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A Segmenter

In the manuscript, we only present the proposed multi-scale feature grouping (MFG) module for
space limitation. In this section, we further describe in detail the structure of the novel segmenter
(see Fig. 1), which integrates MFG with the encoder and decoder architecture utilized in FEDER [1].

Encoder. Following [1], we employ ResNet50 [2] as the basic encoder E. Given a concealed image
Xi with the size of H ×W , we start by using E to encode Xi into a set of features {F̃k

i }4k=0 with
the resolution of H

2k+1 × W
2k+1 . Afterward, we follow the practice in [1] and cascade R-Net [3] R to

the basic encoder to transform {F̃k
i }4k=1 to {Fk

i }4k=1 for channel reduction, which is a more compact
feature space with the channel number of 64. Besides, given that F̃4

i is rich in semantic information,
we sent it to an atrous spatial pyramid pooling (ASPP) [4] As to generate a coarse prediction map
Ỹ5

i to guide the segmentation: Ỹ5
i = As(F̃

4
i ).

MFG. To balance performance and efficiency, we only apply MFG to the bottom layer and get Ḟ4
i ,

because the semantic information enriched by the deep features in the bottom layer is most conducive
to MFG to mine the feature coherence. To aggregate the cross-layer features, we refer to the practice
in [1] and employ the joint attention module JA(•), which consists of spatial attention [5] and channel
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Figure 1: Framework of the proposed segmenter with MFG.

(a) Origin (b) GT (c) Ours (d) SCOD (e) TEL (f) SCWS (g) WSSA (h) SAM-P

Figure 2: Qualitative analysis of MFG and other five SOTAs on SOD with point supervision.

attention [6]:
F̈k

i = JA(Fk
i , up(F̈

k+1
i )), (1)

where F̈4
i = Ḟ4

i and up(•) denotes the up-sampling operation. Having combined the cross-layer
features, we further define the latent features {F̂k

i }3k=1 conveyed to the decoder:

F̂k
i = conv1(cat(Fk

i , F̈
k
i )), (2)

where cat(•) denote the concatenation operation and conv1(•) means 1× 1 convolution. F̂4
i = Ḟ4

i .

Decoder. The prediction maps of segmenters trained with sparse annotations often contain low-
confidence ambiguous regions due to the complex scenes of concealed objects and the limited
discriminative capacity of the segmenter. To address this issue, we follow the architecture of the
decoder used in FEDER [1], which utilizes the prediction map of the previous decoder to excavate
cues from the low-confidence regions. By doing so, the segmenter can more effectively detect the
undetected parts in these regions and thus improve the segmentation performance. Therefore, the
prediction map {Ỹk

i }4k=1 is defined as follows:

Ỹk
i = conv3(RCAB(F̂k

i ⊙ rv(S(rp(Ỹk+1
i ))))), (3)

where rp(•), S(•), rv(•), ⊙, and conv3(•) denote repeat, Sigmoid, reverse (element-wise subtraction
with 1), Hadamard product, and 3 × 3 convolution. RCAB(•) is the residual channel attention
block [7] and we employ this block to emphasize the noteworthy information. The final segmentation
result Y′

i is Ỹ1
i .

B Experiments

B.1 Weakly-supervised Salient Object Detection

In the manuscript, we have verified the superiority of our method in weakly-supervised concealed
object segmentation. In this section, we further validate our performance on weakly-supervised
salient object detection.

Quantitative analysis. We employ S-DUTS [9] and P-DUTS [13] to train the methods with scribble
and point supervisions and evaluate the segmentation performance on five common benchmarks, i.e.,
DUT-OMRON [14], DUTS-test [15], ECSSD [16], HKU-IS [17], and PASCAL-S [18].
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Table 1: Quantitative comparisons of our method and other 5 ResNet50-based SOTAs on the SOD
task with scribble and point supervisions. The best two results are in red and blue fonts.

DUT-OMRON DUTS-test ECSSD HKU-IS PASCAL-SMethods
M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑

Scribble Supervision

SAM-F [8] 0.077 0.696 0.729 0.734 0.103 0.713 0.741 0.737 0.103 0.728 0.741 0.744 0.119 0.651 0.657 0.657 0.116 0.695 0.716 0.712
SAM-S [8] 0.060 0.772 0.868 0.822 0.048 0.817 0.845 0.783 0.062 0.834 0.886 0.871 0.051 0.847 0.919 0.803 0.072 0.782 0.793 0.795
WSSA [9] 0.068 0.713 0.840 0.785 0.062 0.747 0.857 0.803 0.059 0.865 0.901 0.865 0.047 0.858 0.927 0.865 0.092 0.788 0.831 0.791
SCWS [10] 0.060 0.764 0.862 0.812 0.049 0.823 0.890 0.841 0.049 0.900 0.908 0.882 0.038 0.896 0.938 0.882 0.077 0.823 0.846 0.813
TEL [11] 0.058 0.753 0.864 0.818 0.045 0.842 0.901 0.863 0.039 0.921 0.935 0.907 0.033 0.934 0.944 0.906 0.065 0.834 0.883 0.858
SCOD [12] 0.061 0.762 0.865 0.814 0.046 0.830 0.892 0.855 0.042 0.917 0.922 0.910 0.035 0.933 0.942 0.900 0.069 0.828 0.864 0.847
SCOD+ 0.057 0.774 0.872 0.822 0.042 0.841 0.907 0.862 0.038 0.930 0.935 0.917 0.032 0.935 0.947 0.906 0.062 0.838 0.881 0.855
Ours 0.050 0.798 0.885 0.844 0.034 0.870 0.931 0.890 0.032 0.942 0.955 0.926 0.026 0.935 0.958 0.922 0.055 0.869 0.914 0.871

Point Supervision

SAM-F [8] 0.077 0.696 0.729 0.734 0.103 0.713 0.741 0.737 0.103 0.728 0.741 0.744 0.119 0.651 0.657 0.657 0.116 0.695 0.716 0.712
SAM-P [8] 0.075 0.713 0.738 0.759 0.085 0.768 0.782 0.764 0.090 0.787 0.785 0.776 0.074 0.734 0.704 0.698 0.102 0.735 0.738 0.730
WSSA [9] 0.082 0.690 0.727 0.708 0.085 0.742 0.756 0.733 0.087 0.824 0.831 0.806 0.080 0.786 0.715 0.718 0.104 0.733 0.720 0.712
SCWS [10] 0.076 0.668 0.720 0.720 0.080 0.747 0.769 0.752 0.089 0.815 0.828 0.797 0.076 0.801 0.773 0.738 0.098 0.752 0.742 0.733
TEL [11] 0.073 0.699 0.736 0.717 0.074 0.758 0.775 0.761 0.078 0.857 0.840 0.813 0.071 0.817 0.785 0.764 0.093 0.761 0.760 0.748
SCOD [12] 0.078 0.687 0.729 0.705 0.079 0.741 0.769 0.739 0.082 0.834 0.809 0.792 0.074 0.808 0.769 0.753 0.097 0.749 0.733 0.729
SCOD+ 0.075 0.694 0.734 0.712 0.076 0.766 0.778 0.747 0.080 0.851 0.820 0.800 0.071 0.816 0.781 0.758 0.094 0.758 0.747 0.741
Ours 0.064 0.741 0.828 0.790 0.052 0.821 0.880 0.837 0.048 0.910 0.920 0.891 0.048 0.884 0.903 0.863 0.075 0.814 0.865 0.824

C
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D
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Figure 3: Visualized results for the three WSCOS tasks with point supervision.

As depicted in Table 1, the proposed MFG achieves the leading place in all benchmarks and our
WS-SAM framework enhances the segmentation performance of SCOD in 3.0% and 1.9% with
scribble and point supervision, which demonstrates the advancement of our MFG and WS-SAM.

Qualitative analysis. In Fig. 1, MFG can better ensure the integrity and comprehensiveness of the
prediction maps, which demonstrates the superiority of the proposed WS-SAM framework and MFG
model. Notice that the effectiveness of the learnable SAM, i.e., SAM-S, is significantly improved
in the SOD task. This is likely due to the fact that SOD typically has more obvious discrimination
features compared to the COS tasks, making it easier to obtain performance gains through fine-tuning.

B.2 Weakly-supervised Concealed Object Segmentation

Result visualization. We provide more result visualizations of the weakly-supervised concealed
object segmentation. Fig. 3 shows the prediction maps with point supervision. As exhibited in
Fig. 3, we discover that our technique produces more complete results than existing segmentors
and localizes multiple objects more comprehensively. This advancement performance is attributed
not only to the accurate pseudo-labels generated by our WS-SAM framework, which improves the
discrimination capacity of the segmenter, but also to the proposed MFG module that can adaptively
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Figure 4: Masks of SAM with different augmented images. We inversely transform the masks to
keep consistent with the original image. It is observed that fused masks contain more accurate and
complete segmentation information.

enhance feature coherence from a clustering aspect, thus alleviating incomplete segmentation and
facilitating multi-object segmentation.

B.3 Ablation Study and Analysis

Visualization of masks of different augmented images. We provide more visualizations to explore
the impact of data augmentations on segmentation. As exhibited in Fig. 4, it is evident that the
generated masks exhibit considerable shape variations. Despite undergoing image transformations,
certain regions consistently exhibit overlapping predictions, which align with accurately predicted
foreground regions by SAM. Furthermore, these masks demonstrate complementarity, wherein
some foreground regions missed by one mask are captured by other masks, enhancing the overall
coverage of the foreground objects. Therefore, it is desirable to randomly combine the masks of those
augmented images for pseudo label generation, which highlights the noteworthy parts and ensures
the comprehensiveness of the generated pseudo labels.
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Figure 5: Visualization of pseudo-labels with pixel-level weighting and image-level selection.
Weighted masks mean multiplying M̃i and 1− Ẽi, which assign higher weights to reliable pixels.
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Figure 6: Parameter analysis on C.

Visualization of filtered out pseudo-labels. In Fig. 5, we present the visualization of low-quality
pseudo-labels that are filtered out, along with the corresponding weighted masks. For comparison,
we also provide a high-quality pseudo-label, which makes up the majority of the training set. As
exhibited in Fig. 5, we observe that for images whose absolute uncertainty Ua exceeds the threshold
τa, a large number of low-confidence regions often appear in the generated pseudo-labels. For those
images whose relative uncertainty Ur is higher than the threshold τr, the proportion of low-confidence
regions to the estimated foreground regions is often higher, particularly in small objects. At this
point, the corresponding pixel-level mask may not accurately filter out the correct pixels because
even those pixels in those complex images that SAM is very certain of in the pseudo-labels may still
carry a risk of misclassification. Therefore, filtering out these images during training can improve the
segmentation performance and generalization ability of the segmenter.

Parameter analysis on point number C. In the manuscript, for scribble supervision, we pro-
pose a nine-box strategy, namely constructing the minimum outer wrapping rectangle of the fore-
ground/background scribble and dividing it into a nine-box grid, to sample one point in each box and
send them to SAM for segmentation mask generation. In this section, we conduct an experiment on
the training set of COD to investigate the effect of the number C of key points sampled for scribble
labels on the quality of the generated pseudo-labels. To ensure the comprehensiveness and validity
of our findings, we perform ten trials and calculate the average Fβ score. Fig. 6 shows that the
proposed nine-box strategy results in higher quality pseudo-labels compared to randomly selected
points. Moreover, as the quality of the generated pseudo-labels becomes stable when C = 9, we set
the point number C to 9 in this paper. We also observe that our nine-box strategy is a highly stable
approach with minimal standard deviation.

Performance of MFG in different stages. To balance performance and efficiency, we only apply
MFG to the bottom layer and get Ḟ4

i , because the semantic information enriched by the deep features
in the bottom layer is most conducive to MFG to mine the feature coherence. We verify this argument
by ablating the module in different stages. In Table 2, the notation (∗, ∗, ∗, ∗) means whether MFG
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Table 2: Effect of the MFG module.

COD10KMethods
M ↓ Fβ ↑ Eϕ ↑ Sα ↑

(0,0,0,0) 0.044 0.684 0.857 0.780
(0,0,0,1) 0.038 0.719 0.878 0.803
(0,0,1,1) 0.038 0.716 0.881 0.802
(0,1,1,1) 0.038 0.717 0.882 0.802
(1,1,1,1) 0.037 0.720 0.876 0.800

Table 3: Point-supervised results of MFG with
different point annotation manners.

COD10KMethods
M ↓ Fβ ↑ Eϕ ↑ Sα ↑

Center 0.040 0.726 0.858 0.791
Edge1 0.043 0.709 0.850 0.786
Edge2 0.043 0.713 0.847 0.787
Random1 0.039 0.724 0.857 0.793
Random2 0.039 0.729 0.854 0.785

Table 4: Ablations of WS-SAM with SAM-F.
Baseline MAF PLW ILS M ↓ Fβ ↑ Eϕ ↑ Sα ↑

✓ 0.052 0.674 0.838 0.737
✓ ✓ 0.047 0.689 0.853 0.772
✓ ✓ ✓ 0.044 0.697 0.866 0.793
✓ ✓ ✓ ✓ 0.038 0.719 0.878 0.803

Table 5: Ablations of WS-SAM with SAM-S.
Baseline MAF PLW ILS M ↓ Fβ ↑ Eϕ ↑ Sα ↑

✓ 0.049 0.685 0.847 0.743
✓ ✓ 0.046 0.692 0.858 0.780
✓ ✓ ✓ 0.043 0.701 0.870 0.795
✓ ✓ ✓ ✓ 0.039 0.722 0.875 0.802

is retained in the sth layer, e.g., (0, 0, 0, 1) indicates MFG is retained in the 4th stage. As shown in
Table 2, MFG achieves promising performance when MFG is retained only in the 4th stage, and
additional MFG modules provide limited gains. Therefore, we select the version of (0, 0, 0, 1) to
balance the performance and effectiveness.

Impact of data annotation with point supervision. Table 3 presents the detailed segmentation results
of MFG under different point annotation manners, where we find small variations in segmentation
results for the center and randomly selected points, further proving the stability of our WS-SAM
framework. However, when the point is selected on the edge, the segmentation performance declines,
as concealed objects with blurred edges often result in inaccurate pseudo-labels generated by SAM.

Why not employ the fine-tuned SAM to generate pseudo-labels? Fine-tuned versions of SAM,
namely SAM-S and SAM-P, have demonstrated improved performance in the inference phase
compared to the fixed SAM (SAM-F). However, as presented in Tables 4 and 5, the use of the pseudo-
labels generated by SAM-S only brings limited improvements for MFG, compared to utilizing
those labels generated by SAM-F. We then conduct detailed breakdown ablations to investigate
the reasons. As illustrated in Tables 4 and 5, when using only baseline, WS-SAM with SAM-S
achieves higher performance than that with SAM-F, which indicates the effectiveness of the utilized
fine-tuning strategy. Nevertheless, such leadership is mitigated by the addition of the MAF and
PLF mechanisms, demonstrating the advancement of our proposed MAF and PLF mechanisms.
Furthermore, when further combining the ILS strategy, the version with SAM-F even has better
performance on COD10K. This is not only attributed to the image filtration strategy of ILS but also
indicates that being trained with the pseudo-labels generated by SAM-S can harm the generalization
of the segmenter. Such harm may arise from the sparse annotations or limited data in the finetuning
process. To sum up, we only use the fixed SAM in this paper, which has already achieved outstanding
performance in the field of weakly-supervised COS. We leave the exploration of how to use a
learnable SAM to further enhance the weakly-supervised COS task as a future work.

C Limitations and Future Works

C.1 WS-SAM

In our future work, as mentioned above, we plan to design a more refined fine-tuning strategy for
SAM to provide targeted changes for the intrinsic similarity of concealed objects [19], which will
improve the quality of the pseudo-labels provided. Additionally, we will explore modifying the
network architecture to enable real-time adjustment of SAM based on the feedback of the segmenter.
This will allow the two components, namely learnable SAM and segmenter, to synergistically enhance
each other during training. In addition, we also consider extending our framework to other settings,
such as unsupervised learning [20] and semi-supervised learning [21].
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C.2 MFG

MFG heavily relies on the features already extracted by the segmenter for clustering. In this case,
we aim to enhance the discriminative feature extraction capacity of the segmenter to ensure that
the MFG module can better mine the discriminative cues of concealed objects. Moreover, we will
consider utilizing our MFG to extract more semantic-level information [22–25] and thus extend
this technique to be a plug-and-play strategy to empower more fields [26–29]. Additionally, we
will consider using other self-excavation techniques to mine the valuable information [30–33] or
incorporating more powerful architectures, e.g., dynamic networks [34–36], transformer [37, 38],
and diffusion model [29, 39], with more strategic pretrain networks [40, 41]. Furthermore, it would
be desirable to employ image quality assessment techniques [42–44] to distinguish hard samples,
which helps to improve the quality of the generated pseudo labels.
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