
Published as a conference paper at ICLR 2021

APPENDIX

A.1 DATASET EXAMPLES

The supplementary video provides examples of our dataset and also qualitative results of our repre-
sentation learning model.

A.2 DATA COLLECTION DETAILS

We describe the details of our hardware setup and the alignment method used to synchronize the
recordings between our camera, gaze tracker, and movement sensors.

A.2.1 ALIGNMENT AND SYNCHRONIZATION OF DEVICES

There are three different devices in our setup, 1) Tobii Pro eye-tracking glasses to record gaze, 2)
BNO055 IMU sensors to record movements, and 3) GoPro camera attached to the forehead to cap-
ture ego-centric videos. These different devices record data independently. Therefore, it is necessary
to synchronize all recordings.

Gaze Tracker and GoPro Alignment. Tobii Pro2 eye-tracking captures a video and the center of the
gaze in the camera frame. Due to the low quality of the video captured by the eye-tracking glasses,
we use an additional high-quality GoPro hero 6 camera (with resolution 1920⇥ 1080 and 60 frames
per second). To synchronize the videos from the gaze tracker and GoPro, we extract SIFT (Lowe,
2004) features and use a brute force algorithm for feature matching and the RANSAC method to
find a homography that maps the gaze from Tobii’s camera frame to GoPro’s camera coordinate.
Note that the gaze might be missing for some frames due to the device noise.

IMU Sensors and GoPro Synchronization. The outputs of the IMU sensors are recorded on a Rasp-
berry Pi board. There is also a microphone on the Raspberry Pi that records the audio. We synchro-
nize the IMU and video recordings using two methods, 1) synchronize the audio from the GoPro
video and the voice recording on the Raspberry Pi board, and 2) repeat a specific pattern of body
movements in front of a mirror, so it can be uniquely identified in both the movements depicted by
the IMU sensors and the GoPro camera (which recorded the participant’s body pose in the mirror).

A.2.2 MOVEMENT CALCULATIONS

We record the body part movements using BNO055 Inertial Measurement Units (IMUs) in 10 differ-
ent locations (torso, neck, 2 triceps, 2 forearms, 2 thighs, and 2 legs). The body parts may not appear
in ego-centric video frames, therefore, the task of predicting the exact orientation and location of a
body part (e.g., arm) using ego-centric videos can be very challenging. We train the model using
the simpler task of predicting whether a part has moved or not. This still contains rich information
about the action that is happening in the video, for example, walking can be defined as periodic
movements of the left and right legs.

To compute the loss function, we need to distinguish between movement and no movement in the
dataset. One way is finding a threshold in the domain of the angles of the part movements, and label
all the moves smaller than the threshold as no movement and the rest as movement. However, this
might result in ambiguities for the movements close to the threshold, and the network might over
penalize the wrong predictions in the neighborhood close to the threshold. Therefore, we add a third
gray area label, where the network is not penalized for wrong predictions. We divide the range of
movements for each sensor into three equal ranges, the first 33% is labeled as no movement, the
last 33% is labeled as movement and the remaining interval is the gray area, for which there is no
penalty for misprediction.

A.3 DATASET ANALYSIS

To ensure that the videos in the dataset consist of a wide range of activities, we do not provide
any specific instructions to the subjects, and we ask them to perform their daily routine activities.
Hence, the dataset includes a variety of different situations including but not limited to driving,

12



Published as a conference paper at ICLR 2021

Approximate	Scene	Distribution Gaze	Distribution	in	Image	Frame Changes	in	Rotation	Between	Consecutive	frames

+150K
+200K

Figure 4: Dataset Statistics. Left: The approximate distribution of top 20 scene classes according
to a scene classifier trained on the Places (Zhou et al., 2017) dataset. We show how often each scene
category is predicted as top-1. Middle: The distribution of gaze across the dataset. Right: The
average magnitude of the change in the orientation of body parts between consecutive frames.

cycling, playing pool, cooking, cleaning, walking in the streets, and shoveling snow. Purely for
dataset analysis purposes, we gather proxy scene labels for each image. We use an off-the-shelf
scene classification model trained on the Places dataset (Zhou et al., 2017) and record the top-1
prediction for each frame of our dataset. Many scene categories in our data are not present in Places,
so we see a moderate amount of misclassification. However, the classifier confidently (more than
70%) predicts 101 of the 365 classes exist somewhere within our dataset, showing the diversity
of our data. Figure 4 Left shows the 20 most frequent predictions. Even though there are some
mispredictions among them (such as jail cell which is frequently mistaken for dark rooms), we
observe that our data is fairly diverse.

Figure 4 Middle shows the distribution of the gaze in the images. As expected, the focus is mostly
in the center of the image. In Figure 4 Right, we show the change in the orientation of the body parts
between two consecutive frames. We observe more movements in the limbs compared to the torso
and neck. We additionally notice more right arm movement than the left which is likely caused by
more of our participants being right-handed.

A.4 ARCHITECTURE & TRAINING DETAILS

In this section, we describe the details of our network architectures as well as the hyperparameters
and optimization methods that we used, for reproducibility purposes. Also, the code and data will
be made publicly available for further research.

A.4.1 BACKBONE NETWORK

We train the feature extractor network by using a sequence of images of length k = 5, which are
1
6 th of a second apart, as input. We use the ResNet18 (He et al., 2016) convolution layers as the
feature extraction backbone. To preserve spatial information, which is essential for gaze prediction,
we use the 512 ⇥ 7 ⇥ 7 features before average pooling. We then add a 1 ⇥ 1 convolutional layer
on top to reduce the feature size to 64 ⇥ 7 ⇥ 7. The flattened feature is then input to a 3 layer
LSTM with hidden size 512, which encodes the input video into a hidden feature vector. Next, the
embedded video feature vector is decoded using a 3 layer LSTM, to predict the binary movement
vector and gaze. For Lvisual, we use the feature size 128 (obtained by a fully connected layer on
top of the ResNet18 features) and a memory bank of size 16384. We choose � = 1 in Equation 1,
↵ = 0.09,� = 0.01, � = 0.9 in Equation 3, and ⌧ = 0.07 in Equation 2. We use a dropout of
0.5 and weight decay of 0.1. For data augmentation, we only use color jitter and random flip. We
flip the entire sequence of images, swap the part movements for right and left arms and legs, and
calculate the updated gaze in the flipped images.

A.4.2 TARGET TASK NETWORKS

Shared Implementation Details. During the target task training, the weights for the backbone are
frozen. For all of our experiments, we use the Adam optimizer (Kingma & Ba, 2015) and images

13



Published as a conference paper at ICLR 2021

are reshaped to 224⇥ 224. The size of the hidden layer in our LSTM in all temporal experiments is
512. We use leaky-ReLU non-linearities between all network layers except for LSTMs.

Self-supervised Baseline Details. When training the MoCo encoder network, we use the SGD
optimizer with 0.03 learning rate for the MoCo baseline since it performs best in this setting. For
data augmentation, we use random cropping, horizontal flipping, gray scaling, and color jittering
with the same parameters used in that work. We train the baseline with batch size 256 on 8 GPUs
for 200 epochs with the same training regime as the original work.

Scene Classification. We use a decoder network of a single 1⇥ 1 convolution layer that reduces the
feature size from 512 ⇥ 7 ⇥ 7 to 64 ⇥ 7 ⇥ 7, followed by two fully connected layers, that convert
these features to a vector of size 512 and then 397. We use the cross-entropy loss for training, and
evaluate using mean per class top-1 accuracy.

Action Recognition. For this task, we train a single 1⇥ 1 convolution layer that reduces the feature
size from 512⇥ 7⇥ 7 to 64⇥ 7⇥ 7, followed by an LSTM to embed the video in one hidden vector
of size 512, and two fully connected layers that convert the features to a vector of size 200 and then
to the number of actions. As before, we use the cross-entropy loss as the objective and evaluate with
mean per class top-1 accuracy. Since some of the action classes in this dataset appear in a limited set
of videos, following one of the EPIC challenge finalists (Damen et al., 2019), we choose 9 verbs that
result in a state transition, namely, take, put, open, close, wash, cut, mix, pour and peel and ignore
verbs that do not cause a state transition (e.g., check).

Dynamic Prediction. We create a binary rectangular mask using the object bounding box. We use
this mask image as the input to a two-layer convolutional network. As the result, we obtain a feature
of size 64⇥ 7⇥ 7. These two convolutional layers are trained for both our method and the baseline.
We concatenate the mask feature with the feature vector obtained from the image and add two fully
convolutional layers on top, to obtain the class labels. Again, we optimize the network using the
cross-entropy loss and use mean per class top-1 accuracy as the evaluation metric.

Depth Estimation. The ResNet backbone is connected to a Feature Pyramid Network (FPN) (Lin
et al., 2017). We use Pixel Shuffle layers (Shi et al., 2016) for up-scaling the lower level features.
The learned ResNet backbone is frozen; the 5 up-convolution layers are the only layers trained for
the target task. We use the Huber loss as the objective.

Walkable Surface Estimation. The architecture of this network is the same as the depth estimation
network. The ResNet backbone is frozen and five up-convolution layers are the only layers that are
trained for the target task. We use the binary cross-entropy loss as the objective, where the goal is
segmenting walkable and non-walkable pixels. For evaluation, we use the standard Intersection over
Union (IOU) metric for segmentation tasks.

A.5 RESULT OF FULL SUPERVISION

As a point of reference, we also provide the results using a fully supervised backbone that is trained
using ImageNet. Neither our method nor the purely visual baselines use any supervision for repre-
sentation learning. Therefore, a direct comparison is not fair. The results are shown in Table 5. The
corresponding self-supervised results are shown in Table 1.

Datasets SUN397 Epic Kitchen VIND NYUv2
Xiao et al. (2010) Damen et al. (2018) Mottaghi et al. (2016a) Nathan Silberman & Fergus (2012)

Method Training (a) Scene (b) Action (c) Dynamics (d) Walkable (e) Depth
Objective (Top-1 ") (Top-1 ") (Top-1 ") (IOU ") (RMSElog #)

MoCo (He et al., 2020) InfoNCE 35.18 30.28 16.37 63.95 0.135
Supervised Classification 47.27 32.09 20.01 65.80 0.132

Table 5: Results of pre-training with ImageNet. We provide the results of full supervision for
pre-training using ImageNet and also the MoCo model trained on ImageNet data.

14


	Introduction
	Related Work
	Human Interaction Dataset
	Interaction-based Representation Learning
	Learning Features
	Adapting the Representation to New Tasks

	Experiments
	Self-Supervised Baseline
	Evaluation of the Learned Representation
	Ablative Analyses
	Visual Loss
	Movement Estimation
	Effects of the Body Parts


	Conclusion
	Dataset Examples
	Data Collection Details 
	Alignment and Synchronization of Devices
	Movement Calculations

	Dataset Analysis
	Architecture & Training Details
	Backbone Network
	Target Task Networks

	Result of Full Supervision


