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Abstract

In this work, we study the active sequential hypothesis testing problem, also known
as pure exploration, where the goal is to actively control a data collection process
to efficiently identify the correct hypothesis underlying a decision problem. While
relevant across multiple domains, devising adaptive exploration strategies remains
challenging, particularly due to difficulties in encoding appropriate inductive biases.
To address these limitations, we introduce In-Context Pure Exploration (ICPE), an
in-context learning approach that uses Transformers to learn exploration strategies
directly from experience. Numerical results across diverse benchmarks highlight
ICPE’s capability to achieve satisfactory performance in stochastic and structured
settings, demonstrating its ability to meta-learn exploration strategies.

1 Introduction

Modern artificial intelligence systems have achieved remarkable performance across specialized tasks
such as image classification [35], Super-human board-game play [60], protein-structure prediction
[30] and large-scale language modelling [10]. Yet, there is still a lack in understanding how to
autonomously discover meta-skills fundamental for sequential decision making, such as active testing
or active learning [14, 15].

Consider an agent tasked with sequentially selecting samples to quickly improve its understanding
of an underlying phenomenon. When the decision maker can exert some control over the collected
samples’ information content, this is a problem also known as the active sequential hypothesis testing
problem [14, 25, 46, 47, 44] or pure exploration problem [17–19]. Active hypothesis testing has
become increasingly important nowadays, with applications ranging from medical diagnostics [8],
image identification [64], recommender systems [50], etc. Nonetheless, devising an adaptive data
collection strategy is notoriously difficult and highly problem-specific.

In this paper, we address the question: how can sequential decision-making agents autonomously
discover and leverage hidden structure to enhance active exploration for hypothesis testing? We
introduce In-Context Pure Explorer (ICPE), a novel method combining Supervised Learning and
Deep RL [26, 45] , which builds on the in-context learning and sequence modeling capabilities of
Transformers [38]–a meta-learning approach that uncovers underlying shared structure across a class
of problemsM [59, 7].
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ICPE operates by integrating two complementary neural networks: an inference (I) network, trained
via supervised learning to infer the true hypothesis given current data, and an exploration (π) network,
trained through reinforcement learning to select actions optimizing the inference accuracy of the
I network. We validate ICPE through different benchmarks, demonstrating its ability to efficiently
explore in stochastic and structured environments. In particular, these results show that ICPE achieves
performance comparable to optimal instance-dependent Best Arm Identification (BAI) algorithms
[24, 2], without requiring explicit problem-specific exploration strategies that often involve solving
complex optimization problems. Thanks to the in-context capability of ICPE, it is effectively
discovering active sampling techniques that at test time do not need much more computation than
a forward pass. Consequently, ICPE emerges as a practical applicable method for data-efficient
exploration.

1.1 Related Work

The problem of active sequential hypothesis testing [14, 25, 39, 46, 47, 44, 22], in which a learner
is tasked with adaptively performing a sequence of actions to identify an unknown property of the
environment, is closely related to the exploration problem in Reinforcement Learning (RL) [63],
where an agent needs to identify the optimal policy. This exploration problem has long centred
on regret minimisation [63], with techniques based on Upper-Confidence Bounds [4, 5, 11, 37, 3],
posterior-sampling [32, 48, 56, 27] and Information-Directed Sampling (IDS) [58]; yet these schemes
assume that minimizing regret is the sole objective and falter in identification problems.

A more closely related setting is that of pure exploration in bandits and Markov Decision Processes
(MDPs), settings known as Best Arm/Policy Identification (BAI/BPI) [2, 24, 17, 1, 52, 55]. In these
problems the samples collected by the agent are no longer perceived as rewards, and the agent must
actively optimize its exploration strategy to identify the optimal policy. BAI/BPI reframe the task as
sequential hypothesis testing, yielding instance-adaptive algorithms in fixed-confidence settings such
as Track-and-Stop (TaS) [24]. However, while BAI strategy are powerful, they may be suboptimal
when the underlying information structure is not adequately captured within the hypothesis testing
framework. Although IDS and BAI offer frameworks to account for such structure, extending these
approaches to Deep Learning is difficult, particularly when the information structure is unknown. An
effort is made in [67], where the authors propose a differentiable procedure for BAI, while [52] stuies
the problem for BPI.

Recently Transformers [66, 12] have demonstrated remarkable in-context learning capabilities [10,
23]. In-context learning [43] is a form of meta-RL [6], where agents can solve new tasks without
updating any parameters by simply conditioning on additional context, such as their action-observation
histories. Building on this ability, [38] recently showed that Transformers can be trained in a
supervised manner using offline data to mimic posterior sampling in reinforcement learning. In
[16] the authors present ICEE (In-Context Exploration Exploitation). ICEE uses Transformer
architectures to perform in-context exploration-exploration for RL. ICEE tackles this challenge
by expanding the framework of return conditioned RL with in-context learning [12, 21]. Return
conditioned learning is a type of technique where the agent learns the return-conditional distribution
of actions in each state. Actions are then sampled from the distribution of actions that receive high
return [62, 36]. Lastly, we note the important contribution of RL2 [20], which proposes to represent
an RL policy as the hidden state of an RNN, whose weights are learned via RL. In a similar work, [9]
study meta-learning in Bayesian bandits using a policy gradient approach. ICPEemploys a similar
idea, but focuses on a different objective (identification), and splits the process into a supervised
inference network that provides rewards to an RL-trained transformer network that selects actions to
maximize information gain.

2 Learning to Explore: In-Context Pure Exploration

We introduce ICPE (In-Context Pure Exploration), a deep-learning framework that combines se-
quential architecture with supervised and reinforcement learning to automatically discover efficient
exploration policies for active sequential hypothesis testing. Instead of explicitly encoding induc-
tive biases, we use transformers to let the agent autonomously infer the problem structures from
experiences.

2



Environment and Interaction Model. We consider a model class of environments M and a
distribution P(M) ∈ ∆(M) from which the true environment M is sampled from. We model an
environment as a tuple M = (X ,A, P, ρ), where X is a set of possible observations, A is a finite
set of actions, P = (Pt)t∈N denotes the transition functions, with Pt : (X × A)t → ∆(X ) and
ρ ∈ ∆(X ) denotes the initial observation distribution. All the environments in a classM share
the same set of observations X and set of actions A. The learner interacts with the environment in
a sequential manner: (1) an initial observation x1 ∼ ρ is sampled from X ; (2) at time-step t, the
learner chooses an action at and observes the next observation xt+1 ∼ Pt(·|Dt, at), meaning that
xt+1 is drawn independently from Pt(·|Dt, at) given a trajectory Dt = (x1, a1, . . . , xt−1, at−1, xt).
Formally, the learner uses a randomized policy π = (πt)t∈N, which is a sequence of deterministic
functions, to select actions: action at is selected by sampling independently from πt(Dt) (with Dt

being a random variable), where πt(Dt) specifies a probability distribution over A.

We assume a task-specific ground-truth hypothesis H⋆
M from a predefined classH of hypotheses for

each environment, where our goal is to efficiently infer this hypothesis. Informally, we can state our
objective as follows:

Given an environment M drawn from P(M), how can we learn a sampling strategy π that
collects data D from M so the agent can reliably infer H⋆

M solely from D?

Figure 1: Interaction diagram: an exploration
agent (π) collects data that an inference agent
(I) uses to infer the right hypothesis.

An oracle h(Ĥ;M) = 1{Ĥ=H⋆
M}

provides super-
vised feedback at training time (not test time), in-
dicating correctness without revealing hidden struc-
tures. Using oracle feedback, we learn an inference
mapping I : Dt 7→ ∆(H), yielding posterior distri-
butions over hypotheses given collected data. The
estimator Ĥt ∼ I(·|Dt) guides exploration by pro-
viding a reward signal to an RL agent collecting the
data Dt using an exploration policy π.

Example: Best Arm Identification A relevant ex-
ample is that of Best-Arm Identification in MAB
problems [24]. Recall that in a MAB problem the
decision maker can choose between K different ac-
tions a1, . . . , aK (we also say arms) at each time-step.
Upon selecting an action a at time t, it observes a
random reward rt distributed according to a distribu-
tion νat

. In BAI the goal is to identify the best action
a⋆ = argmaxa ER∼νa

[R] as quickly as possible (hence H⋆ = a⋆). While several algorithms have
been provided for different settings [61, 28, 53, 34, 49], a major issue is that the algorithm design can
drastically change if the assumptions change. Moreover, it is difficult to design efficient techniques for
more complex settings such as MDPs (in fact, the problem becomes non-convex [41, 51]). Therefore,
in this work we address the open question of whether it is possible to learn efficient exploration
strategies directly from experience, avoiding the process of designing a BAI algorithm.

2.1 ICPE for Fixed Confidence Problems

In this work, we focus on the fixed confidence setting [24]. In this setting, the agent needs to learn
to stop the data sampling process as soon as it is sufficiently confident to have correctly estimated
H⋆ for an environment M . Let Pπ

M be the underlying probability measure of the process ((Dt, at))t
under a sampling strategy π. In the following we also write Pπ

M∼P(M)(·) = EM∼P(M)[Pπ
M (·)] to

denote the expected probability over the prior.

We equip the learner with the capability to stop the sampling process at any point in time. We denote
such stopping rule by τ , which is a stopping time with respect to the filtration (σ(Dt))t. Then,
the learner wishes to find an optimal stopping rule τ (with τ < ∞ a.s.), exploration policy π and
inference network I subject to a confidence level at the stopping time τ :

min
τ,π,I

EM∼P(M)[τ ] s.t. Pπ
M∼P(M)(h(Ĥτ ;M) = 1) ≥ 1− δ. (1)
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Algorithm 1 ICPE (In-Context Pure Exploration) - Fixed Confidence

1: Input: Tasks distribution P(M); confidence δ; learning rates α, β; initial λ and hyper-parameters T,N, η.
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P(M) with true hypothesis H⋆, observe s1 ∼ ρ and set t← 1.
5: repeat
6: Execute action at = argmaxa Qθ(st, a) in M and observe next state st+1.
7: Add experience zt = (st, at, st+1, dt = 1{st+1 is terminal }, H⋆) to B.
8: Set t← t+ 1.
9: until at−1 = astop or t > N .

10: Update variable λ according to

λ← max (0, λ− β (Iϕ(H
⋆|sτ )− 1 + δ) . (2)

11: Sample batches B,B′ ∼ B and update θ, ϕ as

θ ← θ − α∇θ
1

|B|
∑
z∈B

[
1{a̸=astop} (yλ(z)−Qθ(s, a))

2 + (rλ(zstop)−Qθ(s, astop))
2
]
, (3)

ϕ← ϕ+ α∇ϕ
1

|B′|
∑
z∈B′

[
log(Iϕ(H

⋆|s′)
]
. (4)

12: Update θ̄ ← (1− η)θ̄ + ηθ and every T steps set ϕ̄← ϕ.
13: end while

Introducing a stopping action astop to πt, we define τ = min(N, inf t : at = astop) for a maximum
horizon N (the horizon is introduced for practical reasons). We consider solving the dual formulation:

min
λ≥0

max
π,I

Vλ(π, I), Vλ(π, I) :=− Eπ
M∼P(M)[τ ] + λ

[
Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ

]
,

with Ĥτ ∼ I(·|Dτ ). To solve this problem, ICPE treats each optimization separately, and optimize
using a descent-ascent scheme. ICPE leverages transformers to encode trajectories Dt as fixed-length
states st = (Dt,∅t:N ) of an induced MDP M , padding with null tokens to horizon N . The resulting
MDP formulation has actions A ∪ astop and a reward structure penalizing each step until stopping,
defined below.

Learning I . The distribution I is modeled using a transformer with parameter ϕ, and we denote it
by Iϕ. Then, considering a fixed (π, λ), the maximization with respect to I amounts to solving

max
ϕ

Eπ
M∼P(M)[h(Ĥτ ;M)], Ĥτ ∼ Iϕ(·|sτ ).

Therefore, we can train ϕ via a cross-entropy loss −
∑

H′ h(H ′;M) log(Iϕ(H
′|sτ )).

Learning π. The policy π is learnt using RL techniques. We define a reward r that penalizes
the agent at all time-steps, that is rt = −1, while at the stopping-time we have rτ = −1 +
λEH∼I(·|sτ )[h(H;M)]. Accordingly, one can define the Q-value of (π, I, λ) in a state-action pair

(s, a) as Qπ,I
λ (s, a) = Eπ

M∼P(M)

[∑τ
n=t rn

∣∣∣st = s, at = a
]
, with an ∼ πn(·|sn).

We model π with a transformer of parameter θ, and train it using DQN [42, 65] with a replay buffer
B and a target network Qθ̄ parameterized by θ̄. To maintain timescale separation, we introduce
a separate target inference network Iϕ̄, parameterized by ϕ̄, which provides feedback for training
θ. Note that, as discussed earlier, we introduce a dedicated stop-action astop whose value depends
solely on history. Thus, its Q-value can be updated at any time, allowing retrospective evaluation of
stopping. For learning the Q-values, we define the reward for a transition z = (s, a, s′, d,H⋆) as:

rλ(z) := −1 + dλ log Iϕ̄(H
⋆|s′), d = 1{z is terminal},

where we set s′ ← s if a = astop, and terminal means either a = astop or the last step in the horizon.
We also define the transition zstop by replacing (a, s′) with (astop, s) in z. Then, for a ̸= astop, the
Q-values can be learned using a target value:

yλ(z) = rλ(z) + (1− d)max
i

Qθ̄(s
′, ai).
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Instead, for the stopping action, we use the loss (rλ(zstop)−Qθ(s, astop))
2. Therefore, the overall

loss used for training θ on a transition z is:

1{a̸=astop} (yλ(z)−Qθ(s, a))
2
+ (rλ(zstop)−Qθ(s, astop))

2
,

where 1{a̸=astop} avoids double accounting for the stopping action.

Last steps. To train (θ, ϕ), we sample two independent batches (B,B′) ∼ B from the buffer, and
compute the gradient updates as in eqs. (3) and (4) of algorithm 1. We periodically update target
networks, setting ϕ̄ ← ϕ every T steps and using a Polyak averaging θ̄ ← (1 − η)θ̄ + ηθ, with
η ∈ (0, 1). Finally, we update λ by assessing the confidence of Iϕ at the stopping time (2) for a fixed
(π, I). Thus, for sufficiently small learning rates, optimizing (λ, θ, ϕ) resembles an ascent-descent
scheme.

3 Empirical Evaluation

We evaluate our approach across various tasks: stochastic bandits with or without latent structure;
learning a probabilistic version of binary search. Due to space limitations, we refer the reader to
appendix C for more details.

Algorithms. In our evaluations we compare to different algorithms, depending on the problem. Some
of the algorithms include: uniform sampling, TaS (Track and Stop) [24], TTPS (Top Two Sampling)
[58]. We also include a variant of IDS [57] based on the I-mapping, which uses the observation that I
defines a posterior distribution overH. Always based on this idea, we also introduce I-DPT, a variant
of DPT [38], based on the fact that I can be used to explore a problem à-la Thompson Sampling.
More information about these methods, and their hyper-parameters, can be found in appendix B 2.

3.1 Bandit Problems

We now apply ICPE to the classical BAI problem within MAB tasks. For the MAB setting we have a
finite number of actions A = {1, . . . ,K}, corresponding to the actions in the MAB problem M . For
each action a, we define a corresponding reward distribution νa from which rewards are sampled i.i.d.
Then, P(M) is a prior distribution on the actions’ rewards distributions (νa)a and for BAI we let
H⋆ = argmaxa Er∼νa

[r], so that we need to identify the best action. Lastly, the observation at time
t is xt = (at, rt), where at is the chosen action at time t and rt is a reward sampled from νat

.

Stochastic Bandit Problems. We evaluate ICPE on stochastic bandit environments with δ = 0.1 and
N = 100. Each action’s reward distribution is normally distributed νa = N (µa, 0.5

2), with (µa)a∈A
drawn from P(M). In this case P(M) is a uniform distribution over problems with minimum gap
maxa µa −maxb ̸=a µa ≥ ∆0, with ∆0 = 0.4. Hence, an algorithm could exploit this property to
infer H⋆ more quickly. For this case, we also derive some sample complexity bounds in appendix A.
Figure 2 summarizes the results for this setting. We compare to TaS and TTPS, and use the stopping
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Figure 2: Results for stochastic MABs with fixed confidence δ = 0.1 and N = 100: (a) average
stopping time τ ; (b) survival function of τ ; (c) probability of correctness Pπ

M∼P(M)(h(Ĥ;M) = 1).

rule of TaS also for Uniform and TTPS (the stopping rule is based on a self-normalized process,
compared with a threshold function β(t, δ); see also appendix B for more details). Overall, we

2In the results, shaded areas indicate 95% confidence intervals, computed via hierarchical bootstrapping.
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see in fig. 2a how ICPE is able to find a more efficient strategy compared to classical techniques.
Interestingly, also I-DPT seems to achieve relatively small sample complexities. However, its tail
distribution of τ is rather large compared to ICPE (fig. 2b) and the correctness is smaller than 1− δ
for large values of K. Methods like TaS and TTPS achieve larger sample complexity, but also larger
correctness values (fig. 2c). This is due to the fact that it is hard to define stopping rules. In fact, it is
well known that current theoretically sound stopping rules are overly conservative [24]. Nonetheless,
even using a less conservative rule such as β(t, δ) = log((1 + log(t))/δ), which is what we use (and,
yet, has not been proven to guarantee δ-correctness), is still conservative. The fact that ICPE can
achieve the right value of confidence can help discover potential ways to define stopping rules. Lastly,
in fig. 2a in black we show a complexity bound (proof in appendix A.1). While seemingly constant,
it is actually slowly increasing in the number of arms.

Bandit Problems with Hidden Information. To evaluate ICPE in structured settings, we introduce
bandit environments with latent informational dependencies, termed magic actions. In the single
magic action case, the magic action am’s reward is distributed according to N (µam

, σ2
m), where

σm ∈ (0, 1) and µam
:= ϕ(argmaxa ̸=am

µa) encodes information about the optimal action’s identity
through an invertible mapping ϕ that is unknown to the learner. The index am is fixed, and the mean
rewards of the other actions (µa)a ̸=am are sampled from P(M), a uniform distribution over models
guaranteeing that am, as defined above, is not optimal (see appendices A.2 and C.1.2 for more details).
Then, we define the reward distribution of the non-magic actions as N (µa, (1− σm)2).

In our first experiment, we vary the standard deviation σm in [0, 1]. Thus, agents must balance
sampling between informative and noisy actions based on varying uncertainty levels. We evaluate
ICPE in a fixed-confidence setting with error rate δ = 0.1. Figure 3a compares ICPE’s sample
complexity against a theoretical lower bound (see appendix A) and an informed baseline, denoted as
I-IDS, which performs standard IDS leveraging ICPE’s trained inference network I for exploiting
the magic action (details in Appendix B). ICPE achieves sample complexities close to the theoretical
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Figure 3: (a) Single magic action: mean stopping time and the theoretical lower bound across varying
σm. (b) Magic chain: mean stopping time between ICPE, I-IDS vs. number of magic actions.

bound across all tested noise levels, consistently outperforming I-IDS. To further challenge ICPE, we
introduce a multi-layered "magic chain" bandit environments, where there is a sequence of n magic
actions Am := {ai1 , . . . , ain} ⊂ A such that µaij

= ϕ(µaij+1
), and µain

= ϕ(argmaxa/∈Am
µa).

The first index i1 is known, and by following the chain, an agent can uncover the best action in n
steps. However, the optimal sample complexity depends on the ratio of magic actions to non-magic
arms. Varying the number of magic actions from 1 to 9 in a 10-actions environment, Figure 3b
demonstrates ICPE’s empirical performance, outperforming I-IDS.

Bandit Problems with Feedback Graphs. In bandit problems, playing action u yields its reward,
while full-information settings reveal all rewards. Feedback graphs interpolate between these ex-
tremes: a directed graph G ∈ [0, 1]K×K specifies that choosing u reveals the reward of v with
probability Gu,v. Although feedback graphs have been extensively studied for regret minimiza-
tion [40], their role in pure exploration remains underexplored [55]; here we use them as structured
testbeds, where latent relational and stochastic dependencies must be inferred to explore efficiently.
Formally, upon playing u the learner observes for each v ∈ [K]:

rv ∼
{
N (µv, σ

2), with probability Gu,v,

no observation, otherwise.
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Figure 4: Sample complexity comparison under the fixed-confidence setting for: (a) Loopy Star, (b)
Loopless Clique, and (c) Ring graphs.

We tested ICPE on 3 different graph families with δ = 0.1: the loopy star graph, the ring graph and
the loopless clique [55]. We set the optimal arm’s mean to 1 and all others to 0.5 to facilitate faster
convergence. We compared it to Uniform Sampling, EXP3.G, and Tas-FG using a shared stopping
rule from [55].

As shown in Figure 4, ICPE consistently achieves significantly lower sample complexity, suggesting
that that ICPE is able to meta-learn and leverage the underlying structure of the graph.

3.2 Algorithm Discovery: Meta-Learning Binary Search

To test ICPE’s ability to recover classical exploration algorithms, we evaluate whether it can au-
tonomously meta-learn binary search. We define an action space of A = {1, . . . ,K}, where K is the
upper bound on the possible location of the hidden target H⋆ ∼ A. Pulling an arm above or below
H⋆ yields a observation xt = −1 or xt = +1, respectively—providing directional feedback. We
train ICPE under the fixed-confidence setting for K = 23, . . . , 28 using a target error rate of δ = 0.01.
In table 1 we report results on 100 held-out tasks per setting. ICPE consistently achieves perfect
accuracy with worst-case stopping times that match the optimal log2(K) rate, demonstrating that it
has successfully rediscovered binary search purely from experience. While simple, this task illustrates
ICPE’s broader potential to learn efficient search strategies in domains where no hand-designed
algorithm is available.

K (Actions) Min Accuracy Mean Stop Time Max Stop Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 1: ICPE performance on the binary search task as the number of actions K increases.

4 Conclusions

In this work, we addressed the design of efficient pure-exploration strategies for the active sequential
hypothesis testing problem, where an agent sequentially selects samples to rapidly identify the true
hypothesis. While particularly relevant across different domains, it is difficult to design optimal
strategies in the presence of hidden structure, and most of the existing optimal strategies are restricted
to simple cases for unstructured multi-armed bandit problems. To overcome these limitations, we
introduced ICPE, an in-context learning framework that leverages Transformers to learn exploration
policies directly from experience. Our results demonstrate that ICPE is able to autonomously
discovering task-specific adaptive exploration strategies. We believe our work makes a fundamental
contribution to active testing, and in particular to the sub-field of best-arm identification. Future
directions include several directions, including a theoretical analysis of ICPE’s guarantees and scaling
ICPE to larger, higher-dimensional problems.
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Appendix

A Theoretical Results

In this section we provide different theoretical results, mainly for the sample complexity of different
MAB problems with structure.

A.1 Sample Complexity Bounds for MAB Problems with Fixed Minimum Gap

We now derive a sample complexity lower bound for a MAB problem where the minimum gap is
known and the rewards are normally distributed.

Consider a MAB problem wit K arms {1, . . . ,K}. To each arm a is associated a reward distribution
νa = N (µa, σ

2) that is simply a Gaussian distribution. Let a⋆(µ) = argmaxa µa, and define the
gap in arm a to be ∆a(µ) = µa⋆(µ) − µa. In the following, without loss of generality, we assume
that a⋆(µ) = 1.

We define the minimum gap to be ∆min(µ) = mina̸=a⋆(µ) ∆a(µ). Assume now to know that
∆min ≥ ∆0 > 0.

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆(µ)) ≤ δ, we have the following result.
Theorem A.1. Consider a model µ satisfying ∆min ≥ ∆0 > 0. Then, for any δ-probably correct
method Alg, with δ ∈ (0, 1/2), we have that the optimal sample complexity is bounded as

1

max
(
∆2

0,
1∑

a̸=1 1/∆2
a

) ≤ inf
τ :Alg is δ-correct

Eµ[τ ]

2σ2kl(1− δ, δ)
≤ 2

∑
a

1

(∆a +∆0)2
,

with ∆1 = 0 and kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)). In particular, the solution
ωa ∝ 1/(∆a +∆0)

2 (up to a normalization constant) achieves the upper bound.

Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the
same argument used in the Best Arm Identification and Best Policy Identification literature [24, 54].

Define the set of models
S =

{
µ′ ∈ RK : ∆min(µ

′) ≥ ∆0

}
,

and the set of alternative models

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= 1

}
.

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed
upon selecting At. Then, we can write

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)

where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to
the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to
round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)

(note that we have σ1 instead of σ for a = 1).

We also know from the information processing inequality [33] that Eµ[Λτ ] ≥
supE∈Mτ

kl(Pµ(E),Pµ′(E)), where Mt = σ(A1, R1, . . . , At, Rt). We use the fact that the
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algorithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since
Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ

′
a) ≤ δ (we also used

the monotonicity properties of the Bernoulli KL divergence). Hence∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).

Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing
over the set of alternative models.

Defining Alta =
{
µ′ ∈ RK : µ′a − µ′b ≥ ∆0 ∀b ̸= a

}
, the set of alternative models can be decom-

posed as

Alt(µ) =

{
µ′ ∈ RK : argmax

a
µ′a ̸= 1, ∆min(µ

′) ≥ ∆0

}
,

= ∪a̸=1Alta.

Hence, the optimization problem over the alternative models becomes

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a) = min

ā ̸=1
inf

µ′∈Altā

∑
a

ωa
(µa − µ′a)

2

2σ2
.

The inner infimum over µ′ can then be written as

P ⋆
ā (ω) := inf

µ′∈RK

∑
a

ωa
(µa − µ′a)

2

2σ2
.

s.t. µ′ā − µ′b ≥ ∆0 ∀b ̸= ā.

(5)

While the problem is clearly convex, it does not yield an immediate closed form solution.

To that aim, we try to derive a lower bound and an upper bound of the value of this minimization
problem.

Step 3: Upper bound on P ⋆
ā . Note that an upper bound on minā̸=1 P

⋆
ā (ω) can be found by finding a

feasible solution µ′. Consider then the solution µ′1 = µ1 −∆, µ′ā = µ1 and µ′b = µb for all other
arms. Clearly We have that µ′ā − µ′b ≥ ∆0 for all b ̸= ā. Hence, we obtain

min
ā̸=1

P ⋆
ā (ω) ≤ ω1

∆2
0

2σ2
+min

ā̸=1
ωā

∆2
ā

2σ2
.

At this point, one can easily note that if ∆2
0

2σ2 ≥ 1
2σ2

∑
a ̸=1

1
∆2

a

, then supω∈∆(K) minā ̸=1 P
⋆
ā (ω) ≤

∆2
0

2σ2 .

This corresponds to the case where all the mass is given to ω1 = 1. Otherwise, the solution is to set
ω1 = 0 and ωa =

1/∆2
a∑

b 1/∆2
b

for a ̸= 1.

Hence, we conclude that

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≤

1

2σ2
max

(
∆2

0,
1∑

a ̸=1 1/∆
2
a

)
.
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Step 4: Lower bound on P ⋆
ā . For the lower bound, note that we can relax the constraint to only

consider µ′ā − µ′1 ≥ ∆0. This relaxation enlarges the feasible set, and thus the infimum of this new
problem lower bounds P ⋆

ā (ω).

By doing so, since the other arms are not constrained, by convexity of the KL divergence at the
infimum we have µ′b = µb for all b /∈ {1, ā}. Therefore

P ⋆
ā (ω) ≥ inf

µ′:µ′
ā−µ′

1≥∆0

∑
a

ωa
(µa − µ′a)

2

2σ2
= inf

µ′:µ′
ā−µ′

1≥∆0

ω1
(µ1 − µ′1)

2

2σ2
+ ωā

(µā − µ′ā)
2

2σ2
.

Solving the KKT conditions we find the equivalent conditions µ′ā = µ′1 +∆0 and

ω1(µ1 − µ′1) + ωā(µā − µ′1 −∆0) = 0⇒ µ′1 =
ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
.

Therefore
µ′ā =

ω1µ1 + ωāµā − ωā∆0

ω1 + ωā
+∆0 =

ω1µ1 + ωāµā + ω1∆0

ω1 + ωā
.

Plugging these solutions back in the value of the problem, we obtain

P ⋆
ā (ω) ≥

ω1ω
2
ā

(ω1 + ωā)2
(µ1 − µā +∆0)

2

2σ2
+

ωāω
2
1

(ω1 + ωā)2
(µā − µ1 −∆0)

2

2σ2
,

=
ω1ωā

ω1 + ωā

(µ1 − µā +∆0)
2

2σ2
,

=
ω1ωā

ω1 + ωā

(∆ā +∆0)
2

2σ2
.

Let θa = ∆a +∆0, with θ1 = ∆0. We plug in a feasible solution ωa =
1/θ2

a∑
b 1/θ2

b
, yielding

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
ā̸=1

P ⋆
ā (ω) ≥ min

ā ̸=1

1/(θ1θā)
2∑

b 1/θ
2
b (1/θ

2
1 + 1/θ2ā)

θ2ā
2σ2

,

= min
ā ̸=1

1∑
b 1/θ

2
b (1 + θ21/θ

2
ā)

1

2σ2
,

=
1

2σ2
∑

b 1/θ
2
b

min
ā̸=1

1

1 + θ21/θ
2
ā

,

≥ 1

2σ2
∑

b 1/θ
2
b

1

1 + θ21/∆
2
0

,

=
1

4σ2
∑

b 1/θ
2
b

.

A.2 Sample Complexity Lower Bound for the Magic Action MAB Problem

We now consider a special class of models that embeds information about the optimal arm in the
mean reward of some of the arms. Let ϕ : R→ R be a strictly decreasing function over {2, . . . ,K}3.

Particularly, we make the following assumptions:

1. We consider mean rewards µ satisfying µ1 = ϕ(argmaxa̸=1 µa), and µ⋆ = maxa µa >
ϕ(2). Arm 1 is called "magic action", and with this assumption we are guaranteed that the
magic arm is not optimal, since

µ1
1

maxa µa
= ϕ(argmax

a̸=1
µa)

1

maxa µa
≤ ϕ(2)

1

maxa µa
< 1⇒ max

a
µa > µ1.

2. The rewards are normally distributed, with a fixed known standard deviation σ1 for the
magic arm, and fixed standard deviation σ for all the other arms.

3One could also consider strictly increasing functions.
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Hence, define the set of models

S =

{
µ ∈ RK : µ1 = ϕ(argmax

a̸=1
µa),max

a
µa > ϕ(2)

}
,

and the set of alternative models

Alt(µ) =

{
µ′ ∈ S : argmax

a
µ′a ̸= a⋆

}
,

where a⋆ = argmaxa µa.

Then, for any δ-correct algorithm, guaranteeing that at some stopping time τ the estimated optimal
arm âτ is δ-correct, i.e., Pµ(âτ ̸= a⋆) ≤ δ, we have the following result.
Theorem A.2. For any δ-correct algorithm, the sample complexity lower bound on the magic action
problem is

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ), (6)
where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and T ⋆(µ) is the characteristic time of
µ, defined as

(T ⋆(µ))−1 = max
ω∈∆(K)

min
a̸=1,a⋆

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑

b∈Ka(ω)

ωb
(µb −m(ω;Ka(ω))

2

2σ2
, (7)

where m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

and the set Ka(ω) is defined as

Ka(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb ∪ {a}) and µb ≥ ϕ(2)} .

with Cx = {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K].

Proof. Step 1: Log-likelihood ratio. The initial part of the proof is rather standard, and follows the
same argument used in the Best Arm Identification and Best Policy Identification literature [24, 54].

Take the expected log-likelihood ratio between µ and µ′ ∈ Alt(µ) of the data observed up to τ

Λτ = log
dPµ(A1,R1,...,Aτ ,Rτ )
dPµ′ (A1,R1,...,Aτ ,Rτ )

, where At is the action taken in round t, and Rt is the reward observed
upon selecting At. Then, we can write

Λt =
∑
a

t∑
n=1

1{An=a} log
fa(Rn)

f ′a(Rn)

where fa, f ′a, are, respectively, the reward density for action a in the two models µ, µ′ with respect to
the Lebesgue measure. Letting Na(t) denote the number of times action a has been selected up to
round t, by an application of Wald’s lemma the expected log-likelihood ratio can be shown to be

Eµ[Λτ ] =
∑
a

Eµ[Na(τ)]KL(µa, µ
′
a)

where KL(µa, µ
′
a) is the KL divergence between two Gaussian distributionsN (µa, σ) andN (µ′a, σ)

(note that we have σ1 instead of σ for a = 1).

We also know from the information processing inequality [33] that Eµ[Λτ ] ≥
supE∈Mτ

kl(Pµ(E),Pµ′(E)), where Mt = σ(A1, R1, . . . , At, Rt). We use the fact that the
algorithm is δ-correct: by choosing E = {âτ = a⋆} we obtain that Eµ[Λτ ] ≥ kl(1 − δ, δ), since
Pµ(E) ≥ 1− δ and Pµ′(E) = 1− Pµ′(âτ ̸= a⋆) ≤ 1− Pµ′(âτ = argmaxa µ

′
a) ≤ δ (we also used

the monotonicity properties of the Bernoulli KL divergence). Hence∑
a

Eµ[Na(τ)]KL(µa, µ
′
a) ≥ kl(1− δ, δ).

Letting ωa = Eµ[Na(τ)]/Eµ[τ ], we have that

Eµ[τ ]
∑
a

ωaKL(µa, µ
′
a) ≥ kl(1− δ, δ).
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Lastly, optimizing over µ′ ∈ Alt(µ) and ω ∈ ∆(K) yields the bound:

Eµ[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where T ⋆(µ) is defined as

(T ⋆(µ))−1 = sup
ω∈∆(K)

inf
µ′∈Alt(µ)

∑
a

ωaKL(µa, µ
′
a).

Step 2: Optimization over the set of alternative models. We now face the problem of optimizing
over the set of alternative models. First, we observe that S = ∪a̸=a⋆{µ : µ1 = ϕ(a), µa > ϕ(2)}.
Therefore, we can write

Alt(µ) = ∪a/∈{1,a⋆} {µ′ : µ′1 = ϕ(a), µ′a > max(ϕ(2), µ′b) ∀b ̸= a} .

Hence, for a fixed a /∈ {1, a⋆}, the inner infimum becomes

inf
µ′∈RK

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
a̸=1

ωa
(µa − µ′a)

2

2σ2

s.t. µ′a ≥ max (ϕ(2), µ′b) ∀b,
µ′1 = ϕ(a).

(8)

To solve it, we construct the following Lagrangian

ℓ(µ′, θ) = ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
∑
b̸=1

ωb
(µb − µ′b)

2

2σ2
+
∑
b

θb (max (ϕ(2), µ′b)− µ′a) ,

where θ ∈ RK
+ is the multiplier vector. From the KKT conditions we already know that θ1 = 0, θa = 0

and θb = 0 if µ′b ≤ ϕ(2), with b ∈ {2, . . . ,K}. In particular, we also know that either we have
µ′b = µ′a or µ′b = µb. Therefore, for µb ≤ ϕ(2) the solution is µ′b = µb, while for µb > ϕ(2) the
solution depends also on ω.

To fix the ideas, let K be the set of arms for which µ′b = µ′a at the optimal solution. Such set must
necessarily include arm a. Then, note that

∂ℓ

∂µ′a
= ωa

µ′a − µa

σ2
−
∑
b∈[K]

θb = 0.

and
∂ℓ

∂µ′b
= ωb

µ′b − µb

σ2
+ θb = 0 for b ̸= (1, a).

Then, using the observations derived above, we conclude that

µ′a =

∑
b∈K ωbµb∑
b∈K ωb

,

with µ′b = µ′a if b ∈ K, and µ′b = µb otherwise. However, how do we compute such set K?

First, K includes arm a. However, in general we have K ≠ {a} : if that were not true we would have
µ′a = µa and µ′b = µb for the other arms – but if any µb is greater than µa, then a is not optimal,
which is a contradiction. Therefore, also arm a⋆ is included in K, since any convex combination of
{µa} is necessarily smaller than µa⋆ . We apply this argument repeatedly for every arm b to obtain K.

Hence, for some set C ⊆ [K] define the average reward

m(ω; C) =
∑

a∈C ωaµa∑
a∈C ωa

,

and the set Cx = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ µx} for x ∈ [K]. Then,

K := K(ω) = {a} ∪ {b ∈ {2, . . . ,K} : µb ≥ m(ω; Cb) and µb ≥ ϕ(2)} .

In other words, K is the set of confusing arms for which the mean reward in the alternative model
changes. An arm b is confusing if the average reward m, taking into account b, is smaller than µb. If
this holds for b, then it must also hold all the arms b′ such that µb′ ≥ µb.
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Finally, to get a better intuition of the main result, we can look at the 3-arms case: it is optimal to
only sample the magic arm iff |ϕ(a⋆)− ϕ(a)| > σ1(µa⋆−µa)

2σ .
Lemma A.3. With K = 3 we have that ω1 = 1 if and only if

|ϕ(a⋆)− ϕ(a)| > σ1(µa⋆ − µa)

2σ
,

and ω1 = 0 if the reverse inequality holds.

Proof. With 3 arms, from the proof of the theorem we know that Ka(ω) = {a, a⋆} for all ω. Letting
m(ω) = ωaµa+ωa⋆µa⋆

ωa+ωa⋆
, we obtain

(T ⋆(µ))−1 = max
ω∈∆(3)

ω1
(ϕ(a⋆)− ϕ(a))2

2σ2
1

+
ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

Clearly the solution is ω1 = 1 as long as

(ϕ(a⋆)− ϕ(a))2

2σ2
1

> max
ω:ωa+ωa⋆=1

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2σ2
.

To see why this is the case, let f1 = (ϕ(a⋆)−ϕ(a))2
2σ2

1
, f2(ωa, ωa⋆) = ωa(µa−m(ω))2

2σ2 and f3(ωa, ωa⋆) =

ωa⋆ (µa⋆−m(ω))2

2σ2 . Then, we can write

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)

[
ωaf2
1− ω1

+
ωa⋆f3
1− ω1

]
.

Being a convex combination, this last term can be upper bounded as

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

ωaf2
1− ω1

+
ωa⋆f3
1− ω1

)
.

Now, note that also the term inside the bracket is a convex combination. Threfore, let ωa = (1−ω1)α
and ωa⋆ = (1− ω1)(1− α) for some α ∈ [0, 1]. We have that

m(ω) =
(1− ω1)αµa + (1− ω1)(1− α)µa⋆

1− ω1
= αµa + (1− α)µa⋆ .

Hence, we obtain that

ωa(µa −m(ω))2 + ωa⋆(µa⋆ −m(ω))2

2(1− ω1)σ2
=

ωaf2 + ωa⋆f3
1− ω1

,

=
α(1− α)2(µa − µa⋆)2 + (1− α)α2(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(1− α)(µa − µa⋆)2 + α(µa⋆ − µa)

2

2σ2
,

= α(1− α)
(µa − µa⋆)2

2σ2
.

Since this last term is maximized for α = 1/2, we obtain

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) ≤ max

(
f1,

(µa − µa⋆)2

8σ2

)
.

Since f1 is attained for ω1 = 1, we have that as long as f1 > (µa−µa⋆ )2

8σ2 , then the solution is ω1 = 1.

On the other hand, if (µa−µa⋆ )2

8σ2 > f1, then we can set ωa = (1 − ω1)/2 and ωa⋆ = (1 − ω1)/2,
leading to

ω1f1 + ωaf2(ωa, ωa⋆) + ωa⋆f3(ωa, ωa⋆) = ω1f1 + (1− ω1)
(µa − µa⋆)2

8σ2
,

which is maximized at ω1 = 0.

18



A.3 Sample Complexity Bound for the Multiple Magic Actions MAB Problem

We now extend our analysis to the case where multiple magic actions can be present in the environment.
In contrast to the single magic action setting, here a chain of magic actions sequentially reveals
information about the location of the optimal action. Without loss of generality, assume that the first
n arms (with indices 1, . . . , n) are the magic actions, and the remaining K − n arms are non–magic.
The chain structure is such that pulling magic arm j (with 1 ≤ j < n) yields information about only
the location of the next magic arm j + 1, while pulling the final magic action (arm n) reveals the
identity of the optimal action. As before, we assume that the magic actions are informational only
and are never optimal.

To formalize the model, let ϕ : {1, . . . , n} → R be a strictly decreasing function. We assume that the
magic actions have fixed means given by

µj =

ϕ(j + 1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{1,...,n} µa

)
, if j = n.

and that the non–magic arms satisfy

µ⋆ = max
a/∈{1,...,n}

µa > ϕ(n).

Thus, the optimal arm lies among the non–magic actions. Considering the noiseless case where the
rewards of all actions are fixed and the case where we can identify if an action is magic once revealed,
we have the following result.

Theorem A.4. Consider noiseless magic bandit problem with K arms and n magic actions. The
optimal sample complexity is upper bounded as

inf
Alg

EAlg[τ ] ≤ min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) .

Proof. In the proof we derive a sample complexity bound for a policy based on some insights. We
use the assumption that upon observing a reward from a magic arm, the learner can almost surely
identify that the pulled arm is a magic arm.

Let us define the state (m, r, l), where m denotes the number of remaining unrevealed magic actions
(m0 = n− 1), r denotes the number of remaining unrevealed non-magic actions (r0 = K − n), and
l is the binary indicator with value 1 if we have revealed any hidden magic action and 0 otherwise.

Before any observation the learner has no information about which n− 1 indices among {2, . . . ,K}
form the chain of intermediate magic arms. Hence, one can argue that at the first time-step is optimal
to sample uniformly at random an action in {2, . . . ,K}.
Upon observing a magic action, and thus we are in state (m, r, 1), we consider the following candidate
policies: (1) start from the revealed action and follow the chain, or (2) keep sampling unrevealed
actions uniformly at random until all non-magic actions are revealed. As previously discussed,
starting the chain from the initial magic action would be suboptimal and we do not consider it.

Upon drawing a hidden magic arm, let its chain index be j ∈ {2, . . . , n} (which is uniformly
distributed). The remaining cost to complete the chain is n− j, and hence its expected value is

E[n− j] =
n− 2

2
.

Therefore, the total expected cost for strategy (1) is

T1 =
n− 2

2
.

We can additionally compute the expected cost for strategy (2) as follows: if the last non-magic action
is revealed at step i, then among the first i− 1 draws there are exactly r − 1 non-magic arms. Since
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there are
(
m+r
r

)
ways to place all r non-magic arms m+ r slots, we have

T2 = E[Draws until all non-magic revealed]

=

m+r∑
i=r

i · P[Last non-magic revealed at step i]

=

m+r∑
i=r

i ·
(
i−1
r−1
)(

m+r
r

)
=

r! ·m!

(m+ r)!

m+r∑
i=r

i

(
i− 1

r − 1

)

=
r! ·m!

(m+ r)!

m+r∑
i=r

i!

(r − 1)!(i− r)!

=
r! ·m!

(m+ r)!

m+r∑
i=r

r

(
i

r

)
=

r · r! ·m!

(m+ r)!

(
m+ r + 1

r + 1

)
=

r · r! ·m!

(m+ r)!
· (m+ r + 1) · (m+ r)!

(r + 1) · r! ·m!

=
r(m+ r + 1)

r + 1

Finally, we define a policy in (m, r, 1) as the one choosing between strategy 1 and strategy 2,
depending on which one achieves the minimum cost. Hence, the complexity of this policy is

V (m, r, 1) = min

(
n− 2

2
,
r(m+ r + 1)

r + 1

)
.

Now, before finding a magic arm, consider a policy that uniformly samples between the non-revealed
arms. Therefore, in (m, r, 0) we can achieve a complexity of 1+ m

m+rV (m−1, r, 1)+ r
m+rV (m, r−

1, 0). Since we can always achieve a sample complexity of n, we can find a policy with the following
complexity:

V (m, r, 0) = min

(
n, 1 +

m

m+ r
V (m− 1, r, 1) +

r

m+ r
V (m, r − 1, 0)

)
= min

(
n, 1 +

m

m+ r
min

(
n− 2

2
,
r(m+ r)

r + 1

)
+

r

m+ r
V (m, r − 1, 0)

)

Given we always start with n− 1 hidden magic actions we can define a recursion in terms of just the
variable r as follows:

V (r) = 1 +
n− 1

n− 1 + r
T (r) +

r

n− 1 + r
V (r − 1),

where T (r) = min
(

n−2
2 , r(n−1+r)

r+1

)
. Letting A(r) = r

n−1+r and B(r) = 1 + n−1
n−1+rT (r), we can

write

V (r) = B(r) +A(r)V (r − 1),
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Clearly V (0) = 0 since if all non-magic actions are revealed, then we know the optimal action
deterministically. Unrolling the recursion we get

V (1) = B(1),

V (2) = B(2) +A(2)B(1),

V (3) = B(3) +A(3)B(2) +A(3)A(2)B(1),

...

V (r) =

r∑
j=1

 r∏
i=j+1

A(i)

B(j).

Substituting back in our expression, we get

V (r) =

r∑
j=1

 r∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
T (j)

)
.

Thus starting at r = K − n we get the following expression:

min

n,

K−n∑
j=1

 K−n∏
i=j+1

i

n− 1 + i

(1 + n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

)) ,

which is also an upper bound on the optimal sample complexity.

To get a better intuition of the result, we also have the following corollary, which shows that we
should expect a scaling linear in n for small values of n (for large values the complexity tends instead
to "flatten").
Corollary A.5. Let T be the scaling in theorem A.4. We have that

min(n, (K − n)/2) ≲ T ≲ Cmin(n,K/2).

Proof. First, observe the scaling(
1 +

n− 1

n− 1 + j
min

(
n− 2

2
,
j(n− 1 + j)

j + 1

))
= O(n/2).

At this point, note that
K−n∏
i=j+1

i

n− 1 + i
=

K−n∏
i=j+1

(
1 +

n− 1

i

)−1
.

Using that x
1+x ≤ log(1 + x) ≤ x, we have

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≥ −(n− 1)

K−n∑
i=j+1

1

i
.

and

log

K−n∏
i=j+1

i

n− 1 + i
=

K−n∑
i=j+1

− log

(
1 +

n− 1

i

)
≤ −(n− 1)

K−n∑
i=j+1

1

n− 1 + i
.

Define Hn =
∑n

i=1 1/i to be the n-th Harmonic number, we also have
K−n∑
i=j+1

1

i
= HK−n −Hj .

Therefore

−(n− 1)(HK−n −Hj) ≤ log

K−n∏
i=j+1

i

n− 1 + i
≤ −(n− 1)(HK−1 −Hn+j−1)
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Using that Hℓ ∼ log(ℓ) + γ +O(1/ℓ), where γ is the Euler–Mascheroni constant, we get(
j

K − n

)n−1

≲
K−n∏
i=j+1

i

n− 1 + i
≲

(
n+ j − 1

K − 1

)n−1

.

Therefore, we can bound
∑K−n

j=1

(
n+j−1
K−1

)n−1
using an integral bound

K−n∑
j=1

(
n+ j − 1

K − 1

)n−1

≤
∫ K−n

0

(
n+ x

K − 1

)n−1

dx ≤ e(K − 1)

n
.

From which follows that the original expression can be upper bounded by an expression scaling as
O(min(n, (K − 1)/2)).

Similarly, using that
∑K−n

j=1

(
j

K−n

)n−1
≥ (K − n)/n, we have that the lower bound scales as

min(n, (K − n)/2).
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B Algorithms

In this section we present some of the algorithms more in detail. These includes: ICPE, TaS, I-DPT
and I-IDS.

MDP Formulation for ICPE. Recall that in ICPE we treat trajectories of dataDt = (x1, a1, . . . , xt)
as sequences to be given as input to sequential models, such as Transformers. We treat trajectories
as states of an MDP M . An environment M can be then modeled as an MDP, which is a sequential
model characterized by a tuple M = (S,A, P ′, r,H⋆

M , ρ), where S is the state space, A the action
space, P ′ : S ×A → ∆(S) is the transition function, r : S → [0, 1] defines the reward function (to
be defined later), H⋆ ∈ H is the true hypothesis in M and ρ is the initial state distribution.

We define the state at time-step t as st = (Dt,∅t:N ), with ∅t:N indicating a null sequence of tokens
for the remaining steps up to some pre-defined horizon N , with s1 = (x1,∅1:N ).

To be more precise, letting (s∅t , a
∅
t ) denote, respectively, the null elements in the state and action at

time-step t, we have ∅t:t+k = {s∅t , a∅t+1, s
∅
t+1, · · · , a

∅
t+k−1, s

∅
t+k}.

The limit N is a practical upper bound on the horizon that limits the dimensionality of the state,
which is introduced for implementing the algorithm. The action space remains A, and the transition
dynamics P ′ are induced by (ρ, P ).

B.1 ICPE with Fixed Confidence

Recall that Dt = (x1, a1, . . . , xt−1, at−1, xt) and Ĥτ ∼ I(·|Dτ ). In the fixed confidence setting,
problems terminate at some random point in time τ , chosen by the learner, or when the maximum
horizon N is reached. We model this by giving πt an additional stopping action astop such that
πt : Dt → A ∪ {astop} so that the data collection processes terminates at the stopping-time
τ = min(N, tstop), with tstop := inf{t ∈ N : at = astop}.
Optimizing the dual formulation

min
λ≥0

max
I,π

Vλ(π, I)

can be viewed as a multi-timescale stochastic optimization problem: the slowest timescale updates
the variable λ, an intermediate timescale optimizes over I , and the fastest refines the policy π.

Algorithm 2 ICPE (In-Context Pure Exploration) - Fixed Confidence

1: Input: Tasks distribution P(M); confidence δ; learning rates α, β; initial λ and hyper-parameters T,N, η.
2: Initialize buffer B, networks Qθ, Iϕ and set θ̄ ← θ, ϕ̄← ϕ.
3: while Training is not over do
4: Sample environment M ∼ P(M) with hypothesis H⋆, observe s1 ∼ ρ and set t← 1.
5: for t = 1, . . . , N − 1 do
6: Execute action at = argmaxa Qθ(st, a) in M and observe next state st+1.
7: Add experience zt = (st, at, st+1, dt = 1{st+1 is terminal}, H⋆) to B.
8: If at = astop, break the loop.
9: end for

10: Update variable λ according to

λ← max (0, λ− β (Iϕ(H
⋆|sτ+1)− 1 + δ) . (9)

11: Sample batches B,B′ ∼ B and update θ, ϕ as

θ ← θ − α∇θ
1

|B|
∑
z∈B

[
1{a ̸=astop} (yλ(z)−Qθ(s, a))

2 + (rλ(zstop)−Qθ(s, astop))
2
]
, (10)

ϕ← ϕ+ α∇ϕ
1

|B′|
∑
z∈B′

[log(Iϕ(H
⋆|s)] . (11)

12: Update θ̄ ← (1− η)θ̄ + ηθ and every T steps set ϕ̄← ϕ.
13: end while
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MDP Formulation. We can use the MDP formalism to define an RL problem: we define a reward
r that penalizes the agent at all time-steps, that is rt = −1, while at the stopping-time we have
rτ = −1 + λEH∼I(·|sτ )[h(H;M)]. Hence, a trajectory’s return can be written as

Gτ =

τ∑
t=1

rt = −τ + 1 + r(sτ , aτ )︸ ︷︷ ︸
rτ

= −τ + λI(H⋆|sτ ).

Accordingly, one can define the Q-value of (π, I, λ) in a state-action pair (s, a) at the t-th step as
Qπ,I

λ (s, a) = Eπ
M∼P(M)

[∑τ
n=t rn

∣∣∣st = s, at = a
]
, with an ∼ πn(·|sn)

Optimization over ϕ. We treat each optimization separately, employing a descent-ascent scheme.
The distribution I is modeled using a sequential architecture parameterized by ϕ, denoted by Iϕ.
Fixing (π, λ), the inner maximization in eq. (1) corresponds to

max
ϕ

Eπ
M∼P(M)[h(Ĥτ ;M)], with Ĥτ ∼ Iϕ(·|sτ ).

We train ϕ via cross-entropy loss:

−
∑
H′

h(H ′;M) log Iϕ(H
′|sτ ) = − log Iϕ(H

⋆|sτ ),

averaged across environments. Alternatively, a MAP estimator may be used with the same loss.

Optimization over π. The policy π is defined as the greedy policy with respect to learned Q-values.
Therefore, standard RL techniques can learn the Q-function that maximizes the value in eq. (1)
given (λ, I). Denoting this function by Qθ, it is parameterized using a sequential architecture with
parameters θ.

We train Qθ using DQN [42, 65], employing a replay buffer B and a target network Qθ̄ parameterized
by θ̄. To maintain timescale separation, we introduce an additional inference target network Iϕ̄,
parameterized by ϕ̄, which provides stable training feedback for θ. When (I, λ) are fixed, optimizing
π reduces to maximizing:

−τ + λ log Iϕ(H
⋆|sτ ).

Hence, we define the reward at the transition z = (s, a, s′, d,H⋆) (with the convention that s′ ← s if
a = astop) as:

rλ(z) := −1 + dλ log Iϕ̄(H
⋆|s′),

where d = 1{z is terminal} (z is terminal if the transition corresponds to the last time-step in
a horizon, or a = astop). Furthermore, for a transition z = (s, a, s′, d,H⋆) we define zstop :=
z|(a,s′)←(astop,s) as the same transition z with a← astop and s′ ← s.

There is one thing to note: the logarithm in the reward is justified since the original problem can be
equivalently written as:

min
λ≥0

max
I,π
−Eπ

M∼P(M)[τ ] + λ
[
log
(
Pπ
M∼P(M)(h(Ĥτ ;M) = 1)

)
− log(1− δ)

]
,

after noting that we can apply the logarithm to the constraint in eq. (1), before considering the dual.
Thus the optimal solutions (I, π) remain the same.

Then, using classical TD-learning [63], the training target for a transition z = (s, a, s′, d,H⋆) can be
defined as:

yλ(z) = rλ(z) + (1− d)γmax
a′

Qθ̄(s
′, a′),

where γ ∈ (0, 1] is the discount factor.

As discussed earlier, we have a dedicated stopping action astop, whose value depends solely on history.
Thus, its Q-value is updated retrospectively at any state s using an additional loss:

(rλ(zstop)−Qθ(s, astop))
2
.

Therefore, the overall loss that we consider for θ for a single transition z can be written as

1{a̸=astop} (yλ(z)−Qθ(s, a))
2
+ (rλ(zstop)−Qθ(s, astop))

2
,
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where 1{a̸=astop} avoids double accounting for the stopping action.

To update parameters (θ, ϕ), we sample independent batches (B,B′) ∼ B from the replay buffer and
apply gradient updates as specified in eqs. (3) and (4) of algorithm 1. Target networks are periodically
updated, with ϕ̄← ϕ every M steps, and θ̄ using Polyak averaging: θ̄ ← (1− η)θ̄ + ηθ, η ∈ (0, 1).

Optimization over λ. Finally, we update λ by assessing the confidence of Iϕ at the stopping time
according to eq. (2), maintaining a slow ascent-descent optimization schedule for sufficiently small
learning rates.

Implementation with the MAP estimator. A practical implementation may consider to use the
MAP estimator Ĥτ = argmaxH Iϕ(H|sτ ), which is what we do in practice, since it results in a
lower variance estimator. We note that the loss function for Iϕ, and the reward for Qθ, as defined
above, still yield the same optimal solution.

Cost implementation. Lastly, in practice, we optimize a reward rλ(z) = −c + dIϕ̄(H
⋆|s′), by

setting c = 1/λ, and noting that for a fixed λ the RL optimization remains the same. The reason why
we do so is due to the fact that with this expression we do not have the product λEH′∼Iϕ [h(H

′;M)],
which makes the descent-ascent process more difficult.

We also use the following cost update

ct+1 = ct − β(1− δ − Iϕ(H
⋆
M |sτ+1)),

or ct+1 = ct − β(1 − δ − h(Ĥτ ;M)) if one uses the MAP estimator. To see why the cost can be
updated in this way, define the parametrization λ = e−x. Then the optimization problem becomes

min
x

max
I

min
π
−Eπ

M∼P(M)[τ ] + e−x
[
Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ

]
,

Letting ρ = Pπ
M∼P(M)

(
h(Ĥτ ;M) = 1

)
− 1 + δ, the gradient update for x with a learning rate β

simply is
xt+1 = xt − βe−xtρ,

implying that
− log(λt+1) = − log(λt)− βλtρ.

Defining ct = 1/λt, we have that

log(ct+1) = log(ct)− (βρ/ct)⇒ ct+1 = cte
βρ/ct .

Using then the approximation ex ≈ 1+x, we find ct+1 = ct +βρ = ct−β(1− δ− Iϕ(H
⋆
M |sτ+1)).

Training vs Deployment. Thus far, our discussion of ICPE has focused on the training phase. After
training completes, the learned policy π and inference network I can be deployed directly: during
deployment, π both collects data and determines when to stop—either by triggering its stopping
action or upon reaching the horizon N .

B.2 Other Algorithms

In this section we describe Track and Stop (TaS) [24], and some variants such as I-IDS, I-DPT and
the explore then commit variant of ICPE.

B.2.1 Track and Stop

Track and Stop (TaS, [24]) is an asymptotically optimal as δ → 0 for MAB problems. For simplicity,
we consider a Gaussian MAB problem with K actions, where the reward of each action is normally
distributed according to N (µa, σ

2), and let µ = (µa)a∈[K] denote the model. The TaS algorithm
consists of: (1) the model estimation procedure and recommender rule; (2) the sampling rule, dictating
which action to select at each time-step; (3) the stopping rule, defining when enough evidence has been
collected to identify the best action with sufficient confidence, and therefore to stop the algorithm.
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Estimation Procedure and Recommender Rule The algorithm maintains a maximum likelihood
estimate µ̂a(t) of the average reward for each arm based on the observations up to time t. Then, the
recommender rule is defined as ât = argmaxa µ̂a(t).

Sampling Rule. The sampling rule is based on the observation that any δ-correct algorithm, that is
an algorithm satisfying P(âτ = a⋆) ≥ 1− δ, with a⋆ = argmaxa µa, satisfies the following sample
complexity

E[τ ] ≥ T ⋆(µ)kl(1− δ, δ),

where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) and

(T ⋆(µ))−1 = sup
ω∈∆(K)

min
a ̸=a⋆

ωa⋆ωa

ωa + ωa⋆

∆2
a

2σ2
,

with ∆a = µa⋆−maxa̸=a⋆ µa. Interestingly, to design an algorithm with minimal sample complexity,

we can look at the solution ω⋆ = arg infω∈∆(K) T (ω;µ), with (T (ω))−1 = mina̸=a⋆
ωa⋆ωa

ωa+ωa⋆

∆2
a

2σ2 .

The solution ω⋆ provides the best proportion of draws, that is, an algorithm selecting an action a with
probability ω⋆

a matches the lower bound and is therefore optimal with respect to T ⋆. Therefore, an idea
is to ensure that Nt/t tracks ω⋆, where Nt is the visitation vector N(t) := [N1(t) . . . NK(t)]

⊤.

However, the average rewards (µa)a are initially unknown. A commonly employed idea [24, 33] is to
track an estimated optimal allocation ω⋆(t) = arg infω∈∆(K) T (ω; µ̂(t)) using the current estimate
of the model µ̂(t).

However, we still need to ensure that µ̂(t)→ µ. To that aim, we employ a D-tracking rule [24], whcih
guarantees that arms are sampled at a rate of

√
t. If there is an action a with Na(t) ≤

√
t−K/2 then

we choose at = a. Otherwise, choose the action at = argmina Na(t)− tω⋆
a(t).

Stopping rule. The stopping rule determines when enough evidence has been collected to determine
the optimal action with a prescribed confidence level. The problem of determining when to stop can
be framed as a statistical hypothesis testing problem [13], where we are testing between K different
hypotheses (Ha : (µa > maxb ̸=b µa))a.

We consider the following statistic L(t) = tT (N(t)/t; µ̂(t))−1, which is a Generalized Likelihood
Ratio Test (GLRT), similarly as in [24]. Comparing with the lower bound, one needs to stop as soon
as L(t) ≥ kl(δ, 1− δ) ∼ ln(1/δ). However, to account for the random fluctuations, a more natural
threshold is β(t, δ) = ln((1 + ln(t))/δ), thus we use L(t) ≥ β(t, δ) for stochastic MAB problems.
We also refer the reader to [31] for more details.

B.2.2 I-IDS

We implement a variant of Information Directed Sampling (IDS) [57], where we use the inference
network Iϕ learned during ICPE training as a posterior over optimal arms. This approach enables
IDS to exploit latent structure in the environment without explicitly modeling it via a probabilistic
model; instead, the learned I-network implicitly captures such structure.

By using the same inference network in both ICPE and I-IDS, we directly compare the exploration
policy learned by ICPE to the IDS heuristic applied on top of the same posterior distribution. While
computing the expected information gain in IDS requires intractable integrals, we approximate them
using a Monte Carlo grid of 30 candidate reward values per action. The full pseudocode for I-IDS is
given in Algorithm 3.

B.2.3 I-DPT

We implement a variant of DPT [38] using the inference network. The idea is to act greedily with
respect to the posterior distribution I at inference time.

First, we train I using ICPE. Then, at deployment we act with respect to I: in round t we selection
action at = argmaxH I(H|Dt). Upon observing xt+1, we update Dt+1 and stop as soon as
argmaxH I(H|Dt) ≥ 1− δ.
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B.3 Transformer Architecture

Here we briefly describe the architecture of the inference network I and of the network Q.

Both networks are implemented using a Transformer architecture. For the inference network, it is
designed to predict a hypothesis H given a sequence of observations. Let the input tensor be denoted
by X ∈ RB×H×m, where:

• B is the batch size,
• H is the sequence length (horizon), and
• m = (d+ |A|), where d is the dimensionality of each observation xt.

The inference network operates as follows:

1. Embedding Layer: Each observation vector mt = (xt, at) is first embedded into a higher-
dimensional space of size de using a linear transformation followed by a GELU activation:
ht = GELU(Wembedmt + bembed), ht ∈ Rde .

2. Transformer Layers: The embedded sequence h ∈ RB×H×de is then passed through
multiple Transformer layers (specifically, a GPT-2 model configuration). The Transformer
computes self-attention over the embedded input to model dependencies among observations:

h′ = Transformer(h), h′ ∈ RB×H×de .

3. Output Layer: The final hidden state corresponding to the last element of the sequence
(h′:,−1,:) is fed into a linear output layer that projects it to logits representing the hypotheses:

o = Wouth
′
:,−1,: + bout, o ∈ RB×|H|.

4. Probability Estimation: The output logits are transformed into log-probabilities via a
log-softmax operation along the last dimension

log p(H|X) = log_softmax(o).

For Q, we use the same architecture, but do not take a log-softmax at the final step.

Algorithm 3 I-IDS

1: Input: Pre-trained inference network Iϕ; prior means and variances µa, σ
2
a for all a ∈ A; target

error threshold δ
2: Initialize: fa(x) = N (x | µa, σ

2
a) for each a

3: for t = 1, 2, . . . do
4: if maxa Iϕ(a | Dt−1) ≥ 1− δ then
5: return argmaxa Iϕ(a | Dt−1)
6: end if
7: for each arm a ∈ A do
8: Approximate information gain:

gt(a) = H (Iϕ(· | Dt−1))− Er∼p(r|a,Dt−1) [H (Iϕ(· | Dt−1, a, r))]

9: end for
10: Select action at = argmaxa gt(a)
11: Observe reward rt
12: Update dataset Dt = Dt−1 ∪ {(at, rt)}
13: end for
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Input X ∈ RB×H×d

Embedding Layer Linear + GELU

Transformer
(GPT-2)

Output LayerLinear

Log-softmax
log p(H|X)

Last hidden state

Figure 5: Model architecture for the inference network I (similarly for Q).

C Experiments

This section provides additional experimental results, along with detailed training and evaluation
protocols to ensure clarity and reproducibility. All experiments were conducted using four NVIDIA
A100 GPUs.

C.1 Bandit Problems

Here, we provide the implementation and evaluation details for the bandit experiments reported in
Section 3.1, covering deterministic, stochastic, and structured settings.

Model Architecture and Optimization. For all bandit tasks, ICPE uses a Transformer with 3
layers, 2 attention heads, hidden dimension 256, GELU activations, and dropout of 0.1 applied
to attention, embeddings, and residuals. Layer normalization uses ϵ = 10−5. Inputs are one-hot
action-reward pairs with positional encodings. Models are trained using Adam with learning rates
between 1× 10−4 and 1× 10−6, and batch sizes from 128 to 1024 depending on task complexity.

C.1.1 Stochastic Bandits Problems

In the stochastic Gaussian bandit setting, we evaluate ICPE on best-arm identification tasks with
K ∈ {4, 6, 8, . . . , 14}. Arm means are sampled uniformly from [0, 0.4K], with a guaranteed
minimum gap of 1/K between the top two arms. All arms have a fixed reward standard deviation of
0.5. The target confidence level is set to δ = 0.1.

We compare ICPE against several widely used baselines: Top-Two Probability Sampling (TTPS) [29],
Track-and-Stop (TaS) [24], Uniform Sampling, and I-DPT. For I-DPT, stopping occurs when the
predicted optimal arm has estimated confidence at least 1 − δ. For TTPS and TaS, we apply the
classical stopping rule based on the characteristic time T ∗(µ̂t):

t · T ∗(µ̂t) ≥ log

(
1 + log t

δ

)
.

Each method is evaluated over three seeds, with 30 environments, and 30 trajectories per environment.
95% confidence intervals were computed with hierarchical bootstrapping.
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C.1.2 Bandit Problems with Hidden Information

Magic Action Environments We evaluate ICPE in bandit environments where certain actions
reveal information about the identity of the optimal arm, testing its ability to uncover and exploit
latent structure under the fixed-confidence setting.

Each environment contains K = 5 arms. Non-magic arms have mean rewards sampled uniformly
from [1, 5], while the mean reward of the designated magic action (always arm 1) is defined as
µ1 = ϕ(argmaxa ̸=1 µa) with ϕ(i) = i/K. The magic action is not the optimal arm, but it encodes
information about which of the other arms is. To control the informativeness of this signal, we vary
the standard deviation of the magic arm σ1 ∈ {0.0, 0.1, . . . , 1.0}, while fixing the standard deviation
of all other arms to σ = 1− σ1.

ICPE is trained under the fixed-confidence setting with a target confidence level of 0.9. For each
σ1, we compare ICPE’s sample complexity to two baselines: (1) the average theoretical lower
bound computed for the problem computed via averaging the result of Theorem A.2 over numerous
environmental mean rewards, and (2) I-IDS, a pure-exploration information-directed sampling
algorithm that uses ICPE’s I-network for posterior estimation. All methods are over 500 environments,
with 10 trajectories per environment. 95% confidence intervals are computed using hierarchical
bootstrapping with two levels.

Beyond the exploration efficiency analysis shown in Figure 3a, we also assess the correctness of
each method’s final prediction and its usage of the magic action. As shown in Figure 6a, both
ICPE and I-IDS consistently achieve the target accuracy of 0.9, validating their reliability under the
fixed-confidence formulation.

Figure 6b plots the proportion of total actions that were allocated to the magic arm across different
values of σ1. While both methods adapt their reliance on the magic action as its informativeness
degrades, I-IDS tends to abandon it earlier. This behavior suggests that ICPE is better able to retain
and exploit structured latent information beyond what is captured by simple heuristics for expected
information gain.
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Figure 6: (a) Final prediction accuracy across varying levels of noise in the magic action (σ1). Both
ICPE and I-IDS consistently achieve the target confidence threshold of 0.9. (b) Percentage of actions
allocated to the magic arm as a function of σ1. ICPE continues to exploit the magic action longer
than I-IDS, suggesting more robust use of latent structure.

Magic Chain Environments To assess ICPE’s ability to perform multi-step reasoning over latent
structure, we evaluate it in environments where identifying the optimal arm requires sequentially
uncovering a chain of informative actions. In these magic chain environments, each magic action
reveals partial information about the next, culminating in identification of the best arm.

We use K = 10 arms and vary the number of magic actions n ∈ {1, 2, . . . , 9}. Mean rewards for
magic actions are defined recursively as:

µij =

ϕ(ij+1), if j = 1, . . . , n− 1,

ϕ
(
argmaxa/∈{i1,...,in} µa

)
, if j = n,
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where ϕ(i) = i/K, and the remaining arms have mean rewards sampled uniformly from [1, 2]. All
rewards are deterministic (zero variance).

ICPE is trained under the fixed-confidence setting with δ = 0.99. For each n, five models are trained
across five seeds. We compare ICPE’s average stopping time to the theoretical optimum (computed
via Theorem A.4) and to the I-IDS baseline equipped with access to the I-network. Each model
is evaluated over 1000 test environments per seed. 95% confidence intervals are computed using
hierarchical bootstrapping.

In interpreting the results from Figure 3b, we observe that for environments with one or two magic
actions, ICPE reliably learns the optimal policy of following the magic chain to completion. In these
cases, the agent is able to identify the optimal arm without ever directly sampling it, by exploiting the
structured dependencies embedded in the reward signals of the magic actions. Figure 7 illustrates a
representative trajectory from the two-magic-arm setting, where the first magic action reveals the
location of the second, which in turn identifies the optimal arm. The episode terminates without
requiring the agent to explicitly sample the best arm itself.

Figure 7: Example trajectory in the 2-magic-arm environment. ICPE follows the magic chain: the
first magic action reveals the second, which identifies the optimal arm.

For environments with more than two magic actions, however, ICPE learns a different strategy. As the
length of the magic chain increases, the expected sample complexity of following the chain from the
start becomes suboptimal. Instead, ICPE learns to randomly sample actions until it encounters one of
the magic arms and then proceeds to follow the chain from that point onward. This behavior represents
an efficient, learned compromise between exploration cost and informativeness. Figure 8 shows an
example trajectory from the six-magic-arm setting, where the agent initiates random sampling until it
lands on a magic action, then successfully follows the remaining chain to identify the optimal arm.

Figure 8: Example trajectory in the 6-magic-arm environment. Rather than starting from the first
magic action, ICPE samples randomly until finding a magic action and then follows the chain to the
optimal arm.
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C.2 Exploration on Feedback Graphs

In the standard bandits setting we studied in Section 3.1, the learner observes the reward of the selected
action, while in full-information settings, all rewards are revealed. Feedback graphs generalize this
spectrum by specifying, via a directed graph G which additional rewards are observed when a
particular action is chosen. Each node corresponds to an action, and an edge from u to v means that
playing u may reveal feedback about v.

While feedback graphs have been widely studied for regret minimization [40], their use in pure
exploration remains relatively underexplored [55]. We study them here as a challenging and structured
testbed for in-context exploration. Unlike unstructured bandits, these environments contain latent
relational structure and stochastic feedback dependencies that must be inferred and exploited to
explore efficiently.

Formally, we define a feedback graph as an adjacency matrix G ∈ [0, 1]K×K , where Gu,v denotes
the probability that playing action u reveals the reward of action v. The learner observes a feedback
vector r ∈ RK , where each coordinate is revealed independently with probability Gu,v:

rv ∼
{
N (µv, σ

2), with probability Gu,v,

no observation, otherwise.

This setting allows us to test whether ICPE can learn to uncover and leverage latent graph struc-
ture to guide exploration. We evaluate performance on best-arm identification tasks across three
representative feedback graph families:

• Loopy Star Graph (Figure 9): A star-shaped graph with self-loops, parameterized by
(p, q, r). The central node observes itself with probability q, one neighboring node with
probability p, and all others with probability r. When p is small, it may be suboptimal to
pull the central node, requiring the agent to adapt its strategy accordingly.

• Ring Graph (Figure 10): A cyclic graph where each node observes its right neighbor with
probability p and its left neighbor with probability 1 − p. Effective exploration requires
reasoning about which neighbors provide more informative feedback.

• Loopless Clique Graph (Figure 11): A fully connected graph with no self-loops. Edge
probabilities are defined as:

Gu,v =


0 if u = v,
p
u if v ̸= u and v is odd,
1− p

u otherwise.

Here, informativeness varies systematically with action index, requiring the learner to infer
which actions are most useful.

These environments offer a diverse testbed for evaluating whether ICPE can uncover and exploit
complex feedback structures without direct access to the underlying graph.
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We tested ICPE in a fixed-confidence setting, using the same graph families but setting the optimal
arm’s mean to 1 and all others to 0.5 to facilitate faster convergence. ICPE was trained for K =
4, 6, . . . , 14 with a target error rate of δ = 0.1. We compared it to Uniform Sampling, EXP3.G, and
Tas-FG using a shared stopping rule from [55].
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Figure 12: Sample complexity comparison under the fixed-confidence setting for: (a) Loopy Star, (b)
Loopless Clique, and (c) Ring graphs.

As shown in Figure 12, ICPE consistently achieves significantly lower sample complexity than all
baselines. This suggests that ICPE is able to meta-learn the underlying structure of the feedback
graphs and leverage this knowledge to explore more efficiently than uninformed strategies. These
results align with expectations: when environments share latent structure, learning to explore from
experience offers a substantial advantage over fixed heuristics that cannot adapt across tasks.

C.3 Meta-Learning Binary Search

To test ICPE’s ability to recover classical exploration algorithms, we evaluate whether it can au-
tonomously meta-learn binary search.

We frame the task as a structured multi-armed bandit problem where the optimal arm (i.e., the
target number) is uniformly drawn from 1, . . . ,K. Pulling the correct arm yields a reward of +10,
while pulling an arm above or below the target yields −1 or +1, respectively—providing directional
feedback. The agent must learn to interpret and exploit this structure to efficiently locate the target.

We train ICPE under the fixed-confidence setting for K = 23, . . . , 28, using 150,000 in-context
episodes and a target error rate of δ = 0.01. Evaluation was conducted on 100 held-out tasks per
setting. We report the minimum accuracy, mean stopping time, and worst-case stopping time, and
compare against the theoretical binary search bound O (log2 K).

Number of Actions (K) Minimum Accuracy Mean Stopping Time Max Stopping Time log2 K

8 1.00 2.13± 0.12 3 3
16 1.00 2.93± 0.12 4 4
32 1.00 3.71± 0.15 5 5
64 1.00 4.50± 0.21 6 6

128 1.00 5.49± 0.23 7 7
256 1.00 6.61± 0.26 8 8

Table 2: ICPE performance on the binary search task as the number of actions K increases.

As shown in Table 2, ICPE consistently achieves perfect accuracy with worst-case stopping times that
match the optimal log2(K) rate, demonstrating that it has successfully rediscovered binary search
purely from data. While simple, this task illustrates ICPE’s broader potential to learn efficient search
strategies in domains where no hand-designed algorithm is available.
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