ⊤
1 ϕ2x = π(θ1)

⊤π(θ2)x.

Define the loss at interpolation t:

Lt(ϕ, π(θ), x) := [ft(ϕ, π(θ), x)− y]2.

Then,

Lt(ϕ, π(θ), x) =
[
(−2t+ 2t2)y + t(1− t)(ϕ⊤

1 π(θ2)x+ π(θ1)
⊤ϕ2x)

]2
= t2(1− t)2

[
ϕ⊤
1 π(θ2)x+ π(θ1)

⊤ϕ2x− 2y
]2

= t2(1− t)2
[
ϕ⊤
1 π(θ2) + π(θ1)

⊤ϕ2 − 2C
]2 ∥x∥2

≤ |ϕ⊤
1 π(θ2) + π(θ1)

⊤ϕ2 − 2C|2 (since 0 ≤ t ≤ 1 and ∥x∥ ≤ 1)

< ϵ (by assumption).

Thus, for all t ∈ [0, 1],
Lt(ϕ, θ

′) = Ex∈X [Lt(ϕ, θ
′, x)] < ϵ.

Now, consider the function B(ϕ, θ′):

B(ϕ, θ′) := max
t∈[0,1]

[Lt(ϕ, θ
′)− (1− t)L(ϕ)− tL(θ′)]

= max
t∈[0,1]

Lt(ϕ, θ
′) (since L(ϕ) = L(θ′) = 0)

< ϵ.

Therefore, B(ϕ, θ′) < ϵ, which implies that ϕ is a star model with tolerance ϵ.

Lemma 2. Consider the solution set S := {(ϕ1, ϕ2) |ϕ1, ϕ2 ∈ Rm, ϕ⊤
1 ϕ2 = C , ∥ϕ1∥2 = ∥ϕ2∥2 =

1}, where |C| ≤ 1. Let λ be the uniform distribution confined to S ⊂ Rm × Rm. Let ϵ > 0. Then,

Pϕ1,ϕ2∼λ

[
max

(θ1,θ2)∈S
min
π∈Sn

∣∣ϕ⊤
1 π(θ2) + π(θ1)

⊤ϕ2 − 2C
∣∣2 ≤ ϵ

]
→ 1

as m→∞, where Sm is the set of permutations on {1, · · · ,m}.

Proof. We may sample ϕ1, ϕ2 ∼ pλ(ϕ1, ϕ2) by sampling from pλ(ϕ1)pλ(ϕ2|ϕ1). Note that
pλ(ϕ1) = Unif{∥ϕ1∥2 = 1} and pλ(ϕ2|ϕ1) = Unif{∥ϕ2∥2 = 1 and ϕ⊤

1 ϕ2 = C}.
Then, each element ϕ1i (for i ∈ {1, · · · ,m}) follows the distribution defined by the PDF: p(ϕ1i) =

Cn(1−ϕ2
1i)

n−3
2 for some constant Cn and ϕi ∈ [−1, 1]. p(ϕ1i) converges in distribution to N(0, 1

m )
as n → ∞. As such, given an arbitrary δ > 0, we may choose n such that the CDF of ϕ1i is
uniformly bounded away from the CDF of N(0, 1

m ) by ϵ
3 . Note that given samples ϕ1i from pλ(ϕ1),

we may sort them (ϕ1σ(1), · · · , ϕ1σ(m)) with some suitable permutation σ ∈ Sm. This lets us build
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the empirical CDF defined by Fϕ1(x) := 1
n

∑
i 1x≥ϕ1σ(i)

. Given two samples ϕ1 ∼ pλ(ϕ1) and
θ1 ∼ pλ(θ1), we may sort them with permutations σ and τ , respectively, to ensure:

∥σ(ϕ1)− τ(θ1)∥2 ≤ ∥σ(ϕ1)− FN(0,1/n)∥2 + ∥τ(θ1)− FN(0,1/n)∥2 ≤
ϵ

3
+

ϵ

3
(9)

with high chance 1− δ.

Taking π = σ−1 ◦ τ , we have∣∣ϕ⊤
1 π(θ2) + π(θ1)

⊤ϕ2 − 2C
∣∣2 ≤ ∣∣ϕ⊤

1 π(θ2)− C
∣∣2 + ∣∣π(θ1)⊤ϕ2 − C

∣∣2
≤

∣∣ϕ⊤
1 π(θ2)− π(θ1)

⊤π(θ2)
∣∣2 + ∣∣π(θ1)⊤π(θ2)− C

∣∣2
+
∣∣π(θ1)⊤ϕ2 − ϕ⊤

1 ϕ2

∣∣2 + ∣∣ϕ⊤
1 ϕ2 − C

∣∣2
≤

∣∣ϕ⊤
1 π(θ2)− π(θ1)

⊤π(θ2)
∣∣2 + ∣∣π(θ1)⊤ϕ2 − ϕ⊤

1 ϕ2

∣∣2
≤ ∥ϕ1 − π(θ1)∥22 ∥π(θ2)∥

2
2 + ∥π(θ1)− ϕ1∥22 ∥ϕ2∥22

<
ϵ

3
+

ϵ

3
< ϵ

with high chance 1− δ.

This proves that

Pϕ,θ∼λ

[
min
π∈Sm

∣∣ϕ⊤
1 π(θ2) + π(θ1)

⊤ϕ2 − 2C
∣∣2 ≤ ϵ

]
→ 1

as m→∞. This result can easily be extended to the statement in the lemma using the compactness
of the unit sphere.

A.2 EMPIRICAL VERIFICATION

In the theoretical analysis above, we hypothesized for two-layer linear networks that as network width
gets larger, the proportion of star models in the solution set increases. To verify this, we performed
a small-scale analysis using 2-layer linear networks. First, we provide empirical evidence towards
Lemma 2 in Appendix A.2.1. Then, in Appendix A.2.2, we consider a full-fledged learning problem
and show that the proportion of star models increases as network width increases.

A.2.1 DATA-FREE VERIFICATION

We provide empirical evidence towards Lemma 2 by considering vectors confined to the surface of a
unit sphere.

Setup. We consider samples of ϕ = (ϕ1, ϕ2) and θ = (θ1, θ2) where ϕ1, ϕ2, θ1, θ2 ∈ Rn, and
∥ϕ1∥2 = ∥ϕ2∥2 = ∥θ1∥2 = ∥θ2∥2 = 1, ϕ⊤

1 ϕ2 = θ⊤1 θ2 = C. Specifically, we consider C = 0.5.
The sampling is carefully carried out to reflect the conditions assumed in Lemma 2. We consider
different values of ϵ and compute Q(m, ϵ), i.e., the number of samples ϕ out of Nϕ for which the
condition in Lemma 2 holds, as m increases. We set Nϕ = Nθ = 100. The width m ranges from 21

to 210, while we consider 50 values of ϵ between 0.01 and 0.1 (inclusive). Note that we use the same
θ samples for evaluating all ϕ samples.

Results and conclusion. We present the results in Figure 5. We observe that as width (marked along
the x-axis) increases, Q(m, ϵ) increases as well. Before we reach Q(m, ϵ) = 1, we (almost) always
pass through an intermediate region where 0 < Q(m, ϵ) < 1, thus confirming that Q(m, ϵ) slowly
grows to 1 as width increases. Thus, we successfully validate Lemma 2.

A.2.2 VERIFICATION OF MAIN THEOREM

In the previous section, we validated Lemma 2 for the case where the input dimensionality d = 1.
Here, we further validate the statement of Theorem 2 for the case where d = 2, using a full-fledged
machine learning task. Note that our experimental setup slightly differs from the conditions of
Theorem 1 (e.g., binary cross-entropy loss instead of MSE, and d = 2 instead of d = 1). This is on
purpose: we aim to show that our theoretical result holds even after relaxing the conditions therein.
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Figure 5: Verification of our theoretical result in Lemma 2. We compute Q(m, ϵ) at different
widths m and tolerances ϵ. The y-axis denotes the tolerances, ranging from 0.01 at the top to 0.1 at
the bottom. The x-axis denotes the widths m. The color bar encodes different values of Q(m, ϵ),
ranging from 0 to 1. For fixed ϵ, as width m increases and Q(m, ϵ) goes from 0 to 1, there almost
always exists a transitionary period where 0 < Q(m, ϵ) < 1, i.e., some, but not all samples ϕ ∼ λ
satisfy the star model criterion. We label these transition phases under “star-domainness” in the figure.
This observation further confirms our theoretical result.

Setup. We consider two-layer linear networks trained using binary cross-entropy loss. We use a 2D
binary classification dataset consisting of samples from class-conditional Gaussians. Specifically,
D =(xi, yi);xi ∼ N (µyi

,Σ), x ∈ R2, y ∈0, 1. We train |Z| = 100 copies of this model, using 100
random seeds. Next, we fix each model ϕ ∈ Z and compute its barriers with each of the other models
θi ∈ Z \ϕ,. We define an empirical star model θ⋆ ∈ Z as a model that has its loss barriers with all the
other models in Z bounded below ϵ: B(θ∗, π

θi→θ∗
(θi)) < ϵ for all θi ∈ Z \ θ∗. We test networks with

widths m = 2, 4, 8, 32. Our focus lies on the proportion of empirical star models with a tolerance ϵ as
m increases. An increasing trend in this proportion w.r.t. increasing m would confirm our theoretical
result.

Results. For each width m, we report the proportion (out of 100) of empirical star models, as defined
above. We observe that the number of star models at a given tolerance increases as m increases (e.g.,
at ϵ = 10−6, there are no star models for m = 2 while 21 out of 100 models are "star" at m = 8).
At m = 32, ϵ = 10−3, all models become star models, i.e., convexity is achieved. We present the
quantitative results in Table 3.

ϵ = 10−6 ϵ = 10−5 ϵ = 10−3 ϵ = 10−1

m = 2 0.00 0.01 0.05 0.12
m = 4 0.03 0.08 0.25 0.40
m = 8 0.21 0.38 0.60 0.72
m = 32 0.86 0.97 1.00 1.00

Table 3: Verifying Theorem 2. We fix different thresholds ϵ and at each given width, compute the
proportion of star models at a tolerance of ϵ. Given the same ϵ, we observe that this proportion
increases with the width m.
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Conclusion. We confirm through our experiments that as the network width m increases, the number
of star models in the solution set increases.

A.2.3 VERIFICATION FOR NON-LINEAR NETWORKS

Here, we present additional results in support of Theorem 2, for non-linear two-layer neural networks.
We describe them below.

Motivation and setup. Our aim is to verify that the proportion of star models in the solution set
increases as network width increases. The experimental setup is similar to that in Appendix A.2.2,
where we train two-layer neural networks on the task of binary classification. The key difference
this time is that we introduce a non-linearity (ELU) between the two layers. At each network width
m, we train 100 models and for each of these models, we measure the maximum barrier upon linear
interpolation with any other model.

Results and conclusion. We present our results in Table 4. We notice that the proportion of star
models at any given width and tolerance is lower compared to the completely linear case; however,
this proportion still increases (for example, at tolerance ϵ = 1e− 6, it goes from 0.00 at m = 2 to
0.93 for m = 32) as width increases. Once again, we confirm that our overall conclusion stands
consistent with the claim in Theorem 1, even after introducing a non-linearity between the layers.

ϵ = 10−6 ϵ = 10−5 ϵ = 10−3 ϵ = 10−1

m = 2 0.00 0.00 0.00 0.00
m = 4 0.00 0.00 0.00 0.04
m = 8 0.00 0.00 0.00 0.71
m = 32 0.93 1.00 1.00 1.00

Table 4: Verifying Theorem 2 for non-linear networks. We fix different thresholds ϵ and at each
given width, compute the proportion of star models at a tolerance of ϵ. Given the same ϵ, we observe
that this proportion increases with the width m.

A.3 DIRECTIONS FOR FUTURE WORK

A.3.1 EXTENSION OF THEORETICAL RESULTS

Our theoretical result in Appendix A.1 is established for a two-layer linear network under simplifying
assumptions (Assumption 2). The key ingredient in the proof is the existence of a closed form
characterization of the solution set, i.e., θ1 · θ2 = C. Extending this result to more complex cases and
proving that star-shaped connectivity arises at much smaller widths than convexity (as shown in our
empirical results) would be interesting.

However, deriving theoretical results for full-fledged neural networks is notoriously difficult and, in
many cases, infeasible due to their complexity. Theorem 2, proven for the simple yet abundantly
challenging case of a 2-layer linear network represents our best attempt at providing a theoretical
foundation for our findings.

The most closely related work to our paper is the highly influential work by Entezari et al. (2021),
who also tackled the simplified setup of a 2-layer neural network with a ReLU activation in between
(Theorem 3.1 in their paper). However, they approach the problem differently and consider random
initializations within hypercubes, instead of solutions to a learning problem. Thus, their proof avoids
the problem of characterising the solution set of a two-layer NN that contains a non-linearity between
the layers. This underscores the broader challenge of developing theoretical proofs related to DNN
solution sets. In our work, we take a different route by focusing on actual solutions to an optimization
problem, although this necessitates dropping the non-linearity. We believe this puts the complexity
of our theoretical results on a comparable footing with Entezari et al. (2021) while still offering a
different perspective.

To further address the gap in theoretical results, we provide extensive empirical evidence covering
three different architectures, three datasets including ImageNet, and ablation studies in Appendix C
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Figure 6: Transformer results. Star-regular barrier steadily decreases as we use more source models
to train the star model.

and Appendix D. Our experiments indicate significant evidence towards our theoretical result even
when the restrictions of Assumption 2 are lifted. We hope that these observations serve as inspiration
for other researchers to seek out more rigorous theoretical verification in future work.

A.3.2 EXTENSION OF EMPIRICAL RESULTS: TRANSFORMERS

As discussed in Appendix A.3.1, our study provides extensive empirical results. However, there
is always room to include other settings. For example, transformers exhibit unique permutation
symmetries: the latent symmetries within each attention head and the order of the heads themselves.
However, there is limited precedent in the literature for empirically investigating transformer-specific
permutation symmetries. Prominent studies, including Entezari et al. (2021); Ainsworth et al. (2022);
Tatro et al. (2020); Singh & Jaggi (2020), largely exclude transformers from their analyses. Given this,
transformers lie outside our primary scope in this study. Considering the current practical relevance
of transformers, we believe a dedicated study on the star-domainness of transformer loss landscapes
is a promising direction for future research.

In the current work, we instead present small-scale results using a minimal transformer architecture.
Since the main focus of our work is star-domainness rather than exploring permutation symmetries in
transformers, we conduct our experiments without permutations.

Setup. We use a minimal ViT model with the MNIST dataset. We train 50 source models and hold
out 3 additional models for barrier evaluation. Each regular model is trained using the AdamW
(Loshchilov & Hutter, 2019) optimizer with a learning rate of 1e− 3 (weight decay 5e− 3) for 100
epochs. Next, we train star models using more and more source models (10, 20, 30, 40 and 50).
Finally, we compare the regular-regular barriers with the star-regular barriers.

Results and conclusion. We present results in Table 5 and Figure 6. Our observation here remains
consistent with that in the main paper: the star-regular barrier decreases as we increase the number of
source models, and the final star-regular barrier of 2.312 is significantly lower than the regular-regular
reference point of 5.687. This preliminary experiment thus confirms evidence for the star domain
conjecture in vision transformers.

Possible future work. After completing this study, we encountered the recent work of Verma &
Elbayad (2024), which investigates transformer loss landscapes using a data-driven permutation
algorithm. Adapting their method to our Algorithm 1 could yield valuable insights. We leave this
direction to future work.

20



Published as a conference paper at ICLR 2025

Table 5: Transformer results. The star model was trained using 50 source models. Our results stay consistent
with those in the main paper (Table 1).

Regular loss Star loss Regular-regular Star-regular

0.001± 0.001 0.099 5.687± 1.167 2.312± 0.708

B IMPLEMENTATION DETAILS

In this section, we describe the setup for replicating our experimental results.

B.1 MODEL TRAINING

Our model training hyperparameters largely reflect standard practices, but we describe them here for
completeness. We used NVIDIA A100 GPUs for most of our experiments. All experiments were
performed on single GPUs.

ResNet18 on CIFAR. For ResNet18 models trained on CIFAR-10 and CIFAR-100, we use a batch
size of 128. We normalize the data using ImageNet statistics. For data augmentation, we apply
padding to the image or its horizontal mirror, and then randomly crop out a 32×32 region. We train for
200 epochs using SGD with momentum 0.9 and a weight decay of 5e−4. The initial learning rate is 0.1
and follows a cosine decay schedule to reach 0 by the end of training. Star models and regular models
are trained using otherwise identical hyperparameters, except that the star models use the training
objective described in Algorithm 1. The differences between different models in Z and H come from
the random seed set at the beginning of the training process. We use the following implementation for
the ResNet: https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py. Each regular
model took roughly 30 minutes to train, while the star model (|Z| = 50) took roughly 6 hours to
train.

DenseNet-40-12 on CIFAR. Our DenseNet models use largely the same training settings as
ResNet18. We highlight the differences here. DenseNet uses a batch size of 64. The weight
decay factor is 1e − 4, and the models are trained for 300 epochs. The learning rate, ini-
tially 0.1, is multiplied with 0.1 at epochs 150 and 225. We use the following implementation:
https://github.com/andreasveit/densenet-pytorch/blob/master/densenet.py. Star models follow the
same training recipe. Each regular model was trained for roughly 3.5 hours. Training the star model
took approximately 7 hours.

VGGs on CIFAR. The initial learning rate is set to 0.05 and is multiplied by 0.1 at epochs 100 and
150. Other settings are identical to those used for ResNet18. We use the following implementation:
https://github.com/fagp/sinkhorn-rebasin/blob/main/examples/models/vgg.py. Star models follow
the same recipe as regular models. It took roughly 15 minutes to train each source model, and 35
minutes to train a star model.

ResNets on ImageNet. For ImageNet, we use a batch size of 256. Models are trained for 100
epochs, using SGD with a learning rate of 0.1 which is multiplied by 0.1 at epochs 30, 60, 90. The
weight decay factor is 1e− 4. We use the ResNet18 implementation included in PyTorch (Paszke
et al., 2019). We leverage the open-source library FFCV (Leclerc et al., 2023) to speed up our
experiments. For data augmentation, we resize the image or its horizontal mirror to 256× 256 and
randomly crop out a 224× 224 region. Each source model took roughly 13 hours to train, while a
star model required about 2 days.

Weight matching. We use weight matching (WM) (Ainsworth et al., 2022). Our implementation
leverages an open-source Python package called “rebasin”: https://pypi.org/project/rebasin/.

Total compute. We estimate to have spent approximately 50− 70 days of NVIDIA A100 compute
hours for the experiments in this paper (not including experiments that did not make it into the paper).
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B.2 CALCULATION OF LOSS BARRIERS

We use the definition in ? to calculate loss barriers between any given pair of models (eq. (1)). Since
the definition in eq. (1) involves an infinite search space for the maximum, we sample a finite set
T = {t1, t2, · · · , tK} of equi-spaced points and compute the maximum as

max
t∈T
L ((1− t) · θA + t · θB)− ((1− t) · L (θA) + t · L (θB) (10)

Our sampling of equidistant points is consistent with prior work Ainsworth et al. (2022); Guer-
rero Peña et al. (2023). The size of T itself varies in prior work. Because of the scale of our
experiments, we use |T | = 11, including the end-points. In Appendix C.1, we show that this size is
sufficient for obtaining statistically significant results.

B.3 HANDLING BATCH NORMALIZATION

Batch normalization (Ioffe & Szegedy, 2015) is integral to efficient DNN training. ? describe the
so-called “variance collapse” problem that leads to degradation of interpolated models. As a solution,
we follow Ainsworth et al. (2022) and recalculate the batch statistics for each interpolated model, by
performing one forward pass through the entire training set before performing evaluation.

B.4 NOTE ON DEFINING SOLUTIONS

In general, a “solution” in this paper refers to the global minima of the objective function. Below, we
justify this definition.

Theory. In Theorem 1, we ensure global minima by assuming precisely zero loss. In Conjecture 2,
we also assume global minima that are theoretically reachable by SGD.

Practice. In experiments involving DNNs, it is tricky to determine whether global minima were
reached. However, we offer the following assurances.

• For our CIFAR10 and CIFAR100 experiments, we reach extremely low training loss
values (for example, training loss in the order of 10−3 for CIFAR10-ResNet18 models).
These results strongly suggest that the obtained models are very close to the global minima
of the objective function.

• For our ImageNet experiments, the loss values are not exactly zero. However, the loss at
the actual global minimum of the ImageNet classification task is an undetermined quantity
because of inherent label noise. Nonetheless, our models reach state-of-the-art accuracy for
the given dataset and architecture (> 70% validation accuracy for ResNet18). Given this,
we believe that our models serve as reasonable and sufficiently reliable proxies for global
minima.

C STATISTICAL SIGNIFICANCE OF OUR RESULTS

In this section, we validate our choices concerning the reporting of our results and demonstrate that
our findings are statistically significant.

C.1 SAMPLE SIZES FOR INTERPOLATION

An essential part of our experimental setup involves computing the loss barrier between two given
networks. To achieve this, we selected a set of equally spaced points between t = 0 and t = 1 and
evaluated the interpolated models at these points. This process is computationally intensive and
becomes slower as the number of interpolation points increases. Throughout this study, we used
the points t = 0.0, 0.1, . . . , 1.0. In this section, we demonstrate that the number of interpolation
points we used does not negatively impact the significance of our results. To this end, we conducted
an ablation study on CIFAR10-ResNet18 models, varying the number of interpolation points for
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computing the loss barrier. We present the comparison in Table 7. As we increased the number of
interpolation points from 11 to 51, we observed a decrease of 0.007 in the “regular-regular” barrier
and an increase of 0.004 in the “star-regular” barrier. For reference, these differences are less than
the standard deviations in the corresponding observations, and are thus statistically insignificant for
our final conclusions.

C.2 SIZE OF HELD-OUT SET

To reduce noise in our results, we compare barriers after computing them for several model pairs.
The size of the held-out set |H| is usually 5, and sometimes even 3. Here, we confirm that this is a
large enough sample size and that considering a larger set of held-out models does not change our
results fundamentally. In particular, we vary the number of held-out models |H| and source models
|Z| and obtain the corresponding mean barrier values as well as standard deviations. First, we set
both |H| and |Z| to 3. Then, we set |H| = |Z| = 5 and finally, |H| = |Z| = 15. In each case,
we interpolate all held-out models with all source models. Hence, in the last case, we perform 225
“regular-regular” barrier computations and 15 “star-regular” barrier computations. We present the
results in Table 8. We observe that the average “regular-regular” loss barrier between two arbitrary
models remains larger than 0.37 throughout, with a standard deviation close to 0.05. In contrast,
the average “star-regular” barrier remains lower than 0.1, with a standard deviation lower than 0.02.
None of the observed metrics or our conclusions change significantly when increasing the number of
samples. This observation provides confidence that our practice of setting the number of held-out
models to 3 or 5 provides reliable estimates while also being computationally cheaper.

C.3 MAXIMUM AND MINIMUM BARRIERS

Throughout the study, we consider mean values of “regular-regular” and “star-regular” loss barriers
for comparison. Here, we additionally compare maximum and minimum barrier values for each model
pair and confirm that the same trend holds, i.e., “star-regular” barriers are lower than “regular-regular”
barriers. We present the results in Table 8. We observe that as the sample size increases, the minimum
barrier values go down, while the maximum barrier values go up for both “regular-regular” and
“star-regular” pairs. But the minimum barrier obtained by “regular-regular” pairs is still 0.25, which
is significantly higher than even the maximum “star-regular” barrier, i.e., 0.117. This observation
confirms that the star model, on average, exhibits better linear connectivity with other arbitrary
models, than even the most “connected” arbitrary models exhibit between each other.

D ABLATIONS

D.1 TEST METRICS

The main discourse around mode connectivity (Garipov et al., 2018) as well as convexity (?) is built
around training loss and accuracy. Therefore, our empirical observations in support of the star domain
conjecture also primarily use the training set. However, applications like Bayesian model averaging
(Section 4.1) require our conclusions to hold for the test set. Therefore, we also examine the veracity
of our claims with respect to test loss and accuracy. We present our representative findings in Table 6.
Similarly to the training set results (Table 1), we observe that the “star-regular” test loss barriers
are consistently lower than “regular-regular” test loss barriers. Notably, for VGG11, our star model
achieves a zero test loss barrier with regular models, in comparison to a barrier of 0.24 between two
regular models. Overall, our observations indicate that the star domain conjecture holds for both
training and test losses.

D.2 CONNECTIVITY TO ADAM SOLUTIONS

Throughout the study, we have largely focused on the SGD-trained solutions and the star model
built from SGD-trained source models. Here, we examine the connectivity between SGD solutions,
SGD-induced star models and Adam-trained solutions. Figure 7 shows the loss landscape across
different types of solutions. We observe, as before, the loss barrier between SGD solutions and our
star model θ⋆ is nearly non-existent, while the SGD solutions are generally not linearly connected.
Our star model θ⋆ shows less connectivity with Adam solutions (the curve between “adam” and
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Table 6: Empirically verifying the star domain conjecture. “Regular loss” and “Star loss” indicate
test losses for regular models in Z and star models θ⋆, respectively. “Star-regular” refers to the
barrier B (θ⋆, θh) between a star model and one of the heldout models in H . For comparison,
“Regular-regular” is the test loss barrier B (θA, θB) between two arbitrary models. We report values
up to one standard deviation over several runs, except for ImageNet. In each case, star models
exhibit significantly lower loss barriers with other models, than the corresponding average loss barrier
between two regular models. This trend is consistent with our observation for training losses in
Table 1.

Dataset Architecture Regular loss Star loss Regular-regular Star-regular

CIFAR-10 ResNet-18 0.181± 0.005 0.222 0.336± 0.057 0.035± 0.007

CIFAR-10 ResNet-18 (ADAM) 0.334± 0.010 0.299 1.099± 0.516 0.168± 0.015

CIFAR-10 VGG11 0.421± 0.011 0.456 0.242± 0.036 0.000± 0.000

CIFAR-10 VGG19 0.444± 0.019 0.395 0.903± 0.150 0.117± 0.067

CIFAR-10 DenseNet 0.269± 0.012 0.290 4.405± 0.730 1.612± 0.408

CIFAR-100 ResNet-18 0.925± 0.007 1.216 2.306± 0.039 0.447± 0.051

CIFAR-100 DenseNet 1.312± 0.019 1.115 5.613± 0.209 3.005± 0.176

ImageNet-1k ResNet-18 1.203 1.634 5.477 2.548

Table 7: Different sample sizes for computing loss barriers. We report the “regular-regular” and
“star-regular” loss barriers computed using eq. (10), with different sizes of the set T of interpolation
points. Using 51 interpolation points instead of 11 does not lead to a significant change in the
computed loss barriers.

Sample size Regular-regular Star-regular

11 0.376± 0.055 0.090± 0.007

21 0.369± 0.053 0.089± 0.006

51 0.369± 0.053 0.094± 0.008

Table 8: Computing average loss barriers over different sizes of the sets of source models Z and
heldout models H . We compute minimum, average and maximum “star-regular” barriers (“SR-min”,
“SR-avg.” and “SR-max.” respectively) over varying numbers of heldout models H . For comparison,
we compute minimum, average and maximum “regular-regular” barriers (“RR-min”, “RR-avg.” and
“RR-max.” respectively). Increasing the number of held-out models from 3 to 15 does not significantly
change the observed trend.

Sample size RR-min. SR-min. RR-avg. SR-avg. RR-max. SR-max.

3 0.300 0.082 0.376± 0.055 0.090± 0.007 0.445 0.095

5 0.292 0.069 0.381± 0.059 0.077± 0.007 0.530 0.084

15 0.255 0.071 0.382± 0.046 0.093± 0.014 0.540 0.117
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Figure 7: Training loss landscape across SGD models, Adam models, and SGD-induced star
models. We plot test loss across different types of solutions in S. Our star model θ⋆ (“star” in the plot)
is constructed from a set of SGD-trained models Z. We note that the star model is well-connected
with SGD solutions. There remains a loss barrier between the star model and Adam solutions, but it
is significantly lower than the barrier among Adam solutions.

“star-sgd”) than with SGD solutions. However, we note that the loss barrier is significantly lower
than for the linear interpolations between pairs of Adam solutions (the curve between “adam” and
“adam”). Based on this observation, we conclude that while the scope of our conjecture remains
within SGD-trained solutions, there are hints that our star model shows enhanced connectivity with
other types of solution subsets.

D.3 COMPARISON WITH SINKHORN-REBASIN

Guerrero Peña et al. (2023) introduced a novel permutation-finding algorithm viz., Sinkhorn-rebasin
aimed at reducing the loss barriers between two arbitrary models. When using the data-free setting,
the method Guerrero Peña et al. (2023) can be considered a differentiable form of weight matching
Ainsworth et al. (2022). The authors notably demonstrate that their method performs better than
weight matching on average, albeit it only partially eliminates loss barriers between two given models.
However, Sinkhorn-rebasin does not yet support networks with skip connections, making it unsuitable
for our experiments involving ResNets and DenseNets. Additionally, Sinkhorn-rebasin requires
hyperparameter tuning (such as optimizer and learning rate), which could introduce confounding
factors into our experiments.

The primary objective of this paper is to investigate the empirical validity of our star domain conjecture.
We find weight matching sufficient for this purpose. However, our empirical verification is based
upon comparing “regular-regular” barriers, i.e., loss barriers between two arbitrary solutions, and
“star-regular” barriers, i.e., loss barriers between the star model and other arbitrary solutions. it is
important to verify how much Sinkhorn-rebasin can further improve these “regular-regular” loss
barriers. To this end, we compare “star-regular” barriers “regular-regular” barriers after applying
Sinkhorn-rebasin (SH) instead of Weight Matching. We use VGG19 models with batch normalization,
trained on CIFAR-10, for this purpose. First, we perform a hyperparameter search on the learning
rate for the permutation-finding algorithm Guerrero Peña et al. (2023), using CL2 distance (as
described in Guerrero Peña et al. (2023)) as the optimization objective. Our search space is the
set 0.01, 0.1, 1.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 80.0, 100.0, 120.0, 150.0, 200.0. We observe the
best “regular-regular” loss barrier between two pretrained models from Guerrero Peña et al. (2023),
at a learning rate of 150.0. This loss barrier forms the reference point “regular-regular” in our
comparison. Next, we train a star model using our own source models, and then compute the “star-
regular” barrier with one of the pre-trained models from Guerrero Peña et al. (2023). The results are
presented in Figure 8.

The “regular-regular” barriers obtained in our experiment are comparable to those reported in Figure
6 of Guerrero Peña et al. (2023). We observe that in this particular case, Sinkhorn-rebasin exhibits
higher loss barriers than weight matching, although it might be possible to reduce this barrier further
with a different set of hyperparameters. Nevertheless, “star-regular” barriers remain lower than
“regular-regular” barriers in both cases. Future work may look more closely into the effect of using
different permutation algorithms.
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Figure 8: Effect of using Sinkhorn-rebasin instead of weight matching. We compare “star-regular”
barriers against “regular-regular” barriers after fixing the permutation algorithm used to match the
weights of the two models being interpolated. star-WM and regular-WM refer to the barriers after
applying weight matching Ainsworth et al. (2022). Similarly, star-SH and regular-SH refer to barriers
after applying Sinkhorn-rebasin Guerrero Peña et al. (2023). While vanilla WM outperforms SH in
this case, a better hyperparameter choice may eventually cause SH to outperform WM. Nevertheless,
the findings in this investigation further support our conclusion that star models are well-connected
to other regular models, in comparison to how well the regular models are connected amongst
themselves.

D.4 DIFFERENT SAMPLING SCHEMES FOR MONTE-CARLO PPTIMIZATION

While training our star models using Starlight (Algorithm 1), we sample the interpolation factor t
from Unif[0, 1]. However, empirical results show that loss barriers are typically achieved close to the
center of the interpolation line (t = 0.5). This raises the question: would Starlight be more efficient
if the sampling scheme placed more weight toward the center of the interpolation line? To test this,
we run ablations with different sampling schemes.

• Uniform (used in main paper): t ∼ Unif[0, 1].

• Beta: t ∼ Beta(2, 2). We sample more around t = 0.5.

• Constant 0.5: t = 0.5.
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Table 9: Different sampling schemes for Starlight. We report the “star-regular” and “regular-regular”
barriers for each sampling case; averages were computed over three different runs using different
random seeds. While sampling from a beta distribution “Beta” performs slightly better, the difference
is too small to be statistically significant.

Sampling scheme Regular loss Star loss Regular-regular Star-regular

Unif[0, 1] 0.001± 0.000 0.001± 0.000 0.383± 0.056 0.084± 0.012

Beta(2, 2) – do – 0.001± 0.000 – do – 0.069± 0.010

Constant0.5 – do – 0.082± 0.004 – do – 0.018± 0.009

We show the results in Table 9. We observe that both the Uniform and Beta sampling schemes
obtain star models with identical training loss (0.001). Beta achieves a slightly better loss barrier
(0.069) than Uniform (0.084), while the difference is not particularly significant in this case. Constant
sampling obtains a much worse star model in terms of training loss (0.08). However, the finding with
Beta suggests that Starlight can potentially benefit from better sampling schemes for t in future work.

D.5 EFFECT OF PERTURBATIONS

While the main point of our work is to show that a star model exists, it would also be interesting to
find out whether other models in the vicinity of the discovered star model, also exhibit star-model-like
properties. To test this, we slightly perturbed the CIFAR10-ResNet18 star model and evaluated its
“starness”. Specifically, we sampled points θ̃ϵ = θ∗ + ϵ · r from the surface of a sphere of radius ϵ
around θ∗. We consider three samples for each perturbation radius, and calculate barriers with three
held-out models. Results can be found in Table 10. Indeed, perturbations with ϵ = 16 are still good
star model candidates.

Table 10: Barriers after perturbation. Even after perturbation, star-regular barriers remain substan-
tially lower than the regular-regular barrier of 0.38, indicating that there exist several star models
instead of just one.

ϵ Star loss Star-regular barrier

21 0.001± 0.000 0.078± 0.009
22 0.001± 0.000 0.080± 0.009
23 0.002± 0.000 0.086± 0.007
24 0.012± 0.001 0.120± 0.013

D.6 MODIFIED STARLIGHT: STAR-REGULAR BARRIERS

Here, we investigate the starness of star models trained with the modified objective in Section 4.2. We
consider ResNet18 models trained on CIFAR-10 and CIFAR-100, reporting the mean of 3× 3 = 9
star-regular barriers for each case. Results can be found in Table 11. Similar to the trend shown in
Figure 1, the star-regular barriers steadily decrease (e.g., from 0.31 to 0.12 for CIFAR-10) with an
increasing number of source models, and remain significantly lower than the average regular-regular
barrier (e.g., 0.38 for CIFAR-10).
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Table 11: Star model barriers with the modified objective, after the addition of a cross-entropy
term to the loss. The barriers follow the decreasing trend shown in Figure 1, and for 50 source
models, they become significantly lower than the average regular-regular barrier.

Dataset #source Star-regular barrier

CIFAR-10 2 0.31± 0.05

CIFAR-10 5 0.25± 0.05

CIFAR-10 50 0.12± 0.02

CIFAR-100 2 2.70± 0.06

CIFAR-100 5 2.10± 0.10

CIFAR-100 50 0.76± 0.09

D.7 ROLE OF ACTIVATION FUNCTION

Our experiments largely make use of networks with the ReLU activation, a homogeneous function.
To test the influence of ReLU’s homogeneity on our results, we conducted minimal experiments using
two non-homogeneous activation functions: ELU (Clevert et al., 2016) and Swish (Ramachandran
et al., 2018). Results are presented in Table 12. Even in this minimal setup, we observe that star-
regular barriers are significantly lower than regular-regular barriers (for instance, 0.224 vs 0.497 for
ELU). We expect the star-regular barriers to get better with more source models. Our results indicate
that star-domainness can emerge even for non-homogeneous activation functions.

Table 12: Barriers with different activation functions. We used 3 held-out models and 10 source
models in each case. We observe lower star-regular than regular-regular barriers even in this minimal
setup using non-homogeneous activation functions. This indicates that “starness" may not be a
consequence of the homogeneous property of the function. As a reference point, we report the
star-regular barrier for ReLU star models trained using 10 source models.

Activation function Regular loss Star loss Regular-regular Star-regular

ReLU 0.001± 0.001 ≈ 0.001 0.383± 0.056 ≈ 0.19

ELU 0.007± 0.001 0.068 0.497± 0.174 0.224± 0.021

Swish (SiLU) 0.001± 0.000 0.009 0.347± 0.046 0.208± 0.019

E ADDITIONAL RESULTS

Our main results are reported in Figure 2 and Table 1, in the main paper. For the sake of completeness,
we report interpolation plots for the rest of our experiments in this section. We include plots for
DenseNet (Figure 9), VGG (Figure 10), and ImageNet-1k (Figure 11).
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Figure 9: Loss barriers for DenseNet-40-12 star models on CIFAR. We plot training loss and
accuracy curves obtained upon interpolation between star-regular and regular-regular models pairs.
Star-regular loss barriers continue to be lower than regular-regular barriers, as observed in Figure 2.
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Figure 10: Loss barriers for VGG star models trained on CIFAR-10. Training loss and accuracy
curves obtained upon interpolation between star-regular and regular-regular model pairs. We observe
the same trend as in Figure 2.
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Figure 11: Loss barriers for ResNet18 star models trained on ImageNet-1k: training loss and
accuracy curves obtained upon interpolation between star-regular and regular-regular model pairs.
While ImageNet models struggle to achieve LMC, star-regular barriers still fare much better than
regular-regular barriers.
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