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ABSTRACT

We study a setting of collecting and learning from private data distributed across
end users. In the shuffled model of differential privacy, the end users partially pro-
tect their data locally before sharing it, and their data is also anonymized during
its collection to enhance privacy. This model has recently become a prominent al-
ternative to central DP, which requires full trust in a central data curator, and local
DP, where fully local data protection takes a steep toll on downstream accuracy.
Our main technical result is a shuffled DP protocol for privately estimating the
kernel density function of a distributed dataset, with accuracy essentially match-
ing central DP. We use it to privately learn a classifier from the end user data, by
learning a private density function per class. Moreover, we show that the density
function itself can recover the semantic content of its class, despite having been
learned in the absence of any unprotected data. Our experiments show the fa-
vorable downstream performance of our approach, and highlight key downstream
considerations and trade-offs in a practical ML deployment of shuffled DP.

1 INTRODUCTION

Collecting statistics on end user data is commonly required in data analytics and machine learning.
As it could leak private user information, privacy guarantees need to be incorporated into the data
collection pipeline. Differential Privacy (DP) (Dwork et al., 2006) currently serves as the gold
standard for privacy in machine learning. Most of its success has been in the central DP model,
where a centralized data curator holds the private data of all the users and is charged with protecting
their privacy. However, this model does not address how to collect the data from end users in the first
place. The local DP model (Kasiviswanathan et al., 2011), where end users protect the privacy of
their data locally before sharing it, is often used for private data collection (Erlingsson et al., 2014;
Ding et al., 2017; Apple, 2017). However, compared to central DP, local DP often comes at a steep
price of degraded accuracy in downstream uses of the collected data.

The shuffled DP model (Bittau et al., 2017; Cheu et al., 2019; Erlingsson et al., 2019) has recently
emerged as a prominent intermediate alternative. In this model, the users partially protect their data
locally, and then entrust a centralized authority—called the “shuffler”—with the single operation of
shuffling (or anonymizing) the data from all participating users. Data collection protocols in this
model are designed so that the composition of shuffling over local user computations rigorously en-
sures DP. The appeal of shuffled DP lies in the convergence of theoretical and practical properties:
mathematically, recent work has proved that shuffling can boost the accuracy of local DP to levels
that may reach those of central DP (Erlingsson et al., 2019; Balle et al., 2019b; 2020b; Koskela
et al., 2021; Girgis et al., 2021c; Feldman et al., 2022; 2023; Zhou & Shi, 2022). At the same
time, the strictly limited functionality of the shuffler lends itself to realistic secure implementations,
and a trusted shuffler can be implemented using techniques from secure computation and cryptog-
raphy, like mixnets, onion routing, trusted execution environments (TEEs), and secure aggregation
(SecAgg) (Ishai et al., 2006; Bittau et al., 2017; Gordon et al., 2022; Kairouz et al., 2021a;b).

There is by now a well-developed body of work on basic operations under shuffled DP, primarily
summation (see Section 2.2). Work on machine learning has mostly focused on iterative settings
(see Section 2.4), where distributed parties contribute local computations on their sensitive data, like
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gradients, over multiple rounds of shuffled DP communication. This is compatible with distributed
(or federated) training scenarios, in which a known set of parties collaborate in a training process
that unfolds over time, typically with each contributing a local dataset and local computational
resources (say, for computing local gradients). For example, the parties could be local branches of a
large corporation (e.g., a bank), each holding the private data of multiple local customers.

Unfortunately, this is incompatible with data collection scenarios, where a “snapshot” of user data is
collected in one shot from a pool of uncommitted users who hold a single training point (their own
private data), which they may opt in or out of sharing, and who do not participate computationally
in the training process beyond possibly contributing their data. For example, the users could be end
customers of a smartphone app, prompted to privately share statistics about their app activity.

In this work, we study the data collection scenario under shuffled DP. We propose a private learning
approach which can intuitively be seen as a shuffled DP analog of a nearest neighbor (kNN) clas-
sifier. A distributed training set of sensitive labeled data is privately collected from users, and like
in kNN, subsequent test points are classified according to the most similar training examples. Since
using a small number of neighbors in classification may violate their privacy, our classifier uses ker-
nel density estimation (KDE) as a “smooth” alternative to kNN, which can be realized with shuffled
DP. It thus labels test points as the class where their privately estimated density is maximized.

Moreover, our classifier produces a function representation of each class. We show this representa-
tion can be used to recover the semantics of the class—for example, a list of terms that captures the
topic of a class in textual data—even though the learner did not observe any unprotected text record
from the class before privacy was imposed. We refer to this as private class decoding.

Our results. Formally, we consider the following learning setting. Training data is distributed
across n users, each holding a single private training point (x, c), where x ∈ Rd is a feature vector
and c ∈ [m] is a class label. The learner collects data from the users through shuffled DP, and uses
them to construct a classifier, which can then be used to classify feature vectors y ∈ Rd from an
unlabeled test set. The classifier itself needs to be private w.r.t. the collected dataset; this enables
labeling an unbounded number of test points without additional loss of privacy.

To address this setting, our main theoretical result is a shuffled DP protocol for KDE estimation,
that learns a private KDE function from distributed user data, which can then be used to estimate
densities of test points. The utility guarantee is given in terms of the supremum mean squared error
over all test points in Rd, so that test points need not be known to the protocol in advance. The
proof goes through a reduction to binary summation (abbrev. bitsum), which is among the most
well-studied problems in shuffled DP, with a variety of available protocols to employ.

Experimentally, we evaluate our method with various combinations of kernels and bitsum protocols,
yielding different trade-offs between privacy, accuracy and communication, and highlighting key
downstream considerations for shuffled DP compared to central DP and local DP baselines.

2 BACKGROUND AND PRELIMINARIES

2.1 CENTRAL, LOCAL AND SHUFFLED DP

We review models of differential privacy. Let X be a universe of data elements. A dataset is an n-
tuple X ∈ Xn. Two datasets X,X ′ are called neighboring if they differ on at most one coordinate.
A randomized algorithm M , that maps an input dataset to an output from a range of outputs T , is
(ε, δ)-DP if for every pair of neighboring datasets X,X ′ and every T ⊂ T , it satisfies

Pr[M(X) ∈ T ] ≤ eε · Pr[M(X ′) ∈ T ] + δ. (1)

In central DP, a single data curator holds a datasetX ∈ Xn containing the data of n users, with each
coordinate in the n-tuple X representing a user. The curator runs M and releases its output.

In local DP, each user holds her own data element, on which she runs M locally, and releases its
output. Here, M operates on a single data element (or 1-tuple), and needs to satisfy eq. (1) for every
X,X ′ ∈ X (every pair of single elements is neighboring). A central analyzer collects the already
“privatized” outputs from all users and performs an aggregate computation. In this model, there is
no trusted central party at all, yielding a stronger form of privacy, albeit at the cost of accuracy.
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The shuffled DP model (Bittau et al., 2017; Cheu et al., 2019; Erlingsson et al., 2019) bridges the
central and local DP models, by introducing a limited trusted central party—called a “shuffler”—
whose only function is to anonymize (or randomly permute) the users’ outputs before they are shown
to the analyzer. The analyzer is considered untrusted, simialrly to local DP and unlike central DP.
Formally, a shuffled DP protocol Π consists of three randomized algorithms Π = (ΠR,ΠS ,ΠA):

• Randomizer ΠR, which maps a single element from X to some sequence of messages. Each user
runs ΠR locally on her data element, and forwards the output messages to the shuffler.

• Shuffler ΠS , which collects the messages from all users and forwards them to the analyzer in a
uniformly random order (thus, intuitively, removing sender identities).

• Analyzer ΠA, which receives the permuted messages from the shuffler and outputs the result of
an aggregate computation.

The protocol is (ε, δ)-DP in the shuffled DP model if the output of ΠS satisfies eq. (1) (i.e., it holds
with M(X) := ΠS(∪ni=1ΠR(Xi))). Due to the DP post-processing property (Dwork et al., 2014),
the output of ΠA is (ε, δ)-DP as well. The parties in the protocol also have access to a source of
shared public randomness, which is considered publicly known, and thus cannot be exploited to
compromise privacy (see Kairouz et al. (2021a)).

2.2 BITSUM PROTOCOLS IN THE SHUFFLED DP MODEL

Binary summation, which we refer to throughout as bitsum, is a fundamental and well-studied prob-
lem in DP, and particularly in shuffled DP. Each of n users holds a private bit Xi ∈ {0, 1}, and the
goal is to compute a DP estimate of the sum S =

∑n
i=1Xi. The accuracy of a randomized estimate

S̃ is often quantified by its root mean squared error (RMSE), (E[(S̃ − S)2])1/2.

A long line of work on shuffled DP bitsums (Cheu et al., 2019; Cheu & Yan, 2021; Ghazi et al.,
2020b;a; 2021b; 2023) had yielded protocols whose RMSE essentially matches central DP, and is
significantly better than local DP, along with additional desirable properties, like low communication
and pure DP (i.e., δ = 0). We will use these protocols as black-boxes and not require familiarity
with their details. For completeness and intuition, we describe how they work in Appendix B.1.

2.3 PRIVATE KERNEL DENSITY ESTIMATION

Let k : Rd × Rd → R be a kernel, such as the Gaussian kernel k(x, y) = exp(−∥x − y∥22). The
kernel density estimation (KDE) map KDEX : Rd → R, associated with a multiset X ⊂ Rd of
size n, is defined as KDEX(y) = 1

n

∑
x∈X k(x, y).

Numerous works studied KDE in the central DP model (Hall et al., 2013; Wang et al., 2016; Alda &
Rubinstein, 2017; Coleman & Shrivastava, 2021; Wagner et al., 2023; Backurs et al., 2024), mostly
in a setting known as function release. In this setting, the data curator holds all of X , and her goal is
to release a function description K̃(·) which is DP w.r.t.X , such that K̃(y) is an accurate estimate of
KDEX(y) for every y ∈ Rd. We will adapt this problem to the shuffled DP model in Definition 3.1.
Our approach to this problem will use the following notion of locality-sensitive quantization (LSQ),
recently introduced in Wagner et al. (2023) for KDE in the central DP model.

Definition 2.1 (Wagner et al. (2023)). Let Q,R, S, β > 0. Let Q be a distribution over pairs
of functions f, g : Rd → [−R,R]Q. We say that Q is a β-approximate (Q,R, S)-locality sensitive
quantization (abbrev. LSQ) family for the kernel k, if the following are satisfied for all x, y ∈ Rd:

• |k(x, y)− E(f,g)∼Q[f(x)
T g(y)]| ≤ β.

• f(x) and g(y) have each at most S non-zero coordinates.

If this holds, then k is β-approximate (Q,R, S)-LSQable. If β = 0, then k is (Q,R, S)-LSQable.

For example, Wagner et al. (2023) observed that the Gaussian kernel is (1,
√
2, 1)-LSQable by ran-

dom Fourier features (Rahimi & Recht, 2007), and the Laplacian and exponential kernels are β-
approximate (O(β−1), 1, 1)-LSQable for all β > 0 by locality sensitive hashing (Indyk & Motwani,
1998). They proved that LSQable kernels admit efficient KDE mechanisms in the central DP model.
We will prove an analogous result for shuffled DP. While we draw on ideas from their central DP
mechanism, our proofs will be different and self-contained.
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2.4 ADDITIONAL RELATED WORK

Prior work on machine learning with shuffled DP has mostly focused on two iterative learning set-
tings: distributed and federated model training (Cheu et al., 2021; Girgis et al., 2021b;a; Liu et al.,
2021; Kairouz et al., 2021a), where users share privately computed gradients; and multi-armed and
contextual bandits (Tenenbaum et al., 2021; Chowdhury & Zhou, 2022; Zhou & Chowdhury, 2023;
Tenenbaum et al., 2023), where users share private contexts and rewards. The main difference from
our setting is their iterative nature, in which the users communicate with the analyzer over multiple
rounds of a shuffled DP protocol. Of these, Tenenbaum et al. (2021) is somewhat akin to us in that
they also reduce their problem to bitsums, although in their case the connection is more direct as
they assume binary rewards in their multi-armed bandits problem.

Beyond bitsums, there has been much work on shuffled DP protocols for integer and real summation
(Cheu et al., 2019; Cheu & Zhilyaev, 2022; Balle et al., 2019b;a; 2020a; Ghazi et al., 2020b;a;
2021b; Balcer et al., 2021) and other basic operations (Balcer & Cheu, 2019; Ghazi et al., 2019;
2021a; Chen et al., 2020a; Chang et al., 2021; Scott et al., 2021; Tenenbaum et al., 2023). We
discuss real summation in the context of our work in more detail in Appendix B.2.

Outside shuffled DP, a relevant work in the central DP model is Backurs et al. (2024), who also
suggested a classifier that maximizes the privately computed similarity to a class. They presented
results for the CIFAR-10 dataset by measuring distances to class means. Our experiments in Sec-
tion 4 include the same data in a distributed setup, evaluated with our shuffled DP protocol.

3 DATA COLLECTION AND CLASSIFICATION WITH SHUFFLED DP

In this section we present our private data collection and learning protocol. In Section 3.1, we dis-
cuss certain practical considerations with shuffled DP, that would inform the design of our method.
In Section 3.2, we give our shuffled DP result for KDE, which is the main building block in our
classifier. In Section 3.3, we use it to privately learn a classifier from collected user data.

3.1 PRACTICAL CONSIDERATIONS WITH SHUFFLED DP

User counts. A key limitation of shuffled DP is that protocols are required to know in advance the
number of participating users n. Technically, the noise added by each local randomizer ΠR generally
decreases with n. This is crucial for boosted accuracy, albeit if some users drop out, the protocol
fails to meet its DP guarantee for the remaining users. This limitation may be acceptable in the
distributed training scenario from Section 1, where a predetermined group of parties is expected to
collaborate on training and reliably execute the protocol. However, in our data collection scenario, it
would make less sense to assume that the number of participating users is known in advance. We will
therefore designate a preliminary communication round for allowing users to opt into participation.

Privacy threat models. There are several possible places to impose DP in an ML pipeline. Pono-
mareva et al. (2023) outline three options, from the most stringent to most lenient form of privacy:
input/data-level DP, where the adversary has access to the data used to train the ML model; model-
level DP, where the adversary has full access to the weights of the trained model; and prediction-
level DP, where the adversary has access only to model outputs when presented with test points.

We will consider the first two of these options, adapted to shuffled DP. Input/data-level DP means the
adversary sees all communication sent to the analyzer (equivalently, the analyzer itself is the adver-
sary). Note that communication from the users to the shuffler is never exposed (that would void the
premise of shuffled DP); in practice, this line of communication is implemented cryptographically,
exploiting on the restricted nature of the shuffler (Kairouz et al., 2021a). However, the adversary can
see all communication between the shuffler and the analyzer, as well as all direct communication
(if any) between the users and the analyzer. We refer to this as the communication-threat model. In
model-level DP, a weaker adversary sees only the trained model released by the analyzer after the
protocol execution is complete; we refer to this as the model-threat model. These threat models are
typically not differentiated in prior work on shuffled DP, since they often coincide; however, in our
case, the trained model would leak less privacy than the communication used to learn it.
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Algorithm 1: Shuffled DP KDE protocol from bitsums

Global initialization // all data here is public
input: shuffled DP bitsum protocol Π;

(Q,R, S)-LSQ family Q; integer
I > 0

for i = 1, . . . , I do
(fi, gi)← independent sample from Q

// using shared/public randomness
for j = 1, . . . , Q do

Πij ← independent instance of Π

publish: (fi, gi) for all i = 1, . . . , I

Randomizer // each user runs this locally with
private randomness

input: private data point x ∈ Rd

for (i, j) ∈ [I]× [Q] do
bij ← Bernoulli(0.5(1 + (fi(x))j/R))
Γij ← run the randomizer of Πij on bij
for message γ in Γij do

send (γ, (i, j)) to the shuffler

Analyzer // runs after the shuffler
input: shuffled sequence of messages Γ̃

from n users
for (i, j) ∈ [I]× [Q] do

Γ̃ij ← empty sequence

for message (γ, (i, j)) in Γ̃ do
append γ to Γ̃ij

for (i, j) ∈ [I]× [Q] do
B̃ij ← run the analyzer of Πij on Γ̃ij

F̃ij ← (2B̃ij − n)R
publish: F̃ij for all i, j

KDE Query // runs on the analyzer’s
published output arbitrarily many times

input: query point y ∈ Rd

return: 1
nI

∑I
i=1

∑Q
j=1 F̃ij · (gi(y))j

Bit-width and discretization. Kairouz et al. (2021a) emphasize that in practice, the shuffler imple-
mentation often requires modular arithmetics for cryptographic secure aggregation. Therefore, the
shuffled DP protocol’s numerical values must be discretized, and its bit precision (called bit-width)
needs to be explicitly bounded. Neglecting to account for the bit-width may lead to impractical
communication costs and to larger errors (due to discretization) than a real-valued analysis predicts.
We will therefore incorporate discretization into our protocol and account for it in the error analysis.

3.2 SHUFFLED DP KDE FROM BITSUM PROTOCOLS

We now present the theoretical backbone of our private learning approach, a shuffled DP protocol
for KDE. We start by defining the KDE problem in the shuffled DP model.
Definition 3.1 (shuffled DP KDE). In the shuffled DP KDE problem, a dataset X ∈ (Rd)n of n
points in Rd is distributed across n users, one point per user. The goal is to devise a shuffled DP
protocol ΠKDE in which the analyzer releases a function description K̃(·), required to be (ε, δ)-DP
w.r.t. X . The supremum root mean square error (abbrev. supRMSE) of the protocol is defined as

supRMSE(ΠKDE) := sup
y∈Rd

√
E
[(
K̃(y)−KDEX(y)

)2]
.

Our main technical result is the following theorem, which is a reduction from KDE to bitsum pro-
tocols in the shuffled DP model, for kernels with the LSQ property defined in Definition 2.1. The
resulting shuffled DP KDE protocol is given in Algorithm 1.
Theorem 3.2. Let k be a β-approximate (Q,R, S)-LSQable kernel (cf. Definition 2.1). Suppose we
have an unbiased (ε0, δ0)-DP bitsum protocol Π in the shuffled DP model, with RMSE EΠ. Then, for
every δ′ > 0 and integer I > 0, Algorithm 1 is a shuffled DP KDE protocol, which is (ε, δ)-DP in
the communication-threat model, where ε = ε0S(e

ε0S−1)I+ε0S
√

2I ln(1/δ′) and δ = ISδ0+δ
′,

with supRMSE
√

4β2 + I−1 · 16R4S (S + (EΠ/n)2). The protocol has optimal bit-width 1.

Note that ε, δ take the familiar “advanced composition” form (Dwork et al., 2014) of I instances of
an (ε0S, δ0S)-DP mechanism. The proof of Theorem 3.2 goes by showing that the LSQ coordinates
can be discretized essentially without loss of accuracy, and invoking the bitsum protocol on the dis-
cretized coordinates, using a careful probabilistic analysis to bound the overall supRMSE from their
individual RMSEs. It is given in full in Appendix A.1. Appendix A.1.7 also discusses additional
variants of Theorem 3.2, for bitsum protocols whose error guarantee is given in other terms than the
RMSE (like Cheu et al. (2019)), or that achieve pure DP (like Ghazi et al. (2020a; 2023)).
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As a concrete instantiation of Theorem 3.2, we get the following result for the Gaussian kernel, by
plugging the shuffled DP protocol from Ghazi et al. (2020b) as the bitsum protocol, and random
Fourier features (Rahimi & Recht, 2007) as the LSQ family. The proof is in Appendix A.2. For
completeness, the protocol for this special case is fully detailed in Algorithm 2 in the appendix.
Theorem 3.3 (shuffled DP Gaussian KDE). There are constants C,C ′ > 0 such that the following
holds. Let δ ∈ (0, 1) and ε ≤ C log(1/δ). For every α ≥ C ′

√
log(1/δ)/(εn), there is an (ε, δ)-DP

Gaussian KDE protocol in the shuffled DP model (under the communication-threat model) with n
users and inputs from Rd, which has: supRMSE α, user running time min(O(d/α2), Õ(d+1/α4)),
expected communication of Õ(1/α2) bits per user, expected analyzer running time O(n/α2), KDE
query time min(O(d/α2), Õ(d+ 1/α4)), and optimal bit-width 1.

3.3 PRIVATE LEARNING, CLASSIFICATION AND CLASS DECODING

We now describe our private learning approach for classification and class decoding. Recall that
each user holds a private data point x ∈ Rd and a corresponding label c ∈ [m].

Learning. The learner will aim to learn a KDE function representation per class, using the shuffled
DP protocol from Theorem 3.2. As discussed in Section 3.1, this requires knowing in advance the
number of participating users per class. We therefore start with a preliminary communication round
designated to privately obtain these counts. This could be done with an off-the-shelf shuffled DP
histogram protocol (e.g., Ghazi et al. (2020b)); however, this again requires prior knowledge of the
total number of users. To avoid this chicken-and-egg issue, we will use vanilla local DP for the
preliminary communication round. It is a stronger form of privacy that requires no prior knowledge,
and its accuracy, while degraded, is still sufficient for the simple task of private user counts.

Formally, let ε0, δ0, εlbl > 0 be privacy parameters. Learning proceeds as follows. First, each user
locally protects her label c and publishes a privatized label c̃, using m-ary randomized response
(Kairouz et al., 2014; 2016). Thus, c̃ is set to c with probability eεlbl/(eεlbl − 1 + m), and to a
uniformly random label from [m] \ {c} otherwise. This ensures that c̃ is εlbl-DP, without shuffling.

Based on the published labels, the learner groups the users into their reported classes, and publishes
the count of users ñc̃ in each reported class c̃ ∈ [m]. These counts are εlbl-DP by post-processing,
and thus safe to publish. The users in each reported class then execute the shuffled DP KDE protocol
in Algorithm 1, using ε0, δ0 as the privacy parameters for each instance of the bitsum protocol Π.
The learner acts as the analyzer in all these protocols, and through them learns an approximate KDE
function K̃c(·) for each label c ∈ [m]. From Theorem 3.2 and from basic DP composition, we have
the following privacy guarantee:
Corollary 3.4. The above learning protocol is (ε, δ)-DP in the model-threat model, and (ε+εlbl, δ)-
DP in the communication-threat model, where ε, δ are given by ε0, δ0 as stated in Theorem 3.2.

Classification. The learner classifies a test point y ∈ Rd as the class where its private density
estimate is maximized, namely as cy = argmaxc∈[m]K̃c(y). We refer to this as the highest density
class (HDC) classifier. It can be viewed as generalizing the k-nearest neighbor (kNN) classifier,
where the density of y w.r.t. class c is measured by the number of its k-nearest neighbors labeled c,
and of the nearest class center (NCC) classifier (Papyan et al., 2020), where the density is measured
by the distance between y to the mean of all data points labeled c. Note that the kNN classifier is
incompatible with DP, since its output relies on a small number of training points, while the NCC
classifier is a special case of HDC, which we include in the experiments in the next section.

Private class decoding. To illustrate class decoding, Suppose that the data points are embeddings
of text documents (even though the notion extends to other data modalities as well). Let V ⊂ Rd be
a fixed public “vocabulary”, say the embeddings of all words in an English dictionary. To “decode”
a class c, the learner returns the top few vocabulary words v ∈ V that maximize K̃c(v). The goal is
for those words to capture and convey the semantic meanings of texts from class c.

To underline the distinction between classification and class decoding: classification relies on the
ability of the collection of functions {K̃c}c∈[m] to produce meaningfully rankable scores over the
different classes for a fixed input y ∈ Rd; class decoding relies on the ability of each fixed function
K̃c to produce meaningfully rankable scores over a large collection of inputs V ⊂ Rd. In general, we
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expect a learned representation of a class to encompass its semantic meaning and to be decodable.
The particular challenge in shuffled DP is that the representation was learned without observing any
raw training example from the class, i.e., prior to imposing differential privacy on the training data.

4 EXPERIMENTS

We evaluate our method with several combinations of kernels and bitsum protocols. Our code is
enclosed in the supplementary material and available online.

Datasets. We use three textual datasets and one image dataset:

• DBPedia-14 (Zhang et al., 2015): Text documents containing summaries of Wikipedia articles.
Training examples: 560K, test examples: 70K, classes: 14, task: topic classification.

• AG news (Zhang et al., 2015): Text documents containing news articles. Training examples:
120K, test examples: 7.6K, classes: 4, task: topic classification.

• SST2 (Socher et al., 2013): Sentences extracted from movie reviews. Training examples: 67.3K,
test examples: 1.82K, classes: 2, task: sentiment classification (positive/negative).

• CIFAR-10 (Krizhevsky, 2009): Images from different object categories. Training examples: 50K,
test examples: 10K, classes: 10, task: depicted object classification.

The datasets are embedded in Rd using standard pretrained models. The textual datasets are embed-
ded into 768 dimensions with the SentenceBERT “all-mpnet-base-v2” model (Reimers & Gurevych,
2019). CIFAR-10 is embedded into 6144 dimensions with the SimCLR “r152 3x sk1” model (Chen
et al., 2020b), pre-trained on Imagenet (these are the same embeddings used in Backurs et al. (2024)
for their central DP experiment). All embedding vectors are normalized to unit length. We note
that the datasets are not included in the pretraining set of the respective embedding models used to
embed them, ensuring that the pretraining set does not leak privacy in our experiments.

Kernels. We experiment with two kernels that fit into the framework of Theorem 3.2:

• Gaussian: k(x, y) = exp(−∥x − y∥22). As noted in Section 2.3, it is (1,
√
2, 1)-LSQable by

letting the functions in Q be random Fourier features, leading to Theorem 3.3.
• IP: The inner product kernel k(x, y) = xT y. Since our embeddings are normalized, it is trivially
(d, 1, d)-LSQable. It is also (1,

√
d, 1)-LSQable by standard dimensionality reduction arguments

(see Appendix A.3), which leads to better parameters in Theorem 3.2. Note that for a subset X ′

of training points, the IP KDE at y is 1
|X′|

∑
x∈X′| y

Tx = yT ( 1
|X′|

∑
x∈X′ x). Thus, the HDC

classifier labels y by the most similar class mean, as the NCC classifier discussed in Section 3.3.

To equalize the computational costs of the two kernels, we set the number of repetitions I in Algo-
rithm 1 to d (the embedding dimension). Since the embeddings have unit length, there is no need to
clip the vectors at a hyperparameter (as in Kairouz et al. (2021a); Backurs et al. (2024)) for the IP
kernel, nor to optimize a bandwidth for the Gaussian kernel (it is just set to 1).

Bitsum protocols. We use three shuffled DP bitsum protocols from the literature, each optimal in a
different measure — efficiency, accuracy and privacy, respectively (see also Appendix B.1):

• RR: The classical randomized response protocol, as adapted to shuffled DP by Cheu et al. (2019).
This protocol has optimal communication efficiency of a single one-bit message per user.1

• 3NB: The correlated noise protocol of Ghazi et al. (2020b), which has asymptotically optimal
accuracy. We call it 3NB since it relies on three samples from a negative binomial distribution.2

• Pure: The pure DP (δ = 0) protocol of Ghazi et al. (2023). The other protocols use δ > 0.3

Privacy parameters. We follow the guidelines given in Ponomareva et al. (2023), who cite current
machine learning deployments of DP as using ε generally between 5 to 15, and advocate for ε ≤ 10
as an acceptable privacy regime. We use ε ∈ (0, 10) to protect the training point x ∈ Rd with
(ε, δ)-shuffle DP, and εlbl ∈ {3, 5, 7, 10} to protect the label c ∈ [m] with (εlbl, 0)-local DP. We use
δ = 10−6 for DBPedia-14 and AG news, and δ = 10−5 for SST2 and CIFAR-10, accounting for the

1See Section 4.2 for a detailed discussion on communication costs.
2See ψ1, ψ2, ψ3 in Algorithm 2 in the appendix.
3To maintain purity in Algorithm 1 when composing instances of Pure, they are composed with “basic”

(pure) rather than “advanced” (approximate) DP composition (Dwork et al., 2014). See Appendix A.1.7.
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Figure 1: Classification results with εlbl = 5

different dataset sizes. For RR and 3NB, the δ “budget” in Theorem 3.2 is split equally between the
advanced composition parameter δ′ and the total IQδ0 term of the bitsum protocol instances.

4.1 PRIVATE CLASSIFICATION RESULTS

We evaluate the HDC classification accuracy for each combination of kernel and bitsum protocol,
{Gaussian, IP} × {RR, 3NB, Pure}, on each the dataset. Figure 1 shows results for εlbl = 5 (solid
lines). Results for other values of εlbl are similar and appear in the appendix (Figures 5 to 8).

As points of reference, we include the following two baselines for each kernel:

• (ε, δ)-central DP (dotted lines): HDC with the bitsum protocols in Algorithm 1 replaced by the
standard Gaussian DP mechanism (see Section A in Dwork et al. (2014)).

• No privacy (dash-dot lines): HDC with the bitsum protocols replaced by exact summation.

In the appendix (Figure 4), we also include an ablation against a local DP baseline.
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Figure 2: Empirical communication

Figure 3: Gaussian KDE accuracy

The results exhibit consistent behavior. Without privacy, the IP kernel outperforms the Gaussian
kernel in all settings. This corroborates the known effectiveness of the NCC classifier on neural
embeddings (see Papyan et al. (2020)). Moreover, central DP closely matches the corresponding
non-DP downstream accuracy already at small values of ε, which corroborates a similar empirical
finding reported in Backurs et al. (2024).

Under shuffled DP, however, this behavior varies in different settings. The Gaussian kernel is more
resilient to errors than IP, and thus matches its central DP and non-DP HDC performance at broader
parameter regimes. As a result, it often achieves better overall accuracy than IP, even though its
baseline (non-DP) accuracy is lower. This phenomenon is more expressed the more error-prone the
setting is – both with lower privacy budgets (lower ε), and when the bitsum protocol is less optimized
for accuracy (i.e., RR and Pure vs. 3NB). The upshot is that the shuffled DP model, due its more
delicate interplay between communication, privacy and accuracy compared to the central DP and
non-DP settings, may require different and more error-resilient mechanisms for better downstream
performance, particularly under tighter privacy and communication constraints.

4.2 COMMUNICATION COST

The communication cost of our learning protocol depends on that of the bitsum protocol used within
it. Specifically, for both the Gaussian and IP kernels, the communication cost is as follows:

• With RR: each user sends exactly d messages.
• With 3NB: the number of messages sent by each user is a random variable (different per user),

with expectation (1 + o(1))d. (The o(1) term vanishes as either n or ε grows.)
• With Pure: the number of messages sent by each user is a random variable (different per user),

with expectation O(d2 log(n)/ε0).

With all three protocols, each message is of size ⌈log2(d)⌉+ 1 bits.

Figure 2 displays the empirical number of messages on each dataset, for RR (whose communication
is constant, as per above) and 3NB (whose communication is a random variable). Note while the
cost of 3NB is asymptotically near-similar to RR, in practice its cost can be a few times larger, which
may be significant in applications. Pure sends orders of magnitude more messages (as per above),
which may render it impractical in tight communication settings, and cannot fit on the same plots.

4.3 PRIVATE KDE RESULTS

We also directly evaluate Theorem 3.3 for the standalone task of private Gaussian KDE (without
subsequent classification). The results are shown in Figure 3, with accuracy measured over 1K
random queries from the query set of each dataset. They show that the KDE error generally tracks
with the downstream classification accuracy reported above, with 3NB being the most accurate
variant with error vanishing nearly as fast as central DP, followed by RR and Pure.
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Table 1: Private class decoding results with ε ≈ 3.2 and εlbl = 5

Dataset Class Bitsum Gaussian KDE class decoding IP KDE class decoding

DBPedia-14 Company
RR vendors, gencorp, servicers firesign, wnews, usos
3NB molycorp, newscorp, mediacorp companys, alicorp, interactivecorp
Pure ameritech, alicorp, newscorp alibabacom, oscorp, companies

Film
RR biopic, movie, screenplay kaptai, kakhi, kaloi
3NB filmography, vanya, ghostbusters movie, filmography, screenplay
Pure filme, movie, videodrome movie, film, filmmakers

AG news Sports
RR vizner, runnerups, dietrichson ongeri, grandi, zarate
3NB injury, semifinalists, finalists semifinalists, championship, standings
Pure pensford, rematches, undefeated chauci, teammates, nith

Business
RR repurchases, downtrend, equitywatch sneed, timesnews, anxiousness
3NB enrononline, investcorp, comcorp stockholders, nasdaq, marketwatchcom
Pure corporations, consolidations, consolidated merger, divestiture, stockholders

SST2 Negative
RR beguile, inception, shallow manipulating, uncouple, dissects
3NB melodrama, rawness, blandness comedy, tastelessness, uneasiness
Pure chumminess, meaningfulness, mootness absurdities, chastisement, absurdity

Positive
RR kindliness, pleasantness, entertaining enjoyments, academie, amusements
3NB salacious, movie, majestic salaciousness, theatricality, memorability
Pure spiritedness, spirited, perspicacious exorcisms, fairytales, revisiting

4.4 PRIVATE CLASS DECODING RESULTS

We perform class decoding, as described in Section 3.3, on the three textual datasets. As the public
vocabulary V we use GloVe 6B (Pennington et al., 2014), consisting of 400K words extracted from
public sources. Rather than using the embeddings from Pennington et al. (2014), we embed the
terms in Rd with the same pre-trained SentenceBERT model used to embed the datasets. Then,
for each class c ∈ [m] of each dataset, we rank all vocabulary terms according to their density as
reported by the function K̃c(·) privately learned by our shuffled KDE protocol for that class, and
report the top-3 scoring terms. We repeat this for every combination of kernel and bitsum protocol.

We make no attempt at quantifying a measure of class decoding performance, since semantic re-
latedness is inherently somewhat subjective, and may furthermore depend on external knowledge
(for example, when the “artist” or “athlete” classes are decoded into names of specific artists or
athletes). Rather, our goal in this experiment to is gain qualitative insight into what the shuffled DP
KDE protocol succeeds in learning, despite its lack of access to unprotected training examples, and
to complement the quantitative classification accuracy results.

Table 1 includes decoding results with ε ≈ 3.2 and εlbl = 5 (the ε values are slightly different across
the datasets and bitsum protocols, due to the use of different δ values and composition theorems, as
detailed earlier in this section). It only includes some classes from each dataset, due to space limits;
results for all classes, and for other values of ε, are in the appendix.

Qualitatively, in settings where classification accuracy is nontrivial (per Figure 1), the class decod-
ing results in Table 1 also yield vocabulary words that are aligned with the topic of the class. This
demonstrates that the class representations learned by shuffled DP KDE protocol capture the seman-
tic meaning of the classes, and preserve the ability to rank not only inter-class similarities (as needed
for classification), but also intra-class similarities (as needed for decoding a specific class).

5 CONCLUSION

We showed how to use shuffled DP for “one-shot” data collection and learning from an undeter-
mined pool of uncommitted end users, in contrast to prior work on ML with shuffled DP, which
mostly focused on collaborative distributed training across committed parties over time. Due to the
desirable accuracy of shuffled DP, our method is able to learn intricate data semantics while ad-
hering to a distributed notion of privacy. Our experimental results highlight practical downstream
considerations related to the delicate interplay between privacy, accuracy and communication cost.

Future work would explore further ways to deploy shuffled DP in ML pipelines, and extend to more
challenging settings, such as privately and continuously monitoring end user data over time.
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A PROOFS

A.1 PROOF OF THEOREM 3.2

We restate the theorem for convenience:
Theorem A.1 (Theorem 3.2, restated). Let k be a β-approximate (Q,R, S)-LSQable kernel (cf. Def-
inition 2.1). Suppose we have an unbiased (ε0, δ0)-DP bitsum protocol Π in the shuffled DP model,
with RMSE EΠ. Then, for every δ′ > 0 and integer I > 0, Algorithm 1 is a shuffled DP KDE
protocol, which is (ε, δ)-DP in the communication-threat model, where ε = ε0S(e

ε0S − 1)I +

ε0S
√

2I ln(1/δ′) and δ = ISδ0 + δ′, with supRMSE
√
4β2 + I−1 · 16R4S (S + (EΠ/n)2). The

protocol has optimal bit-width 1.

The proof proceeds in three steps: (i) discretize the LSQ coordinates of fi(x) locally at each user
from [−R,R] to {−R,R}, using randomized rounding to maintain the LSQ property; (ii) use the
bitsum protocol to estimate the sum of each discretized coordinate (with shifting and scaling to turn
bitsums into ±R-sums); (iii) use the LSQ property together with the RMSE bound of the given
bitsum protocol to bound the total error of any output KDE estimate.

A.1.1 DISCRETIZATION

We will index the users in the protocol by u = 1, . . . , n. Fix i ∈ [I]. Let (fi, gi) be the pair sampled
from Q in the global initialization step of Algorithm 1, and recall that fi, gi : Rd → [−R,R]Q.
Consider a user u ∈ [n] with input xu ∈ Rd. In the randomizer of Algorithm 1, for every j ∈ [Q],
the user samples bij ∼ Bernoulli((fi(xu)j + R)/2R) using private randomness, independently of
the other users and of the other coordinates. To refer to local samples of different users, in this proof
we will denote bij by b(u)ij .

Define f̄ (u)i ∈ {−R,R}Q by letting f̄ (u)ij = (2b
(u)
ij − 1)R for every j.

Claim A.2. For every i ∈ [I], u ∈ [n] and y ∈ Rd,∣∣∣E(fi,gi),{b(u)
ij }Q

j=1

[
(f̄

(u)
i )T gi(y)

]
− k(x, y)

∣∣∣ ≤ β,
where the expectation is over both the sampling of (fi, gi) ∼ Q in the global initialization part and
the sampling of {b(u)ij : j ∈ [Q]} in the randomizer part of Algorithm 1.

Proof. It is immediate to check that E
b
(u)
ij

[f̄
(u)
ij | fi] = fi(xu)j for every j, hence,

E
(fi,gi),{b(u)

ij }

[
(f̄

(u)
i )T gi(y)

]
= E(fi,gi)

[
E{b(u)

ij }

[
(f̄

(u)
i )T gi(y) | (fi, gi)

]]
= E(fi,gi)

[
fi(x)

T gi(y)
]
,

and the claim follows from the LSQ property (Definition 2.1).

A.1.2 INSTANCES OF THE BITSUM PROTOCOL

Fix (i, j) ∈ [I] × [Q]. Let F̄ij =
∑n

u=1 f̄
(u)
ij and Bij =

∑n
u=1 b

(u)
ij . The shuffled DP protocol

in Algorithm 1 executes an independent instance of the given shuffled DP bitsum protocol Π to
estimateBij , and this estimate is denoted by B̃ij in the analyzer in Algorithm 1. We will denote this
instance of Π by Πij . Recall that Π is an unbiased bitsum protocol and has RMSE EΠ. Since Bij

itself is a random variable determined by the sampling of (fi, gi) ∼ Q and on the local randomized
rounding by the users, conditioning on these, we have

EΠij
[B̃ij −Bij | (fi, gi), Bij ] = 0 and EΠij

[|B̃ij −Bij |2 | (fi, gi), Bij ] = E2Π.

The analyzer computes and publishes F̃ij = (2B̃ij − n)R. Considering this as an estimate of F̄ij ,
we denote

Eij := F̃ij − F̄ij .
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Claim A.3. {Eij | (fi, gi), Bij}i,j are independent random variables, and each satisfies

EΠij
[Eij | (fi, gi), Bij ] = 0 and EΠij

[
|Eij |2 | (fi, gi), Bij

]
= (2R · EΠ)2.

Proof. Probabilistic independence holds since we use independent randomness in the instance Πij

of Π for different pairs i, j. For the first and second moments, recall that f̄ (u)ij = (2b
(u)
ij − 1)R for

every user u, which implies F̄ij = (2Bij − n)R when summing over the users. Also recall from
above that F̃ij = (2B̃ij − n)R. Thus,

EΠij
[Eij | (fi, gi), Bij ] = EΠij

[
F̃ij − F̄ij | (fi, gi), Bij

]
= EΠij

[
(2B̃ij − n)R− (2Bij − n)R | (fi, gi), Bij

]
= 2R · EΠij

[
B̃ij −Bij | (fi, gi), Bij

]
= 0,

and

EΠij

[
|Eij |2 | (fi, gi), Bij

]
= EΠij

[∣∣∣F̃ij − F̄ij

∣∣∣2 | (fi, gi), Bij

]
= EΠij

[∣∣∣(2B̃ij − n)R− (2Bij − n)R
∣∣∣2 | (fi, gi), Bij

]
= (2R)2 · EΠij

[∣∣∣B̃ij −Bij

∣∣∣2 | (fi, gi), Bij

]
= (2R · EΠ)2.

A.1.3 BOUNDING THE SUPRMSE

To bound the supRMSE of Algorithm 1, fix y ∈ Rd. The KDE query part of the protocol uses the
analyzer’s published output to estimate KDEX(y) by 1

nI

∑I
i=1

∑Q
j=1 F̃ijgi(y)j . We now bound

the RMSE of this estimate. Substituting Eij := F̃ij − F̄ij , we have

E


∣∣∣∣∣∣KDEX(y)− 1

nI

I∑
i=1

Q∑
j=1

F̃ijgi(y)j

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣KDEX(y)− 1

nI

I∑
i=1

Q∑
j=1

F̄ijgi(y)j +
1

nI

I∑
i=1

Q∑
j=1

Eijgi(y)j

∣∣∣∣∣∣
2


≤ 2E


∣∣∣∣∣∣KDEX(y)− 1

nI

I∑
i=1

Q∑
j=1

F̄ijgi(y)j

∣∣∣∣∣∣
2
+ 2E


∣∣∣∣∣∣ 1nI

I∑
i=1

Q∑
j=1

Eijgi(y)j

∣∣∣∣∣∣
2
 . (2)

We handle the two summands in turn.
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A.1.4 FIRST SUMMAND: DISCRETIZED LSQ APPROXIMATION ERROR

For every i, let F̄i ∈ RQ denote the vector with coordinates F̄ij . Recalling that F̄ij =
∑n

u=1 f̄
(u)
ij ,

we have F̄i =
∑n

u=1 f̄
(u)
i . We can thus write,

E


∣∣∣∣∣∣KDEX(y)− 1

nI

I∑
i=1

Q∑
j=1

F̄ijgi(y)j

∣∣∣∣∣∣
2
 = E

∣∣∣∣∣KDEX(y)− 1

nI

I∑
i=1

F̄T
i gi(y)

∣∣∣∣∣
2


=
1

I2
E

∣∣∣∣∣
I∑

i=1

(
KDEX(y)− 1

n
F̄T
i gi(y)

)∣∣∣∣∣
2
 . (3)

Denote the random variables,

Zi := KDEX(y)− 1

n
F̄T
i gi(y),

and for every u ∈ [n],

Zi,u := k(xu, y)− (f̄
(u)
i )T gi(y).

Observe that Zi =
1
n

∑n
u=1 Zi,u, and that the rightmost side of Equation (3) is 1

I2E[|
∑I

i=1 Zi|2].
Due to the probabilistic independence of samples for different values i ∈ [I], we can expand this as

E

∣∣∣∣∣
I∑

i=1

Zi

∣∣∣∣∣
2
 =

∣∣∣∣∣∣
I∑

i=1

E[Z2
i ] +

I∑
i=1

∑
i′ ̸=i

E[Zi] · E[Zi′ ]

∣∣∣∣∣∣
≤

I∑
i=1

E[Z2
i ] +

I∑
i=1

∑
i′ ̸=i

|E[Zi]| · |E[Zi′ ]|. (4)

Claim A.4. For every i we have |E[Zi]| ≤ β and E[Z2
i ] ≤ (β + 2R2S)2.

Proof. For the first bound in the claim, observe that Claim A.2 can be rewritten as |E[Zi,u]| ≤ β for
every i, u. Since Zi =

1
n

∑n
u=1 Zi,u, we get |E[Zi]| ≤ 1

n

∑n
u=1 E|Zi,u| ≤ β.

For the second bound in the claim, recall that by Definition 2.1, for every supported function pair
(f, g) in the LSQ family Q, and every x, y ∈ Rd, we have that f(x) and g(y) have coordinates
in [−R,R], and have at most S non-zero coordinates each. Thus, |f(x)T g(y)| ≤ R2S. By re-
calling that f̄ (u)i was generated from fi(xu) by rounding its coordinates to {−R,R}, this implies
in particular that |(f̄ (u)i )T gi(y)| ≤ R2S for every u. Moreover, since by Definition 2.1 we have
|k(x, y) − E(f,g)∼Q[f(x)

T g(y)]| ≤ β, this also implies that |k(x, y)| ≤ R2S + β. Therefore,
unconditionally,

|Zi| ≤
1

n

n∑
u=1

|Zi,u|

=

n∑
u=1

∣∣∣k(xu, y)− (f̄
(u)
i )T gi(y)

∣∣∣
≤ 1

n

n∑
u=1

(
|k(xu, y)|+

∣∣∣(f̄ (u)i )T gi(y)
∣∣∣)

≤ β + 2R2S,

which implies in particular E[Z2
i ] ≤ (β + 2R2S)2.
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We now have,

E


∣∣∣∣∣∣KDEX(y)− 1

nI

I∑
i=1

Q∑
j=1

F̄ijgi(y)j

∣∣∣∣∣∣
2


=
1

I2
E

∣∣∣∣∣
I∑

i=1

(
KDEX(y)− 1

n
F̄T
i gi(y)

)∣∣∣∣∣
2
 Equation (3)

=
1

I2
E

∣∣∣∣∣
I∑

i=1

Zi

∣∣∣∣∣
2
 definition of Zi

≤ 1

I2

 I∑
i=1

E[Z2
i ] +

I∑
i=1

∑
i′ ̸=i

|E[Zi]| · |E[Zi′ ]|.

 Equation (4)

≤ 1

I2
(
I(β + 2R2S)2 + I(I − 1)β2

)
Claim A.4

≤ 8R4S2

I
+ 2β2.

This is our bound for the first summand in Equation (2).

A.1.5 SECOND SUMMAND: TOTAL BITSUM PROTOCOL ERROR

For i ∈ [I], let Yi be the random variable

Yi =

Q∑
j=1

Eijgi(y)j .

Note that the second summand in Equation (2) equals 2( 1
nI )

2E[(
∑I

i=1 Yi)
2].

By Claim A.3, {Eij | (fi, gi), Bij}i,j are independent random variables. Each Yi, when conditioned
on (fi, gi), {Bij}j∈[Q], is a linear combination of a subset of these random variables and the subsets
are disjoint for i ̸= i′, hence {Yi | (fi, gi), {Bij}j∈[Q]}i∈[I] are also independent random variables.
Furthermore, for every i ∈ [I] we have

E{Πij}j∈[Q]

[
Yi | (fi, gi), {Bij}j∈[Q]

]
= E{Πij}j∈[Q]

 Q∑
j=1

Eijgi(y)j | (fi, gi), {Bij}j∈[Q]


=

Q∑
j=1

gi(y)jEΠij
[Eij | (fi, gi), Bij ]

= 0,

and

E{Πij}j∈[Q]

[
Y 2
i | (fi, gi), {Bij}j∈[Q]

]
= E{Πij}j∈[Q]


 Q∑

j=1

Eijgi(y)j

2

| (fi, gi), {Bij}j∈[Q]


=

Q∑
j=1

(gi(y)j)
2EΠij

[
E2

ij | (fi, gi), Bij

]
=

Q∑
j=1

(gi(y)j)
2(2REΠ)2,
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having used EΠij
[Eij | (fi, gi), Bij ] = 0 and EΠij

[
|Eij |2 | (fi, gi), Bij

]
= (2R · EΠ)2 from

Claim A.3. Since by Definition 2.1 gi(y) has at most S non-zero entries and each is bounded in
absolute value by R,

E{Πij}j∈[Q]

[
|Yi|2 | (fi, gi), {Bij}j∈[Q]

]
≤ 4SR4 · E2Π.

Therefore,

E{Πij}i∈[I],j∈[Q]

( I∑
i=1

Yi

)2

| {(fi, gi), Bij}i∈[I],j∈[Q]


=

I∑
i=1

E{Πij}j∈[Q]

[
Y 2
i | (fi, gi), {Bij}j∈[Q]

]
≤ I · 4SR4 · E2Π.

Now we can bound the second summand in Equation (2) as

2

n2I2
E{(fi,gi),Bij ,Πij}i∈[I],j∈[Q]

( I∑
i=1

Yi

)2


=
2

n2I2
E{(fi,gi),Bij}i∈[I],j∈[Q]

E{Πij}i∈[I],j∈[Q]

( I∑
i=1

Yi

)2

| {(fi, gi), Bij}i∈[I],j∈[Q]


≤ 8SR4E2Π

n2I
.

A.1.6 FINISHING THE PROOF OF THEOREM 3.2

Accuracy: By putting together the bounds on both summands in Equation (2), we get that the RMSE

of estimating KDEX(y) is at most
√
4β2 + 16R4S

I

(
S +

E2
Π

n2

)
. Since this holds for every y ∈ Rd,

this is a bound on the supRMSE.

Privacy: for every i ∈ [I] and j ∈ [Q], let Oij denote the output of the shuffler in protocol instance
Πij . The fact that Πij is an instance of the (ε0, δ0)-DP protocol Π means (by the definition of the
shuffled DP model) that Oij is (ε0, δ0)-DP w.r.t. the collection of user inputs.

First, fix i ∈ [I]. Recall the sparsity property of LSQ (Definition 2.1), namely that each fi has at
most S non-zero entries per user. This means that if the input of one user is omitted from the dataset,
the inputs of at most S of the Q protocols {Πij}Qj=1 are changed. Since these protocol instances
use independent randomness, then by standard (“basic”) DP composition arguments (Dwork et al.,
2014), the collection {Oij}Qj=1 is (ε0S, δ0S)-DP. In other words, the protocol Ψi obtained by com-
posing the protocols {Πij}Qj=1 is (ε0S, δ0S)-DP in the shuffled model (see Cheu et al. (2019) for
the definition of protocol composition in the shuffled DP model).

Now, by “advanced” composition for shuffled DP protocols (Lemma 3.6 in Cheu et al. (2019)) over
the I protocols {Ψi}, we get that the collection of shuffler outputs {Oij : (i, j) ∈ [I] × [Q]} is
(ϵ, δ)-DP, with ϵ, δ as stated in Theorem 3.2. Since the analyzer in Algorithm 1 is a post-processing
of these shuffler outputs, the protocol in Algorithm 1 is (ϵ, δ)-DP in the shuffled model.

Efficiency: The computational parameters of Algorithm 1 is straightforward to calculate from those
of the bitsum protocol Π and the LSQ family Q: the global initialization samples I pairs (fi, gi)
from Q; each user evaluates fi(x) on her input x for every i; the users, the shuffler and the analyzer
perform IQ instances of Π, thus incurring IQ times its computational and communication cost; the
the final KDE evaluation part evaluates gi on the query y for every i ∈ [I].

A.1.7 VARIANTS OF THEOREM 3.2

The foregoing proof of Theorem 3.2 can be adapted in various ways to accommodate bitsum proto-
cols with different properties than those stated in the theorem. For example,
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Algorithm 2: Shuffled DP Gaussian KDE protocol, based on either RR or 3NB bitsum protocol

Global initialization // all data here is public
input: integer I > 0;
parameters for RR bitsum: pRR ∈ (0, 1);
parameters for 3NB bitsum: r, r′, p, p′ > 0

for i = 1, . . . , I do
// i.i.d. samples using shared/public

randomness:
ωi ∼ N(0, Id) // d-dim normal r.v.
βi ∼ Uniform[0, 2π)

publish: ωi and βi for all i

Randomizer // each user runs this locally with
private randomness

input: private data point x ∈ Rd

for i = 1, . . . , I do
φi ← cos(

√
2ωT

i x+ βi)
bi ∼ Bernoulli((1 + φi)/2)
if bitsum protocol is RR then

bi ← flip with probability pRR

send (bi, i) to the shuffler
if bitsum protocol is 3NB then

ψ1 ∼ NegativeBinomial(r, p)
ψ2 ∼ NegativeBinomial(r, p)
ψ3 ∼ NegativeBinomial(r′, p′)
for j = 1, . . . , bi + ψ1 + ψ3 do

send (1, i) to the shuffler
for j = 1, . . . , ψ2 + ψ3 do

send (−1, i) to the shuffler

Analyzer // runs after the shuffler; analyzer is
the same for both RR and 3NB bitsum
protocols

input: shuffled sequence of messages Γ̃
from n users

for i = 1, . . . , I do
B̃i ← 0

for message (γ, i) in Γ̃ do
B̃i ← B̃i + γ

for i = 1, . . . , I do
F̃i ← 2B̃i − n

publish: F̃i for all i

KDE Query // runs on the analyzer’s
published output arbitrarily many times

input: query point y ∈ Rd

return: 2
nI

∑I
i=1 F̃i · cos(

√
2ωT

i y + βi)

• If the accuracy guarantee of Π is given in terms of absolute error rather than RMSE (as in Cheu
et al. (2019)), the proof can be repeated with bounding the supremum absolute error of Algo-
rithm 1 instead of its supRMSE (this yields a very similar and somewhat simpler version of the
proof given above).

• If Π has a pure DP guarantee, the advanced composition step in the privacy analysis from Ap-
pendix A.1.6 can be replaced by standard pure composition, resulting in ε = ISε0 (compare this
to ε ∼

√
ISε0 in Theorem 3.2) and δ = 0. In the analogous instantiation of Theorem 3.3, the

lower bound on the error α changes from
√
log(1/δ)/(εn) to 1/

√
εn.

• If Π is not unbiased, the proof (specifically Appendix A.1.5) can be slightly modified to accom-
modate its bias, resulting in a corresponding term in the final supRMSE bound.

A.2 PROOF OF THEOREM 3.3

We restate Theorem 3.3 and prove it as a corollary of Theorem 3.2. The corresponding protocol for
Gaussian KDE is Algorithm 2 with the choice of 3NB as the bitsum protocol.4

Theorem A.5 (Theorem 3.3, restated). There are constants C,C ′ > 0 such that the following
holds. Let δ ∈ (0, 1) and ε ≤ C log(1/δ). For every α ≥ C ′

√
log(1/δ)/(εn), there is an (ε, δ)-DP

Gaussian KDE protocol in the shuffled DP model (under the communication-threat model) with n
users and inputs from Rd, which has: supRMSE α, user running time min(O(d/α2), Õ(d+1/α4)),
expected communication of Õ(1/α2) bits per user, expected analyzer running time O(n/α2), KDE
query time min(O(d/α2), Õ(d+ 1/α4)), and optimal bit-width 1.

4For completeness, Algorithm 2 also specifies how to use RR as the bitsum protocol. The flip probability
pRR should be set according to Lemma 4.8 in Chen et al. (2020a).
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Proof. Recall that the Gaussian kernel has an LSQ family with β = 0, Q = S = 1, R =
√
2 by

random Fourier features. For clarity, we mostly suppress constants in this proof. For the given ε, δ, α
in Theorem 3.3, we set the parameters in Theorem 3.2 as follows:

I = ⌈ 1
α2
⌉ ; ε0 =

ε√
I log(1/δ)

; δ0 =
δ

2I
; δ′ = δ/2.

Privacy: It can be easily checked that plugging the above setting of parameters into the composed
privacy parameters in Theorem 3.2 yields an (ε, δ)-DP guarantee in the shuffled model, provided
that the given bitsum protocol Π is (ε0, δ0)-DP.

To this end, we use the 3NB bitsum protocol from Ghazi et al. (2020b) as Π, since it has near-optimal
accuracy with low communication overhead. 3NB has four parameters r, r′, p, p′ (see Algorithm 2)
that Ghazi et al. (2020b) show how to set to ensure the protocol is (ε0, δ0)-DP in the shuffled model.
Namely, they prove that setting r = 1/n, p = e−0.99ε0 , r′ = 3(1 + log(2e0.99ε0/δ0)), p′ =
e−Θ(1)·ε0/(ε0+log(1/δ0)) guarantees 3NB is (O(ε0), O(δ0))-DP, and the constants can be scaled so it
is (ε0, δ0)-DP.

Accuracy: The 3NB protocol is unbiased and has RMSE Θ(1/ε0) = Θ(
√
log(1/δ)/(αε)). Plug-

ging this into the supRMSE in Theorem 3.2, we get supRMSE O
(√

α2(1 + log(1/δ)/(αεn)2)
)

in
Algorithm 2. By the bound on α in the statement of Theorem 3.3, this supRMSE is at most O(α),
and we can scale the constants to get supRMSE α.

Efficiency: We recall that in the 3NB protocol from Ghazi et al. (2020b), each user runs inO(1) time
and sends an expected nunber of 1 + o(1) messages of O(1) bits each, which the analyzer iterates
over in time O(n). Since we have I = O(1/α2) instances of this protocol, each message needs
to include O(log(1/α)) additional bits to identify which protocol instance it belongs to, yielding
O(log(1/α)/α2) expected bits of communication per user, and expected analyzer running time
O(n/α2).

Each user also needs to compute the inner product ωT
i x for every i ∈ [I]. Similarly, the KDE query

algorithm needs to compute ωT
i y for every i ∈ [I]. This takes time O(d) per inner product, for a

total of O(dI) = O(d/α2) time. If d≫ 1/α2, this time bound can be improved by using the faster
preprocessing result of Backurs et al. (2024), who showed that one can first do a random projection
of x (for each user input x) and y (for each KDE query y) onto O(log2(1/α)/α2) dimensions, and
thus only distort the final DP KDE error up to a multiplicative constant (that can again be scaled).
As shown by Backurs et al. (2024), the random projection can be done in time Õ(d+ 1/α2) by the
fast Johnson-Lindenstrauss transform (Ailon & Chazelle, 2009), and then each of the I = O(1/α2)

inner products takes time Õ(1/α2), for a total of Õ(d+1/α4) time per user and per KDE query.

A.3 INNER PRODUCT LSQ

The inner product kernel k(x, y) = xT y is trivially (d, 1, d)-LSQable for unit length embeddings, by
letting the LSQ family include a single pair of functions (f, g) such that both are the identity over Rd.
We now observe it is also (1,

√
d, 1)-LSQable. This allows better control over the privacy parameters

and computational cost of the protocol in Theorem 3.2, since they depend on the parameters S and
Q (respectively) of the (Q,R, S)-LSQ family.

To sample a pair (f, g) ∼ Q, we sample a vector (σ1, . . . , σd) ∈ {−1, 1}d of i.i.d. uniformly random
signs, and let both f and g be the function Rd → R that maps x = (x1, . . . , xi) to

∑d
i=1 σixi. It

is straightforward to check that E[f(x)T g(y)] = xT y for every x, y ∈ Rd. To determine the upper
bound R on the only coordinate of f(x), we observe, |f(x)| = |

∑d
i=1 σixi| ≤ ∥x∥1 ≤

√
d∥x∥2 =√

d, since x is unit length (in Euclidean norm).
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B MORE ON SHUFFLED DP SUMMATION

B.1 BITSUM PROTOCOLS

In this section we describe some common techniques behind shuffled DP bitsum protocols, including
the ones we use in our experiments (RR, 3NB and Pure).

One bitsum protocol is the classical randomized response (RR) (Warner, 1965): each user i locally
flips her bit bi with some probability, and sends the resulting bit to the shuffler. The analyzer received
the anonymized received bits from the shuffler, and simply releases their sum. While originally
introduced for local DP, Cheu et al. (2019) showed that in the shuffled DP model, the flip probability
can be significantly smaller, leading to much better accuracy.

Another popular technique for shuffled DP bitsums, which is the one underlying 3NB and Pure, is
noise divisibility (Goryczka & Xiong, 2015; Balle et al., 2019b; 2020a; Ghazi et al., 2020b;a; 2021b;
Kairouz et al., 2021a). Each user i locally adds noise νi, sampled from a distribution carefully chosen
so that the aggregate noise

∑
i νi from all users, after shuffling, is distributed in a way that ensures

central DP. Thus, the shuffled DP protocol simulates central DP, by having each user contribute a
piece of the total “divisible” requisite noise.

To be concrete, we describe the single-distribution protocol from Ghazi et al. (2020b). In this pro-
tocol, each user i samples a non-negative integer noise random variable νi, and sends to the shuffler
a stream of bi + νi identical content-less messages (where bi is user i’s private bit). The analyzer
receives the unified streams of messages from all users after shuffling. Since the messages are iden-
tical and are now stripped of both content and sender identities, the only information they convey
is their count

∑
i(bi + νi), which is released as the bitsum estimate. This equals the true bitsum∑

i bi plus a total noise of
∑

i νi. Thus, to ensure shuffled DP, it suffices for the νis to be such that
their sum

∑
i νi is distributed in a way that ensures central DP for

∑
i bi. Ghazi et al. (2020b) show

this can be achieved by either a Poisson or a negative binomial distribution. The 3NB and Pure
bitsum protocols are more involved applications of this basic technique, designed to achieve better
accuracy, lower communication cost, and (in the case of Pure) a pure DP guarantee.

B.2 BITSUMS VS. REAL SUMS

As mentioned in Section 2.4, there is also ample work on shuffled DP protocol for real number
summation (abbrev. realsum), where each user holds an input number in a bounded range (say,
[−1, 1]). In this appendix we expand on the choice to base our approach on bitsum rather than
realsum protocols. The answer has two parts: (1) why there is little potential gain in real summation,
(2) why there is substantial advatnage in bit summation.

Little gain in realsums. Ostensibly, Algorithm 1 and Theorem 3.2 could have used realsum in-
stead of bitsum protocols, obviating the need to discretizate the LSQ coordinates with randomized
rounding. When summing ℓ real numbers in [−1, 1], discretization with randomized rounding gen-
erally leads to a Hoeffding-like error of order

√
ℓ, which our protocol incurs. There are parameter

regimes where shuffled DP realsum protocols are more accurate than bitsum protocols, avoiding this
Hoeffding-like error, and thus it may seem like an avenue to improve Theorem 3.2.

However, this is in fact not the case. In our protocol, summation serves as a subroutine. The true sum
is not the target quantity; rather, the true sum is a random variable (sampled according to the LSQ
family), which only approximates the target quantity against which error is measured (the true KDE).
This LSQ approximation already incurs the Hoeffding-like error (it is “built-into” LSQ). Thus, if the
discretized bitsums were to be replaced with a shuffled DP realsum protocol, the final KDE error
would still be dominated by the Hoeffding-like error, and any improvement would be restricted to
low-order terms. Improving the final KDE error asymptotically, if this is indeed possible, would
require a different approach than LSQ to private KDE, and we are currently not aware of a way to
improve the KDE error in the shuffled DP model.

Advangate of bitsums. At the same time, discretization has its own important advantages in shuffled
DP and distributed learning. This was discussed in Section 3.1. To recap, in practical applications
of shuffled DP, numerical values need to be discretized, and their bit-width bounded, in order to
properly control their accuracy and communication cost. This was among the main motivations of
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Kairouz et al. (2021a) in developing their Distributed Discrete Gaussian (DDG) protocol for shuffled
DP realsum, rather than using prior protocols for this task. The DDG facilitates bounding the bit-
width (though it is not as low as 1), and its error analysis accounts for discretization errors. Our
approach, which does not need to solve generic real summation, but only the specific case of KDE,
attains the optimal bit-width of 1 by using binary discretization followed by bit summation, and our
error analysis too accounts for the discretization error.

C FULL EXPERIMENTAL RESULTS

Ablation: Local DP. Figure 4 displays a comparison of our shuffled DP method with local DP.
The local DP baseline is obtained by taking our private KDE protocol (Theorem 3.2), and replacing
the shuffled DP bitsum with classical randomized response, which satisfies local DP. For the most
direct comparison, the local DP plots are displayed compared to the RR plots (i.e., the leftmost
column) in Figure 1.

We recall that the difference between the methods is that in classical local DP RR (the dashed lines
in the plot) (Warner, 1965), each user locally flips her bit with probability that depends on the desired
privacy parameter ε, but is independent of the overall number of user in the protocol (local DP RR
makes no assumptions on other participating users). In contrast, in shuffled DP RR (the solid plots)
(Cheu et al., 2019), each user flips her bit with probability that depends both on ε and on the total
number of participating user n; the larger n is, the smaller the flip probability needs to be, since
in shuffled DP, the user assumes her bit would also be anonymized and “hidden” among the bits
received from the other n− 1 users.

The results in Figure 4 show that as expected, shuffled DP attains considerably higher downstream
accuracy than local DP.

Ablation: Effect of εlbl. Tables 2 to 5 show the effect of varying εlbl on various settings on the
four datasets, respectively.

Additional parameter settings. Figures 5 to 8 display private classification accuracy results for
εlbl = 10, 7, 5, 3 respectively (Figure 7 repeats Figure 1 from the main paper for convenience).

Tables 6 to 8 present private class decoding results with εlbl = 5 and ε ≈ 5.7, 4.4, 3.2 respectively
(Table 8 is the full version of Table 1 from the main paper).

Figure 4: Classification accuracy comparison with a local DP baseline (overlaid on the shuffled DP
RR plots with εlbl = 5, from the leftmost column in Figure 1).
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Table 2: Effect of εlbl on accuracy, DBPedia-14.

% Classification accuracy (±std) with εlbl:

Kernel Bitsum ε ∞ 7 5 3 1

Gaussian

RR 2 75.5±1.1 76.1±1.8 73.6±1.1 57.1±2.6 15.2±1.0

RR 4.5 79.7±1.3 79.3±1.9 76.1±0.9 61.9±2.5 15.9±0.7

RR 7 79.5±1.5 79.1±0.8 77.4±1.7 63.6±1.5 17.6±0.7

3NB 2 79.2±1.6 79.6±1.6 79.4±0.8 65.0±1.0 15.8±1.0

3NB 4.5 80.3±1.5 78.4±0.9 76.9±1.1 64.7±1.3 15.9±1.4

3NB 7 80.0±0.8 79.1±1.0 77.5±0.8 65.2±2.1 17.0±1.9

IP

RR 2 27.0±0.8 27.3±4.9 23.0±1.8 15.4±1.8 7.8±1.2

RR 4.5 50.5±3.5 51.3±1.6 46.2±3.1 30.0±2.8 10.7±2.0

RR 7 65.4±2.1 66.7±2.0 63.0±1.6 45.2±3.3 12.0±1.8

3NB 2 92.7±0.1 92.8±0.2 92.5±0.2 91.0±0.4 58.9±1.4

3NB 4.5 93.1±0.1 93.1±0.0 93.1±0.1 92.5±0.3 72.2±1.2

3NB 7 93.1±0.2 93.1±0.2 93.1±0.1 92.6±0.2 72.9±1.7

Table 3: Effect of εlbl on accuracy, AG News.

% Classification accuracy (±std) with εlbl:

Kernel Bitsum ε ∞ 7 5 3 1

Gaussian

RR 2 60.5±3.6 60.4±2.4 61.7±0.8 57.2±2.4 36.3±2.2

RR 4.5 66.8±1.1 66.7±1.7 66.8±1.4 61.8±2.8 37.1±1.0

RR 7 67.7±0.8 67.9±1.6 67.9±1.4 62.9±2.7 40.7±1.6

3NB 2 68.2±1.2 69.5±1.4 67.0±1.0 63.4±2.3 41.7±0.9

3NB 4.5 68.7±1.1 69.1±1.2 68.5±1.1 63.3±2.5 41.0±2.6

3NB 7 67.8±2.2 68.2±0.7 68.7±1.3 62.8±1.7 40.5±2.0

IP

RR 2 30.3±5.8 33.5±1.7 35.7±2.7 31.1±2.0 25.4±3.0

RR 4.5 45.5±3.7 41.4±6.1 42.2±7.6 43.6±4.6 28.9±6.0

RR 7 50.5±3.7 48.8±4.8 50.9±4.4 41.9±3.9 31.5±3.3

3NB 2 84.9±0.1 84.9±0.3 85.0±0.5 84.1±0.8 73.9±1.5

3NB 4.5 85.9±0.4 85.9±0.4 85.6±0.3 85.6±0.2 79.5±1.6

3NB 7 86.2±0.2 86.1±0.2 85.9±0.3 85.9±0.3 79.9±1.4
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Table 4: Effect of εlbl on accuracy, SST2.

% Classification accuracy (±std) with εlbl:

Kernel Bitsum ε ∞ 7 5 3 1

Gaussian

RR 2 68.2±2.9 66.7±3.3 69.0±2.8 69.1±1.7 61.2±3.7

RR 4.5 70.0±4.0 72.8±1.8 70.3±2.6 71.4±2.7 57.9±4.9

RR 7 73.1±1.3 74.3±2.5 72.9±3.2 72.1±1.2 61.9±1.8

3NB 2 72.6±1.1 71.8±4.1 71.1±2.7 70.8±2.9 64.6±2.4

3NB 4.5 71.5±3.7 74.1±2.0 72.2±1.0 71.5±2.2 61.1±4.6

3NB 7 70.0±4.8 70.9±1.7 72.7±2.8 71.1±3.3 63.6±2.4

IP

RR 2 27.0±0.8 27.3±4.9 23.0±1.8 15.4±1.8 7.8±1.2

RR 4.5 50.5±3.5 51.3±1.6 46.2±3.1 30.0±2.8 10.7±2.0

RR 7 65.4±2.1 66.7±2.0 63.0±1.6 45.2±3.3 12.0±1.8

3NB 2 92.7±0.1 92.8±0.2 92.5±0.2 91.0±0.4 58.9±1.4

3NB 4.5 93.1±0.1 93.1±0.0 93.1±0.1 92.5±0.3 72.2±1.2

3NB 7 93.1±0.2 93.1±0.2 93.1±0.1 92.6±0.2 72.9±1.7

Table 5: Effect of εlbl on accuracy, CIFAR-10

% Classification accuracy (±std) with εlbl:

Kernel Bitsum ε ∞ 7 5 3 1

Gaussian

RR 1.5 24.1±1.8 21.6±1.6 21.4±1.6 16.9±2.4 11.6±0.6

RR 3 34.8±3.7 34.0±2.4 36.1±2.2 27.5±0.9 11.3±1.2

RR 4.7 46.7±0.2 45.2±2.1 44.3±4.0 36.8±2.0 16.7±1.3

3NB 1.5 73.4±1.0 71.3±2.0 72.9±1.6 67.8±1.3 39.3±5.4

3NB 3 73.1±0.9 72.2±1.5 71.9±2.2 67.7±1.2 42.8±3.5

3NB 4.7 71.5±1.7 73.3±1.6 72.8±1.6 70.4±1.3 40.8±4.1

IP

RR 1.5 11.4±1.6 10.7±1.4 10.6±2.1 12.0±1.6 10.3±2.0

RR 3 11.1±2.6 9.1±2.0 10.6±1.9 9.3±1.3 10.0±1.8

RR 4.7 12.0±1.7 8.6±1.8 10.7±1.8 8.7±1.8 9.8±1.5

3NB 1.5 18.8±3.3 19.6±0.9 17.9±3.8 13.8±4.2 12.3±3.0

3NB 3 30.4±4.0 28.7±2.4 26.6±5.1 24.4±2.2 12.2±2.1

3NB 4.7 36.8±7.8 37.1±5.9 37.8±2.8 25.3±3.6 13.2±3.8
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Figure 5: Classification results with εlbl = 10
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Figure 6: Classification results with εlbl = 7
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Figure 7: Classification results with εlbl = 5 (this is a copy of Figure 1 for convenience)
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Figure 8: Classification results with εlbl = 3
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Table 6: Private class decoding results with εlbl = 5 and ε ≈ 5.7

Dataset Class Bitsum Gaussian KDE class decoding IP KDE class decoding

DBPedia-14

Company
RR seacorp, gencorp, southcorp xuande, xinmi, xue
3NB europacorp, telekomunikasi, southcorp companys, railcorp, interactivecorp
Pure storebrand, railcorp, onbancorp companys, companies, nokiacorp

Artist
RR mandolinist, bosacki, cofounder ricketson, attributor, vijayendra
3NB author, novelist, writer author, musician, biographically
Pure raymonde, bertogliati, bonifassi author, roberthoudin, musician

Office
holder

RR legislator, politician, mulroney cabinetmaker, chatham, provost
3NB ministerpresident, legislator, pastpresident ministerpresident, legislator, congressperson
Pure legislator, reelections, senatorial ministerpresident, governorsgeneral, legislator

Building
RR proctorville, connellsville, fargomoorhead friedrichwilhelmsuniversitt, nordwestmecklen-

burg, brandenburgbayreuth
3NB galehouse, hyannisport, beaconhouse churchville, reisterstown, jeffersontown
Pure headquarters, northcote, northvale holyroodhouse, reisterstown, beaconhouse

Village
RR szewczenko, przodkowo, wodiczko manasse, jeram, esfahan
3NB khuzistan, wojciechowice, szczawnica khairabad, kyrghyzstan, kishanganj
Pure kleveland, kurdamir, diyarbakirspor kyrghyzstan, khairabad, yusefabad

Plant
RR araucariaceae, rubiaceae, araceae succulents, cunoniaceae, chaetophoraceae
3NB celastraceae, rubiaceae, cactaceae chenopodiaceae, chaetophoraceae, araucari-

aceae
Pure sapindaceae, violaceae, chenopodiaceae chenopodiaceae, loranthaceae, gesneriaceae

Film
RR screenplay, movie, filmore dishonoring, dishonor, inglorious
3NB toyland, musketeers, imdb movie, screenplay, biopic
Pure screenplay, casablanca, filmmakers movie, sicario, screenplay

Educational
institution

RR schoolcollege, secondaryschool, boardingschool humboldtuniversitt, everetts, aleksandrw
3NB bryancollege, boardingschool, schoolship schoolcollege, boardingschool, polytechnic
Pure boardingschool, publicschool, allschool schoolcollege, boardingschool, polytechnic

Athlete
RR ajanovic, jovanovski, miloevi bohuslav, denverbased, petersen
3NB sportsperson, gillenwater, khairuddin sportsperson, footballer, handballer
Pure alifirenko, kovalenko, ilyushenko laliashvili, jamalullail, footballer

Mean
of
transport

RR warship, troopships, aircrafts curtisswright, veteran, pilotless
3NB fleetness, warship, shipmasters warship, frigate, torpedoboat
Pure warship, battleships, sailed warship, landcruiser, torpedoboat

Natural
place

RR beringen, freshwater, merideth bernardini, intermountain, varangians
3NB villeurbanne, riverina, curwensville river, danube, rivermaya
Pure fergushill, danube, waldenburg floodplain, river, rivermaya

Animal
RR coraciidae, caeciliidae, cicadellidae columbellidae, marginellidae, caractacus
3NB carangidae, fasciolariidae, scolopacidae leiothrichidae, marginellidae, phasianellidae
Pure coccinellidae, coraciidae, cardinalidae dendrobatidae, margaritidae, catostomidae

Album
RR discography, vocals, stereophonics album, korn, groupie
3NB album, instrumentals, tracklist album, discography, tracklist
Pure discography, pledgemusic, vocals album, discography, allmusic

Written
work

RR biographies, storybook, author booksurge, huilai, huizhou
3NB bibliography, biographies, autobiography nonfiction, author, biographies
Pure wittgenstein, werman, fangoria nonfiction, author, bibliography

AG news Sports
RR winningest, standings, playoff mccolm, mccartt, inconclusive
3NB huels, kurkjian, darrington playoff, championship, standings
Pure gallardo, unfit, basketball playoff, postseason, runsgriffey

Business
RR theba, buybacks, kulikowski surcharging, nonhazardous, surcharges
3NB retrials, clawbacks, revaluation nasdaq, enron, divestitures
Pure nasdaq, exxonmobil, exxon nasdaq, divestitures, nyse

World
RR terrorist, bombings, ilghazi ppas, atpranking, deng
3NB hostages, baghdadi, nabaa terrorists, militants, qaeda
Pure qaeda, iraqstld, antifur qaeda, ceasefire, intifadas

Sci/Tech
RR ibm, loango, launchpads ough, iebc, oul
3NB microsoft, viacom, protv microsoft, ibm, lucenttech
Pure edgeware, proximity, shareware ibm, infotrends, suntec

SST2 Negative
RR overstating, dreadful, awfulness gameplay, tactics, underplaying
3NB derailments, vagueness, breakage blandness, dramaturgy, comedy
Pure perversities, sentimentalism, overthinking tragedy, blandness, melodrama

Positive
RR fervor, phenomenom, pageantry embeddable, imbedding, embed
3NB cinema, screenplays, films evocative, salaciousness, theatricality
Pure majestically, dramatization, shrewdness memorability, evocative, masterpieces
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Table 7: Private class decoding results with εlbl = 5 and ε ≈ 4.4

Dataset Class Bitsum Gaussian KDE class decoding IP KDE class decoding

DBPedia-14

Company
RR companys, manufacturera, comcorp airgroup, aerosystems, bluepoint
3NB manufactories, subsidiaries, originators companys, railcorp, baycorp
Pure railcorp, companys, comapny companys, companies, manufactories

Artist
RR singer, musician, ewan marxer, auditioner, surinder
3NB balladeer, musician, artiste author, musician, novelist
Pure author, artist, composers author, biographically, musician

Office
holder

RR mcclelland, mclellan, dreiberg janetta, janette, jadakiss
3NB representant, representan, representantes legislator, ministerpresident, congressperson
Pure bashiruddin, ministerpresident, lazarescu politician, ministerpresident, liberhan

Building
RR woodville, marksville, douglassville poteet, hocutt, chestnutt
3NB stationhouse, randallstown, dovercourt churchville, chapeltown, beaconhouse
Pure headquarter, hyattsville, weaverville holyroodhouse, fenchurch, charleswood

Village
RR krakowiak, krzynowoga, lubliniec kieslowski, radiolocation, blenkiron
3NB kyrghyzstan, khazakstan, diyarbakir kyrghyzstan, khairabad, khuzistan
Pure taleyarkhan, voivodeship, mieszkowice khuzestan, kyrghyzstan, diyarbakir

Plant
RR saxifragaceae, loranthaceae, sapotaceae lauraceae, loganiaceae, annonaceae
3NB orobanchaceae, mycenaceae, bromeliaceae chenopodiaceae, araucariaceae, loranthaceae
Pure chenopodiaceae, podocarpaceae, cactaceae cupressaceae, rubiaceae, chaetophoraceae

Film
RR biopic, imdb, screenplay dollywood, isoroku, rakotomanana
3NB biopic, movie, silmarillion movie, screenplay, biopic
Pure biopic, cinemax, films movie, sicario, biopic

Educational
institution

RR ucda, madrassa, polytechnic write, reflectometry, chathams
3NB schoolcollege, polytechnic, fachhochschule schoolcollege, boardingschool, polytechnic
Pure eduniversal, universits, universitat schoolcollege, boardingschool, publicschool

Athlete
RR borgne, romanowski, brzezinski sobolewski, khatemi, wlosowicz
3NB laliashvili, gianluigi, pirlo sportsperson, handballer, ivanovic
Pure pejaevi, milanovic, tomashova konashenkov, laliashvili, kalynychenko

Mean
of
transport

RR battleships, navymarine, landcruiser pinezhsky, pisetsky, ilyinsky
3NB spitfires, troopships, maersk warship, landcruiser, frigate
Pure warship, frigate, torpedo warship, frigate, landcruiser

Natural
place

RR krauchanka, gaucelm, kotonowaka halethorpe, mapplethorpe, chloropaschia
3NB danube, tributary, vilfredo river, rivermaya, rivervale
Pure soligorsk, vassilakis, nordgau floodplain, danube, river

Animal
RR coraciidae, glareolidae, phyllostomidae mollusc, motacillidae, molluscan
3NB paludomidae, acrolepiidae, discodorididae leiothrichidae, marginellidae, catostomidae
Pure marginellidae, riodinidae, orthogoniinae mantellidae, catostomidae, coraciidae

Album
RR album, vanilli, europop melancholy, poetica, majra
3NB allmusic, remixes, remixed album, discography, allmusic
Pure housemusic, tracklist, musicology album, discography, tracklist

Written
work

RR booknotes, pulitzerprize, apocryphally terrors, sarkies, dementyeva
3NB novelistic, magazine, novelist nonfiction, author, novelist
Pure authorites, novelette, novelist nonfiction, bibliography, author

AG news Sports
RR lose, playoff, sportschannel eddard, frankenfish, paeonian
3NB cbssportscom, hof, injuries playoff, semifinalists, championship
Pure byrd, garvin, deq injury, guardino, tiedown

Business
RR gencorp, walkout, comstock citywest, epson, arkwright
3NB opec, sirri, toyota nasdaq, stockholders, divestitures
Pure nonactors, goldcorp, archconfraternity outbids, stockpiling, outselling

World
RR collusion, dahle, kejie yawner, oswalt, russ
3NB islamiah, taliban, hurghada hamas, qaeda, taliban
Pure bomb, nomination, warmongering baghdadi, occupiers, militants

Sci/Tech
RR baidu, microsoft, tencent multicamera, intercambio, videoconferences
3NB ibm, httpwwwdaimlerchryslercom, computer-

ware
microsoft, ibm, lucenttech

Pure infotrends, ati, infogear redesigns, ibm, lucenttech

SST2 Negative
RR portrayal, dreariness, bleakness repeated, twicetobeat, ringed
3NB murkiness, unexciting, vapidity comedy, dramaturgy, dramaturgical
Pure dramaturgy, portrayals, dramatising unpleasantries, unpleasantness, deadness

Positive
RR reworded, comedies, critiques rastignac, ruderman, gritschuk
3NB memorability, rausing, miserables masterpieces, salaciousness, evocative
Pure intiative, artistical, screenplays vividness, evocative, presence
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Table 8: Private class decoding results with εlbl = 5 and ε ≈ 3.2 (full version of Table 1)

Dataset Class Bitsum Gaussian KDE class decoding IP KDE class decoding

DBPedia-14

Company
RR vendors, gencorp, servicers firesign, wnews, usos
3NB molycorp, newscorp, mediacorp companys, alicorp, interactivecorp
Pure ameritech, alicorp, newscorp alibabacom, oscorp, companies

Artist
RR author, aristizabal, levesongower catalani, macki, bacashihua
3NB artist, lyricists, musician author, musician, roberthoudin
Pure author, originator, mikhaylovsky musician, artist, jacquesfranois

Office
holder

RR louislegrand, legislator, lawmaker sulphide, exclude, sulked
3NB patiashvili, kumaritashvili, biographers ministerpresident, legislator, congressperson
Pure polinard, bobrzaski, politician ministerpresident, politician, polian

Building
RR reisterstown, benenson, hellertown opened, mastered, poegaslavonia
3NB frenchtown, brookeville, kenansville beaconhouse, manorville, reisterstown
Pure huntingtonwhiteley, wrightstown, randallstown hyattsville, roxboro, reisterstown

Village
RR lalganj, balrampur, manikganj baluchestan, jagiellonia, nidderdale
3NB pazardzhik, tzintzuntzan, khuzistan kyrghyzstan, kalinske, kalinski
Pure poniewozik, mieszkowice, czerniewice kazemabad, diyarbakir, khoramabad

Plant
RR chaetophoraceae, gentianaceae, rutaceae chilensis, surinamensis, tampines
3NB cupressaceae, chaetophoraceae, podocarpaceae chenopodiaceae, araucariaceae, loranthaceae
Pure asclepiadaceae, cupressaceae, gentianaceae chaetophoraceae, chenopodiaceae, araucari-

aceae

Film
RR biopic, movie, screenplay kaptai, kakhi, kaloi
3NB filmography, vanya, ghostbusters movie, filmography, screenplay
Pure filme, movie, videodrome movie, film, filmmakers

Educational
institution

RR schoolcollege, boardingschool, allschool eastern, marykane, kbe
3NB boardingschool, schoolcollege, publicschool schoolcollege, boardingschool, polytechnic
Pure schoolcollege, polytechnic, qschool schoolcollege, publicschool, boardingschool

Athlete
RR kovaleski, kaessmann, miroshnichenko torstensson, torstenson, torlakson
3NB fabianski, tarnowski, bochenski sportsperson, laliashvili, konashenkov
Pure rightfielder, leftfielder, konashenkov lukasiewicz, sportsperson, marcinkiewicz

Mean
of
transport

RR warship, frigate, steamships latrodectus, laax, herx
3NB landcruiser, warship, landships warship, frigate, landcruiser
Pure battlecruiser, warship, hmso warship, landcruiser, connaught

Natural
place

RR tributary, riverina, river bimota, miercoles, mientras
3NB langenlonsheim, nordwestmecklenburg, schwe-

infurt
rivermaya, river, danube

Pure riverbeds, azkoitia, zaporozhian lakernotes, river, riverina

Animal
RR carangidae, caeciliidae, arctiidae taricani, tardio, kambona
3NB leiothrichidae, coleoptera, acrolepiidae marginellidae, limoniidae, catostomidae
Pure coraciidae, poeciliidae, acrolepiidae caeciliidae, heliozelidae, lasiocampidae

Album
RR discography, sevenfold, album roadster, approximant, pantocrator
3NB discography, album, allmusic album, discography, allmusic
Pure discography, album, allmusic album, decemberists, song

Written
work

RR nonfiction, encyclopedia, nonfictional sociolinguist, becc, sociolegal
3NB author, magazine, novelist nonfiction, author, biographies
Pure reganbooks, novelettes, fourbook synopsis, nonfiction, biographies

AG news Sports
RR vizner, runnerups, dietrichson ongeri, grandi, zarate
3NB injury, semifinalists, finalists semifinalists, championship, standings
Pure pensford, rematches, undefeated chauci, teammates, nith

Business
RR repurchases, downtrend, equitywatch sneed, timesnews, anxiousness
3NB enrononline, investcorp, comcorp stockholders, nasdaq, marketwatchcom
Pure corporations, consolidations, consolidated merger, divestiture, stockholders

World
RR iraqi, hamas, darfur tym, asg, tyo
3NB hezbollah, hamas, iraqstld hamas, terrorists, baghdadi
Pure kutayev, qaeda, yanukovych shamkir, barricading, samaritans

Sci/Tech
RR snopes, cyberworks, hacktivists meanings, collegefootballnewscom, multipolar-

ity
3NB ibm, thermedics, flextech microsoft, ibm, accenture
Pure feedbacks, companywide, eurogroup movedtech, techcrunch, swindlers

SST2 Negative
RR beguile, inception, shallow manipulating, uncouple, dissects
3NB melodrama, rawness, blandness comedy, tastelessness, uneasiness
Pure chumminess, meaningfulness, mootness absurdities, chastisement, absurdity

Positive
RR kindliness, pleasantness, entertaining enjoyments, academie, amusements
3NB salacious, movie, majestic salaciousness, theatricality, memorability
Pure spiritedness, spirited, perspicacious exorcisms, fairytales, revisiting
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