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Using zigzag persistence, we can capture topological changes in the state space of
the dynamical system caused by a Hopf bifurcation in only one persistence diagram.
Here, we present Bifurcations using ZigZag (BuZZ), a one-step method to study and
detect bifurcations using zigzag persistence.

Time Delay Embedding

Given a time series, [x1, . . . , xn], a choice of dimension d and lag τ , the delay embedding
is the point cloud, {xi := (xi, xi+τ , . . . , xi+(d−1)τ)} ⊂ Rd.

Zigzag Persistent Homology

Standard persistent homology requires a collection of simplicial complexes with inclu-
sions, K1 ↪→ K2 ↪→ · · · ↪→ Kn. Zigzag persistent homology is a generalization of
standard persistent homology where the inclusion maps can go in either direction. Specif-
ically, we consider a sequence of point clouds and their unions.

•Persistence points indicate features that are
homologically equivalent through the zigzag
•Coordinates of the points indicate the index
of the point cloud where a feature appears
and disappears

Paper: https://bit.ly/33s4CXt
Code: https://github.com/sarahtymochko/BuZZ

Example: Sel’kov Model

The Sel’kov model is a model for glycolysis, a process of breaking down sugar for energy.
This model is defined by the system of differential equations,

dx

dt
= −x + ay + x2y

dy

dt
= b− ay − x2y.

Can we detect for which values of b there is a Hopf bifurcation in the Sel’kov model for
glycolysis?

•Fix a = 0.1 and vary b ∈ {0.35, 0.4, . . . , 0.9}
•Generate time series corresponding to x-coordinates and compute the time delay
embeddings

•Applying our method, we get a 1-dimensional
persistence point (2, 8.5) which corresponds
to 0.45 ≤ b ≤ 0.75
•The Sel’kov model has a Hopf bifurcation
between the parameter values 0.4 ≤ b ≤ 0.8,
so our method is picking up approximately
that range.
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