Under review as a conference paper at ICLR 2025

A DETAILED BACKGROUND AND RELATED WORKS

A.1 PRIVATE LLM INFERENCE

Recently, private LLM inference has attracted an increasing amount of research attention. PUMA
(Dong et al.} 2023) proposes a series of 3PC protocols for both linear and non-linear functions to
support private LLM inference, even under the scale of LLaMA-7B. BumbleBee (Lu et al., 2023)
proposes homomorphic encryption (HE)-based protocols that enable the multiplication of large ma-
trices and efficient protocols for non-linear functions similar to PUMA. CipherGPT (Hou et al.,
2023) uses subfield vector oblivious linear evaluation (sVOLE) to reduce the communication of
MatMuls significantly. BOLT (Pang et al.| 2023) proposes a baby-step giant-step (BSGS) strategy
that reduces the number of rotations on ciphertexts. SIGMA (Gupta et al., [2023) achieves pri-
vate GPT inference with function secret sharing (FSS) and accelerates the computation on GPUs.
PermLLM (Zheng et al.| 2024) proposes an efficient protocol for non-linear functions based on the
random permutation. However, they still incur significant overhead, especially on long sequences.

There are also works directly replacing expensive non-linear functions, e.g., Softmax and GeLU
with MPC-friendly operations. For instance, MPCFormer (L1 et al., 2022) simplifies Softmax by
replacing exponential with MPC-friendly quadratic operation. MPCViT (Zeng et al.|[2023)) proposes
to selectively replace exponential in Softmax with ReLU through neural architecture search. (Liu &
Liul 2023)) directly uniformly replaces GeLU with ReLU and replaces exponential in Softmax with
ReLU. Although these methods achieve high inference efficiency, they cannot avoid finetuning or re-
training to preserve the model performance, making LLM development impractical. In conclusion,
the above works still suffer from heavy overhead. Moreover, these works always handle full-length
contexts during the LLM generation process. To solve this problem, our work aims to compress the
KV cache with MPC-friendly optimizations. Note that our proposed method can also be applied to
different protocol frameworks for efficiency improvement.

A.2 KV CACHE COMPRESSION

When tackling the LLM generation tasks, especially in long-context scenarios, the KV cache in the
attention module becomes the most significant bottleneck due to the increasing sequence length.
Therefore, how to effectively reduce the size of the KV cache is a high priority. System-level opti-
mizations such as FlashAttention (Dao et al.,[2022), FlashAttention-2 (Dao, |2023)), FlashAttention-3
(Shah et al.,|2024)), and PagedAttention (Kwon et al., 2023) have been proposed to alleviate the prob-
lem. Meanwhile, many recent research efforts have been devoted to algorithm-level optimizations.
For example, quantization methods (Hooper et al., [2024; |[Zhang et al., [2024b; |Kang et al., 2024;
He et al., 2024; Liu et al., 2024d)) have been proposed to compress KV cache to 1 ~ 4 bits, linear
attention mechanisms (Kitaev et al.| 2020; |Zeng et al.| 2023} |(Choromanski et al., 2020) have been
proposed to reduce the quadratic complexity w.r.t. the sequence length. In this work, we follow
FlashAttention (Dao et al., 2022) to save the GPU memory and focus on another research line of
algorithm-level optimization called KV cache eviction, which is designed to reduce the number of
tokens and enable sparse attention without extra finetuning.

KV cache eviction can be roughly categorized into 3 classes: 1) fixed-pattern algorithm: the po-
sition of important tokens is pre-defined before inference and remains consistent across decoding
steps. However, this algorithm is not flexible for different LLMs and contexts (Xiao et al., 2023}
Beltagy et al., [2020); 2) static algorithm: tokens are statically discarded and cannot be recovered
in the subsequent decoding steps. This algorithm is usually efficient but suffers from significant
performance degradation when the compression ratio is high (Zhang et al.,2024d;|Liu et al.| [2024c;
Ge et al.| [2023)); 3) dynamic algorithm: tokens are dynamically selected across different decod-
ing steps. This algorithm is much more flexible but the dynamic selection usually involves more
expensive operations (Xiao et al.,[2024;|Liu et al., 2024bj Tang et al., 2024b)).

Here, we introduce recent works of KV cache eviction. StreamingLL.M (Xiao et al.,|2023) proposes
to keep a few initial tokens along with the recent tokens to recover the long-context performance.
RazorAttention (Tang et al.,|2024a) theoretically analyzes the scope of effective attention vision for
each head. Scissorhands (Liu et al.| [2024c), H20 (Zhang et al.,|2024d), ALISA (Zhao et al.,|2024)),
spAtten (Wang et al., [2021)), and TOVA (Oren et al., 2024) use the accumulated attention score of
the historical tokens to preserve a small subset of KV cache. FastGen (Ge et al., [2023) proposes

16

Under review as a conference paper at ICLR 2025

to allocate different eviction policies for different heads based on the profiling result of the prompt.
SnapKV (Li et al., [2024) and LOOK-M (Wan et al., 2024) select important tokens for each attention
head based on the attention weights of prompts. PyramidKV (Zhang et al., [2024c), PyramidInfer
(Yang et al., 2024), and SqueezeAttention (Wang & Gan, [2024) consider allocating different KV
cache budgets for different layers. InfLLM (Xiao et al., [2024) and LongCache (Liu et al., 2024b)
propose to dynamically select tokens based on the relationship between the current query and the
key cache of previous tokens. Retrieval Attention (Liu et al.,[2024a) establishes connections from the
query to its nearest keys and the decoding query can first search its nearest query and then obtain the
most relevant key vectors. LazyLLM (Fu et al., 2024) introduces an aux cache to enable selective
KV cache eviction. Keyformer (Adnan et al.; 2024)) finds that the distribution after token pruning
becomes uneven and proposes to smooth the distribution. The above works explicitly rely on the
attention weights such that they are incompatible with FlashAttention (Luohe et al.|[2024)). To get rid
of the dependency of attention weights, SirLLM (Yao et al.,|2024) uses token entropy while Devoto
et al.[(2024)) uses the L2-norm of the key cache to measure the token importance. However, these
works are not designed or optimized for MPC since they either statically evict tokens that cause
significant performance degradation, or dynamically select tokens, introducing more complex and
MPC-unfriendly operations. We quantitatively compare existing methods in Table

A.3 GENERATIVE LLM INFERENCE IN AUTOREGRESSIVE-STYLE

The generative inference procedure of LLM is generally in autoregressive-style such as GPT-2 (Rad-
ford et al.,|2019) and LLaMA (Touvron et al.,2023), and mainly consists of two stages: 1) the prefill
(prompt) stage and 2) the decoding (generation) stage.

The prefill stage serves as the first step of generation. LLM takes a prompt sequence as input and
generates a key-value cache (KV cache) for each layer as

Oprompt = SOftmaX(Qprompt . K;)rrompt/\/&) . Vprompt7 (7

where Qpompe € R¥*T*4 denotes the input query and K, oppe € REXT>A Vo € REXT*d
denote the key and value tensor, respectively. After the prefill stage, the KV cache is generated
as Kcacne — Kprompt and Veacne <= Virompe. KV cache retains previously computed key-
value pairs, eliminating the need for costly re-computation of previous key and value vectors (Ott,
2019). Note that each layer is equipped with its unique KV cache and the generated KV cache is the
foundation for the dowmstreaming decoding stage.

The decoding stage uses and updates the stored KV cache to generate new tokens step-by-step. First,
the KV caches are updated by concatenating new k € R *1%d and v € R7*1xd 55

Kcache — [Kcacher] 9 Vcache — [VcacheHV] 9 (8)
where [-||-] denotes tensor concatenation. Therefore, the attention can be computed as
Odec = SOftmaX(Qdec : K;rache/\/g) : Vcachea (9)

where O denotes the current query. The attention output Oy € R'*4 is then sent to the multi-
layer perceptron (MLP) layer for the subsequent computation.

B MPC PrROTOCOL DESCRIPTIONS

B.1 THREAT MODEL AND SECURITY

Consistent with previous works (Mohassel & Rindal} 2018 |L1 et al.} 2022} |Dong et al.,|2023), MP-
Cache adopts an honest-but-curious (a.k.a., honest-but-curious) security model in honest-majority
(Lindell & Pinkas|, [2009) where parties follow the protocol specifications but may also try to learn
more from the information than allowed. In our threat model, we assume all the parties are aware
of the LLM architecture and number of pruned tokens, which is consistent with HEPrune [Zhang
et al., Seesaw |Li et al., SENet Kundu et al. (2023), SNL |Cho et al. (2022), etc. We argue that this
information does not compromise the client’s data or inference results, nor does it enable the client
to access the model’s parameters.

17

Under review as a conference paper at ICLR 2025

B.2 2PC ProTOCOL

We follow the 2PC protocols proposed in BumbleBee (Lu et al., 2023). The protocols are built
based on the 2-out-of-2 additive secret sharing (SS), where secret value x € Zy. is shared by two
random values o, 71 € Zoe such that z = xg+x; (mod 2), and party P; gets x; (denoted as [x]).
SS supports both addition and multiplication on the secret shares. Without special declaration, we
compute in Zy: and omit (mod 2¢) for brevity. In the case of £ > 1 (e.g., { = 64) which support
arithmetic operations (e.g., +, —, and -), we refer to this type as arithmetic sharing. Boolean sharing
refers to £ = 1 where (4, —) and - are replaced by bit-wise @ and A, respectively.

* Addition. [x + y] can be computed as (xo + yo, 1 + y1), Where P; can compute its share locally.

* Multiplication. We write the multiplication of two shared values as [zy] = (xo + =1)(yo +
yl) = 2o¥Yo + x1y1 + Toy1 + T1Yyo Where two cross terms xgyi, £1Yo can be computed using
hormomorphic encryption (HE).

Lu et al.|(2023) uses HE scheme that is based on ring learning-with-error (RLWE). For more details
about the 2PC protocol, please refer to|Lu et al.| (2023); Ma et al. (2023)).

B.3 3PC PrOTOCOL

We follow the 3PC protocols proposed in PUMA (Dong et al.,|2023). The protocols are built based
on the 2-out-of-3 replicated secret sharing (RSS), where a secret value x € Z,. is shared by three
random values g, 71, T2 € Zoe such that ¥ = zg + 21 + 22 (mod 2°), and party P; gets (z;, 2;11)
(denoted as [z]).

Let (¢, ¢2, c3) be public constants, and ([z], [y]) be two secret-shared values. The secure addition
and multiplication procedures are as follows:

* Addition. [cix + cay + c3] can be computed as (c1xg + cayo + €3, 121 + C2Y1, C1T2 + C2Y2),
where P, can compute its share locally. When (¢; = 1,¢p = 1,¢3 = 0), we get [z + y].

* Multiplication. Parties follow steps: 1) first, P; computes z; = z;y; + T;+1Y; + ;yi+1 locally; ii)
parties then perform re-sharing by letting P; sends z, = a; + z; to P,_1, where ap + a1 + o = 0
(P; can generate «; using pseudorandom generators with negligible overhead as Mohassel &
Rindal|(2018)); iii) finally, {(z(, 21), (21, 25), (25, ()} form the 2-out-of-3 replicated secret shares
of [zy].

For more details about the 3PC protocol, please refer to|Mohassel & Rindal| (2018)); Ma et al.| (2023).

B.4 TOKEN GATHERING

Token gathering is used to retrieve tokens in the KV cache based on the indices, which has the same
functionality as torch.gather(tensor, indices) in PyTorch programming. We illustrate the overall
procedure in Figure[14]

For brevity, in Algorithm [2| we show the pipeline that retrieves one token from the key cache (we
also omit the head dimension for simplification). The first step is converting a ciphertext index
[id] into a ciphertext one-hot vector [o] € R'*T based on equal protocol IIgqua1, where T de-
notes the number of tokens. Given a ciphertext key cache [K] € R?*P, where D denotes the
dimension, multiplying [o] with [K] (matrix-vector multiplication IIyiatvec) can generate an out-
put with dimension 1 x D, which is the retrieved token. To extend the case to retrieve m tokens,
we concatenate m one-hot vectors to form a matrix [O] € R™*T, and then multiply [O] with [K]
(matrix-matrix multiplication IIyratny1) to generate an output with dimension m x D, which is the
retrieved tokens.

Note that token gathering protocol is also used on the value cache, and its indices are consistent with
that of the key cache.

18

Under review as a conference paper at ICLR 2025

d
idx=0 d
’:5":2 T idx=1
idx= -
i - I =
, - =4 —
Index Tensor idx=5 Gathered Tensor
,/”Step 1: % Key Tensor
Onerhot Conversion Step 2:
/ T Multiply with Key
o[1]ofo]o]o (MatMul)
klololo|z]o]o
o[olololo]z

One-hot Vectors

Figure 14: Tllustration of token gathering procedure.

Algorithm 2: Token gathering protocol Ilga¢her for retrieving one token

Input : A ciphertext key cache [K] € RT*? and a ciphertext index [id].
Output: Key cache [K]' € R*® with the selected token.

1 foric|0,...,7 — 1] do

2 | Parties jointly generate the one-hot vector as [o[i]] = Hgquai ([id], 7);

3 Parties jointly compute the retrieved key cache as [K]' = Hyatvec([0], [K])s
4 return [K]'.

C OBSERVATION FROM PATTERN DISCOVERY OF LARGE ATTENTION MAPS

It is sufficient to use a few tokens within the observation window to distinguish the attention patterns
since the structure of attention maps is stable in different generation steps (Liu et al., [2024c; Yang
et al.| 2024} |Ge et al.| [2023} |Li et al.| [2024). In Figure we visualize the large attention map
with hundreds of tokens on the PiQA (Bisk et al.|[2020) dataset to further verify our observation in
Section As can be observed, there are three types of tokens defined in Section[3} 1) IA tokens in
red blocks which usually appear as attention sinks mentioned in StreaminglL.LM (Xiao et al.,[2023).
2) IC tokens in orange blocks; 3) UIA tokens in blue blocks. The pattern of attention maps motivates
us to statically discard the UIA tokens which may have negligible impact on further generation,
and dynamically select important tokens from IC tokens at each decoding step for sparse attention
computation.

Layer 6 Layer 24 Layer 30

Observation \\7 []
Window | |

i B! : N
T N N [
’ kD UIA Token

(Un-important to All)

Figure 15: Attention patterns across different layers on LLaMA-7B.

19

1
2

3
4
5
6
7
8
9
10

11

12

13
14
15
16
17
18
19
20
21

22

Under review as a conference paper at ICLR 2025

D PSEUDOCODE OF MPCACHE ALGORITHM FRAMEWORK

We describe the algorithm flow of our MPCache in detail as shown in Algorithm

Algorithm 3: KV cache eviction framework combining static and dynamic algorithm

Input : Input sequence prompt; LLM model M; number of layers and attention heads L and H;
dynamic selection ration « € [0, 1]; three types of tokens IA, IC, and UIA (introduced in Section
E]); cluster size s; decoding steps E.

Output: Evicted (Compressed) KV cache.

Step 1: Look-once static eviction during prefill stage:
forl €[0,...,L — 1] do

QY, KW, V" « M(prompt);

if (%2 == 0 then

; < Softmax ;, —ten(prompt) X 0.2 :,:| -)
ATTNY + Sof QW[—1 0.2::] -K®T
{IA,IC,UTA}Y « static_evict(ATTNY | ;
else
| {IA,IC,UTA}YY « {IA,1C,UTA}"~Y; > Layer index sharing (Section |4.4)

K « token_gather(K", index = {IA, 1C}();

| VO « token_gather(VY index = {TA, IC}V);

Step 2: Query-aware dynamic selection during decoding stage:

foree [0,...,F —1] do

forl €[0,...,L—1]do

if (%2 == 0 then
sim « SimApprox(q»®, K" cluster_size = s); > Follow Equation @
index"® « topk(sim®® | k = len(K"9) x a);

else

L index® « index

K" « token_gather(K" index = index*®));

V&9 token_gather(VE®) index = index"*);

0" « Softmax(q“® - K"T //d) - Vo), > Sparse attention

(=), > Layer index sharing (Section 4.4)

return K, V.

E PARADIGM COMPARISON WITH DYNAMIC POLICY

We compare the paradigm between the dynamic algorithm and our MPCache as shown in Figure
Through performing static eviction during the prefill stage, we improve the efficiency of all
decoding steps since the token selector (i.e., SimApprox and top-k selection) only needs to handle a
smaller number of tokens during the decoding stage (30% in this case). The improvement is shown

in Section

F SUPPLEMENTAL EXPERIMENTS

F.1 SUPPLEMENTAL SETUPS

Experimental envrionment. The latency is evaluated under the LAN setup (Rathee et al., [2020)
with 377MBps bandwidth and 0.3ms echo latency [Rathee et al.| (2020) on Intel(R) Xeon(R) Gold
5220R CPU @ 2.20GHz.

Token clustering. For hierarchy, we in practice choose a two-level hierarchical structure, i.e., n = 2,
and when the final dynamic selection ratio o < 0.5, we drop 50% clusters at the 1st hierarchical
level. For the XSUM dataset, we use a cluster size of 8 at the 1st hierarchical level and 4 at the
2nd hierarchical level. For the long-context LongBench, we use larger clusters, i.e., 32 at the Ist
hierarchical level and 16 at the 2nd hierarchical level.

20

Under review as a conference paper at ICLR 2025

100% Cache LLM 100% Cache Token Selector 10% KV
TXT () TXT - ;
o == = 2 BElo o B o &£ > TEXTE
— (=3 —).0 () TEXT
Prefill Stage o7 [terative Decoding Stage ¥ Inefficient
100% Cache LLM 30% Cache Token Selector 10% KV + Efficient
TXT oo : > S ()
b — - A i = TEXT™En
oI5 B w8 o= o
Prefill Stage (Static Eviction) o7 [terative Decoding Stage

Figure 16: Paradigm comparison between (a) dynamic algorithm and (b) our proposed MP-
Cache combining static eviction and dynamic selection. MPCache discards unimportant tokens
to reduce the decoding overhead (red texts mean the differences).

Static eviction. During the static eviction, we compute the attention using the last 20% tokens in the
prompt. However, using 20% tokens occurs CUDA out-of-memory (OOM) error when processing
a long-context prompt (i.e., longer than 24k tokens). To solve this problem, we adaptively adjust to
10% tokens instead. We also notice that the choice of the ratio won’t cause significant performance
fluctuations, so we omit the discussion on the influence in this work.

F.2 LLM ARCHITECTURES
We list the model architectures used in this work in Table |7, including GPT— LongChat-V1.5-

7B|ﬂ and LLaMA—3-8 LLaMA3 is equipped with grouped-query attention (GQA) (Ainslie et al.,
2023)) for improving the inference scalability.

Table 7: LLM architectures used in this work.

Model | #Layers # Attention Heads # KV Heads Embedding Dimension Max Length Non-linear Function # Parameters
GPT-2 12 12 12 768 1024 GeLU 124M
LongChat-V1.5-7B 32 32 32 4096 32K SiLU 7B
LLaMA-3-8B 32 32 8 4096 8K SiLU 8B

F.3 DETAILED DESCRIPTION ABOUT BASELINES

StreamingLLM (Xiao et al., |2023) follows a fixed eviction pattern (keep local tokens and initial
tokens) across different decoding steps. H20 (Zhang et al.| 2024d) and TOVA (Oren et al.| [2024)
statically prune the KV cache and these discarded tokens cannot be recovered at subsequent decod-
ing steps. SnapKV (Li et al., 2024) statically prunes the KV cache only during the prefill stage.
InfLLM (Xiao et al.|[2024) employs block-level dynamic token selection during the decoding stage.
It requires selecting several representative tokens within a cluster and computing the relevance score
using these representative tokens. LongCache (Liu et al., 2024b)) uses the idea of cosine similarity
between the query and key cache of all previous tokens to select relevant tokens without look-once
static eviction and token clustering. Note that LongCache separates the positional embedding (PE)
from the KV cache. Since our focus is on the dynamic selection metric in this work, we do not apply
PE separation in LongCache.

F.4 NECESSITY OF KV CACHE IN MPC

KV cache plays a crucial role in storing context information that the model deems relevant for
subsequent token generation. KV cache eliminates the need for costly re-computation of previous
key and value vectors (Ott, 2019). While the existing MPC framework PUMA (Dong et al., [2023))
builds protocols to support private LLM inference, it still requires more than 40 seconds and 800

3https ://huggingface.co/openai-community/gpt2
4https ://huggingface.co/lmsys/longchat-13b-16k
5https ://huggingface.co/meta-1llama/Meta-Llama-3-8B-Instruct

21

https://huggingface.co/openai-community/gpt2
https://huggingface.co/lmsys/longchat-13b-16k
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Under review as a conference paper at ICLR 2025

MB to generate one token with a sequence length of 6 on GPT-2. The main reason is that it is not
equipped with the KV cache, requiring re-computing the entire sequence for each token decoding.
As shown in Table [§] KV cache for LLM generation is essential for private inference, bringing
significant efficiency improvement, especially for longer sequences.

Table 8: Per-token generation efficiency on GPT-2 with and without KV cache.

Seq. Length=6 Seq. Length=16

Method "y.¢ () Comm.(GB) Lat.(ss Comm. (GB)
wlo KV cache 19.78 0273 44.40 0.872
w/ KV cache 7.890 0.068 8.313 0.071

F.5 SUPPLEMENTAL ABLATION STUDY

Effect of hyper-parameter .. To study how « impacts the similarity approximation, we select
different o’s on different datasets as shown in Figure As can be observed, although the effects
of different o do not occur in a certain pattern, we can still discover some patterns related to the
dataset from the trend in Figure on TriviaQA, the model may prefer larger o while it may prefer
smaller o on HotpotQA instead. Since o = 0.6 shows relatively better performance in these cases,
we choose a = 0.6 by default in our experiments.

Comparison with average-based similarity approximation. A straightforward and efficient way
to aggregate the information of a key cache cluster is the average. We compare our proposed method
(o = 0.6) with average-based similarity on the XSUM dataset with a cluster size of 16 in Figure
Specifically, we perform dynamic selection with different ratios after 75% tokens are statically
discarded. As can be observed, using average suffers from significant performance degradation
under different ratios. With the compression ratio increasing, the degradation of the average-based
method becomes more serious. An intuitive explanation is that using the average of a cluster may
make some important tokens averaged and ignored. In contrast, our approximation can effectively
maintain the model performance. We theoretically analyze the similarity approximation algorithm
in Appendix[G.

G THEORETICAL ANALYSIS OF SIMILARITY APPROXIMATION

As mentioned in Section [2| given query q € R¥>*1*4 key cach K € R7*T*4 and value cache
V € REXTXd the overall goal of KV cache eviction is to find an optimal policy P to minimize the
gap between the attention outputs (here we omit V for simplification) as

P* = arg min |Softmax(q - K ") — Softmax(q - K'")|, (10)

where K’ is a subset of K selected by the policy. However, when dividing K into clusters for
efficiency, the problem becomes more challenging. We denote the key cache cluster as K, (cluster

79.0 =

[TriviaQA 2]
3 780] & 40% ‘ [
% 770 Lo L [=
g 770 A= . . . 2 —
(z 31.01 [HotpotQA [] 2 1
= 3054] ‘ Lo £ 20 = o
> = Mp
NN RN :
30.0 " "
00 02 04 06 08 10 10 10
o ROUGE-2 (%)
Figure 17: The influence trend of similarity Figure 18: Comparison with average-
approximation with different @ values ranging based similarity approximation. MP
from O to 1. means maximun dot product.

22

Under review as a conference paper at ICLR 2025

size is s), and the attention within the cluster can be computed as
exp(q-K/])

A = Softmax(q-K]) = —— .
S gexp(q- K1)

(1)

Our goal is to find a way to accurately approximate the similarity between q and the key cluster K.
Interestingly, this problem exists a dual problem: “How can we aggregate the cluster information to
obtain a cluster representation and measure its importance?”

Note that exp(q-K) in the upper part of Equation accurately computes the similarity between
q and each token in K., and our problem can be considered as approximating the lower part of

Equation , ie., Zj;é exp(q - KCTJ)

We assume there exists a function ¢ that aggregates the key cluster K., and we define the optimiza-
tion problem as
s—1
min|) exp(q-KJ) —a- o(K/])|- (12)
j=0

Drawback of average-based clustering. As mentioned in our main text, the simplest way to repre-
sent the cluster is the average and qS(KL) becomes Z;;é KI] /s. This happens to be equivalent to

directly drop exp in E;;é exp(q- KIJ), introducing information loss. Intuitively, if there are tokens
with very low importance and tokens with high importance within a cluster, the overall importance
will be averaged, leading to the loss of crucial tokens.

Different from the average-based method, using the following max dot product can approximate the
large values after exp more accurately and preserve the crucial tokens as much as possible. This
observation is aligned with |Tang et al.|(2024b).

MaxDotProduct : q- ng(KCTj) = maxq- k. (13)
€K.

In order to approximate maxyck, q-k without accessing all the tokens in K., we follow the bound-
ing volume proposed by [Klosowski et al. (1998) as described in Section #.3] In fact, during the
dynamic selection, V of a cluster can also influence the cluster’s importance, and we will explore it
in our future research.

H OVERALL SECURE INFERENCE FRAMEWORK

Take 2PC as an example in Figure we illustrate the secure inference framework following |Lu
et al.| (2023)) where the server owns the proprietary LLM parameter and the client possesses private
input data. During inference, the data is secretly shared between two parties. Linear layers are com-
puted using the homomorphic encryption (HE) protocol, and non-linear layers require interactive
protocols between the two parties based on oblivious transfer (OT) and HE. Figure[I9]illustrates the
detailed dataflow of MPCache during both the prefill and decoding stage. The static eviction algo-
rithm is performed during the prefill stage (refer to Section4.2) and the dynamic selection algorithm
is performed during the decoding stage and before computing the attention, which relies on the min,
max, matrix multiplication, top-k, and token gathering protocols (refer to Section 4.3).

23

Under review as a conference paper at ICLR 2025

Compressed KV (,)(7,).® @ Indices T — Transformer Dataflow
N K|V Taather Topk) . .
Server for Decoding — KV Cache Eviction Dataflow in MPCache

. Accumulated Attention .
S 0 el |® Score of Last Tokens | O Attention LI Protocol
p
Weight Jb S = Efficien¢y Bottleneck

[MPC Inference] [HNorm }—»@ {HMaf,]vjul]_’[nsoftn]ax]——’[HMacMul]_’[HNorm]—’[MLP]—>Output

Share Revonstruct
4 Tra

T B -
Client ’
(a) MPCache Workflow during Prefill Stage
TMatMu Approximated)@ — Transformer Dataflow
Server HN:SF}E;@ — KV Cache Eviction Dataflow in MPCache
LLM J ice Attention 11 Protocol
/
Weight {} /,’ l Efficiency Bottleneck

[MPC Inference] [HNorm }—>

Share 4 & Re}:\t\)nstruct

Input Output \\\ ® Coth @ 1_[SiLU

Client

Hcather

HMaLMul]_’[HSoftmax]_’[HMatMul]_’[IINorm]——[MLP]—>Outpul

(b) MPCache Workflow during Decoding Stage

Figure 19: Overall secure inference framework and dataflow of MPCache during (a) the prefill stage
and (b) the decoding stage.

24

	Introduction
	Problem Formulation and Background
	Problem Formulation
	Background

	Motivations and challenges
	MPCache: An MPC-friendly Private LLM Inference Framework
	Overview of MPCache
	Step 1: Look-once Static KV Cache Eviction Algorithm
	Step 2: MPC-friendly Dynamic KV Cache Selection Algorithm
	Layer-wise Index Sharing for Further Efficiency Optimization

	Empirical Evaluation
	Experimental Setups
	Performance Evaluation
	Inference Efficiency Evaluation
	Ablation Study of MPCache

	Conclusion
	Detailed Background and Related Works
	Private LLM inference
	KV cache compression
	Generative LLM Inference in Autoregressive-style

	MPC Protocol Descriptions
	Threat Model and Security
	2PC Protocol
	3PC Protocol
	Token Gathering

	Observation from Pattern Discovery of Large Attention Maps
	Pseudocode of MPCache Algorithm Framework
	Paradigm Comparison with Dynamic Policy
	Supplemental Experiments
	Supplemental Setups
	LLM Architectures
	Detailed Description about Baselines
	Necessity of KV Cache in MPC
	Supplemental Ablation Study

	Theoretical Analysis of Similarity Approximation
	Overall Secure Inference Framework

