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A DETAILED ANALYSIS OF UNIFIED COMPONENTS 1

Here, we provide the detailed analysis of the proposed components within our category-unified mod- 2

els, including unified representation network AdaFormer (Section A.1), model inputs (Section A.2) 3

and learning objective (Section A.3). All experiments and analysis are conducted using Siamese 4

paradigm (Qi et al., 2020) on the KITTI (Geiger et al., 2012) dataset. 5

A.1 UNIFIED REPRESENTATION NETWORK: ADAFORMER 6

The proposed unified representation network AdaFormer incorporates a group regression module for 7

learning deformable groups to enable adaptive receptive fields for various object categories, along 8

with a vector-attention mechanism to facilitate feature interaction of points within these deformable 9

groups, ultimately forming a category-unified feature representation. 10

Tab. 1 presents an ablation study to understand the two sub-components. Benefiting from the adap- 11

tive receptive fields achieved by the group regression module, our representation network can learn 12

geometric information of various object categories in a unified manner. Consequently, when this 13

module is removed, average performance drops by 6.9% and 7.0% in terms of Success and Pre- 14

cision, respectively. It’s noteworthy that the most obvious performance degradation occurs in the 15

Pedestrian category. This is due to the relatively small training samples for the Pedestrian category 16

and the significant differences in shape and size compared to other object categories. To visually un- 17

derstand of how the group regression module works, we provide some visualizations of deformable 18

groups on the Car and Pedestrian categories, as shown in Fig. 1. In addition, when removing the 19

vector-attention mechanism, we employ a feature propagation operator in existing backbone net- 20

work (Qi et al., 2017a;b) to substitute it. Tab. 1 demonstrates that the vector-attention mechanism 21

plays a crucial role in promoting the learning of a unified feature representation. 22

Table 1: Ablation study of unified representation network. Success / Precision are used for evalua-
tion. Bold denote the best performance.

Group Regression Vector-Attention Car Pedestrian Van Cyclist Mean
Module Mechanism [6,424] [6,088] [1,248] [308] [14,068]

% % 56.3 / 72.4 33.2 / 60.4 57.0 / 68.6 32.2 / 43.5 45.9 / 63.2
% ! 56.5 / 72.7 35.2 / 62.9 59.4 / 69.3 32.3 / 44.0 47.1 / 67.6
! % 57.7 / 73.8 44.9 / 71.2 61.8 / 72.0 35.3 / 46.1 52.1 / 72.0
! ! 58.1 / 73.9 48.2 / 76.2 63.1 / 74.9 36.7 / 47.4 54.0 / 74.6

A.2 UNIFIED MODEL INPUT 23

The scale factor α is an important hyper-parameter in our unified model inputs. Hence, we conduct 24

an ablation experiment using different values to determine the optimal setting for this parameter. 25

As presented in Tab. 2, our method is not sensitive to the scale factor within a reasonable range 26

of values, i.e., when this parameter is set in the range from 0.8 to 1.4. Nevertheless, excessively 27

large value will introduce noise, whereas overly small value will ignore valuable information, both 28

leading to significant performance degradation. 29
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Figure 1: Comparison of groups on the Car and Pedestrian categories. We plot four fixed groups and
deformable groups from the first layer in PointNet++ (Qi et al., 2017b) and our AdaFormer network,
respectively, using different colors.

Table 2: Performance using different scale factor α. Success / Precision are used for evaluation.
Bold denote the best performance.

Scale Factor α Car [6,424] Pedestrian [6,088] Van [1,248] Cyclist [308] Mean [14,068]

0.6 52.4 / 68.1 42.3 / 70.3 48.9 / 57.4 31.2 / 43.0 47.3 / 67.6
0.8 57.5 / 73.2 48.4 / 76.7 63.0 / 74.7 37.2 / 45.0 53.7 / 74.3
1.0 58.1 / 73.9 48.2 / 76.2 63.1 / 74.9 36.7 / 47.4 54.0 / 74.6
1.2 58.3 / 73.7 48.0 / 76.1 62.8 / 74.7 36.1 / 46.6 53.8 / 74.2
1.4 57.8 / 73.1 47.6 / 75.3 62.0 / 73.8 35.0 / 44.8 53.3 / 73.6
1.6 55.8 / 71.5 32.4 / 57.0 56.4 / 66.2 30.2 / 42.5 45.2 / 64.2

A.3 UNIFIED LEARNING OBJECTIVE30

The unified learning objective involves a consistent numerical distribution of predicted targets and31

a balanced distribution of positive and negative samples. To investigate their contributions, we32

conduct ablation experiments and report the ablation results in Tab. 3. Firstly, as illustrated in33

the upper row of Fig. 2, different object categories exhibit significant variations in offset targets,34

distracting the model. However, by unifying the offset targets across the three coordinate axes xyz35

based on length, width, and height information (as shown in the lower row), the offset targets of36
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diverse object categories converge within a common numerical space, thereby resulting in improved 37

performance. 38

In addition, we employ shape-aware labels to define positive and negative samples, which further 39

enhances the tracking performance by 1.2% and 1.4% in average Success and Precision, as shown 40

in Tab. 3. The scale factor β controls the uniform ratio of positive and negative samples. When the 41

parameter value is set too small, it leads to a scarcity of positive samples, especially at the beginning 42

of training, making it difficult for the model to converge. Conversely, setting this value too large 43

results in an overabundance of positive samples, posing a challenge for the model to distinguish the 44

most accurate ones. Therefore, we further conduct an ablation experiment to determine the optimal 45

value for this parameter. According to Tab. 4, we set the scale factor β to 0.4 in our main experiment. 46
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Figure 2: Comparison of offsets between Car and Pedestrian categories. The upper and lower rows
represent the cases of without and with unified prediction target design, respectively.

Table 3: Ablation study of unified learning objective. Success / Precision are used for evaluation.
Bold denote the best performance.

Unified Unified Positive Car Pedestrian Van Cyclist Mean
Prediction Target -Negative Sample [6,424] [6,088] [1,248] [308] [14,068]

% % 57.5 / 72.8 44.5 / 72.1 61.2 / 70.4 35.6 / 44.5 51.8 / 71.7
% ! 57.6 / 72.8 45.1 / 72.6 61.4 / 70.8 35.8 / 44.9 52.1 / 72.0
! % 58.1 / 73.7 46.0 / 73.5 62.8 / 74.4 35.9 / 46.6 52.8 / 73.2
! ! 58.1 / 73.9 48.2 / 76.2 63.1 / 74.9 36.7 / 47.4 54.0 / 74.6

Table 4: Performance using different scale factor β. Success / Precision are used for evaluation.
Bold denote the best performance.

Scale Factor β Car [6,424] Pedestrian [6,088] Van [1,248] Cyclist [308] Mean [14,068]

0.2 51.4 / 65.8 26.6 / 46.9 38.4 / 45.0 29.6 / 41.8 39.1 / 55.3
0.3 55.2 / 71.1 34.1 / 61.3 48.2 / 56.7 31.8 / 44.3 45.0 / 65.1
0.4 58.1 / 73.9 48.2 / 76.2 63.1 / 74.9 36.7 / 47.4 54.0 / 74.6
0.5 58.3 / 74.1 47.7 / 75.8 65.7 / 76.0 37.2 / 47.3 54.0 / 74.5
0.6 56.4 / 72.6 44.2 / 73.1 58.8 / 67.7 34.7 / 44.3 50.2 / 71.8
0.7 52.6 / 67.0 39.1 / 66.5 56.3 / 65.8 32.5 / 42.1 46.7 / 66.2
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B QUALITATIVE RESULTS47

In order to intuitively demonstrate the effectiveness of our category-unified models, capable of track-48

ing objects across all categories using a single network, we conduct a qualitative comparison with49

the category-specific counterpart. This comparison is performed on the Car, Pedestrian categories50

from the KITTI dataset. As illustrated in Fig. 3, our unified model allow for more accurate and51

robust tracking results than the category-specific counterpart across all categories, particularly in52

complex scenes marked by numerous distractors and sparse point clouds.53

Timeline

Category-unified ModelCategory-unified Model Category-specific ModelCategory-specific Model Ground TruthGround Truth

C
ar

 (
S

p
ar

it
y

)
C

ar
 (

D
is

tr
ac

to
r)

P
ed

es
tr

ia
n

 (
S

p
ar

it
y
)

P
ed

es
tr

ia
n

 (
D

is
tr

ac
to

r)

Figure 3: Visualization results of Car and Pedestrian categories, including complex scenes marked
by numerous distractors and sparse point clouds. The red points are the foreground points of targets.
The green and blue boxes denote the prediction results by category-unified model and category-
specific counterpart.

C COMPARISON WITH CATEGORY-SPECIFIC MODELS.54

To further demonstrate the potential of our category-unified models, we integrate the proposed uni-55

fied components, including unified representation network AdaFormer, model inputs and learning56

objective into existing tracking methods. We select some classic trackers, such as P2B (Qi et al.,57

2020), PTT (Shan et al., 2021), PTTR (Zhou et al., 2022), OSP2B Nie et al. (2023) and (Zheng et al.,58

2022) to report the results, as presented in Tab. 5. These unified components not only empower59

category-specific trackers to track objects across all categories, but also enhance overall tracking60

performance, which proves the effectiveness and promise of our proposed components.61

4



Under review as a conference paper at ICLR 2024

Table 5: Performance comparisons on the KITTI dataset. “Improvement” refers to the performance
gain of our category-unified models over the corresponding category-specific counterparts. “ ”
and “ ” refer to Siamese and motion-centric paradigms, respectively.

Method Car [6,424] Pedestrian [6,088] Van [1,248] Cyclist [308] Mean [14,068]

Category-specific P2B (Qi et al., 2020) 56.2 / 72.8 28.7 / 49.6 40.8 / 48.4 32.1 / 44.7 42.4 / 60.0
Category-unified P2B (Ours) 58.1 / 73.9 48.2 / 76.2 63.1 / 74.9 36.7 / 47.4 54.0 / 74.6

Improvement ↑ 1.9 / ↑ 1.1 ↑ 19.5 / ↑ 26.6 ↑ 22.3 / ↑ 26.5 ↑ 4.6 / ↑ 3.3 ↑ 11.6 / ↑ 14.6

Category-specific PTT (Shan et al., 2021) 67.8 / 81.8 44.9 / 72.0 43.6 / 52.5 37.2 / 47.3 55.1 / 74.2
Category-unified PTT (Ours) 67.6 / 82.1 49.2 / 77.4 65.4 / 77.0 37.5 / 46.8 58.8 / 76.4

Improvement ↓ 0.2 / ↑ 0.3 ↑ 4.3 / ↑ 4.6 ↑ 21.8 / ↑ 24.5 ↑ 0.3 / ↓ 0.5 ↑ 3.7 / ↑ 2.2

Category-specific PTTR (Zhou et al., 2022) 65.2 / 77.4 50.9 / 81.6 52.5 / 61.8 65.1 / 90.5 57.9 / 78.2
Category-unified PTTR (Ours) 68.3 / 80.1 53.7 / 84.1 64.2 / 75.6 66.8 / 93.2 61.6 / 81.8

Improvement ↑ 3.1 / ↑ 2.7 ↑ 2.8 / ↑ 2.5 ↑ 11.7 / ↑ 13.8 ↑ 1.7 / ↑ 2.7 ↑ 3.7 / ↑ 3.6

Category-specific OSP2B (Nie et al., 2023) 67.5 / 82.3 53.6 / 85.1 56.3 / 66.2 65.6 / 90.5 60.5 / 82.3
Category-unified OSP2B (Ours) 67.5 / 82.8 55.1 / 86.7 68.7 / 79.3 65.4 / 91.2 62.3 / 84.4

Improvement ↑ 1.0 / ↑ 0.5 ↑ 1.5 / ↑ 1.6 ↑ 12.4 / ↑ 13.1 ↓ 0.2 / ↑ 0.7 ↑ 1.8 / ↑ 2.1

Category-specific M2Track (Zheng et al., 2022) 65.5 / 80.8 61.5 / 88.2 53.8 / 70.7 73.2 / 93.5 62.9 / 83.4
Category-unified M2Track (Ours) 67.6 / 80.5 63.3 / 90.0 64.5 / 78.8 76.7 / 94.2 65.8 / 85.0

Improvement ↑ 1.1 / ↓ 0.3 ↑ 1.8 / ↑ 1.8 ↑ 9.7 / ↑ 8.1 ↑ 3.5 / ↑ 1.3 ↑ 2.9 / ↑ 1.6
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