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A LOSS AND OBJECTIVES

A.1 ADDITIONAL DETAILS ON PROBABILISTIC CUT AND VOLUME

Recall that the probabilistic cut from cluster Ck to Cl is defined as

W (Ck, Cl) =
∑

i,j∈{1,...,n}

Ai,j ·Pi,k ·Pj,l = (P(:,k))
TAP(:,l),

where P(:,k),P(:,l) denote the kth and lth columns of the assignment probability matrix P, respectively.
The imbalance flow between clusters Ck and Cl is defined as

|W (Ck, Cl)−W (Cl, Ck)|,

for k, l ∈ {0, . . . ,K − 1}. The loss functions proposed in the main paper can be understood in terms
of a probabilistic notion of degrees, as follows. We define the probabilistic out-degree of node vi with
respect to cluster k by d̃(out)

i,k =
∑n
j=1 Ai,j · Pj,k = (AP(:,k))i, where subscript i refers to the ith

entry of the vector AP(:,k). Similarly, we define the probabilistic in-degree of node vi with respect to
cluster k by d̃(in)

i,k = (ATP(:,k))i, where AT is the transpose of A. The probabilistic degree of node
vi with respect to cluster k is d̃i,k = d̃(in)

i,k + d̃(out)
i,k = ((AT + A)P(:,k))i =

∑n
j=1(Ai,j+Aj,i) ·Pj,k.

For comparisons and ease of interpretation, it is advantageous to normalize the imbalance flow
between clusters; for this purpose, we introduce the probabilistic volume of a cluster, as follows.
The probabilistic out-volume for cluster Ck is defined as V OL(out)(Ck) =

∑
i,jAj,i · Pj,k, and

the probabilistic in-volume for cluster Ck is defined as V OL(in)(Ck)(ATP(:,k))i, where AT is the
transpose of A. These volumes can be viewed as sum of probabilistic out-degrees and in-degrees,
respectively; for example, V OL(in)(Ck) =

∑n
i=1 d̃

(in)
i,k . Then, it holds true that

V OL(out)(Ck) =
∑
i,j

Ai,j ·Pi,k ≥
∑
i,j

Ai,j ·Pi,k ·Pj,l = W (Ck, Cl), (1)

since entries in P are probabilities, which are in [0, 1], and all entries of A are nonnegative. Similarly,
V OL(in)(Ck) ≥W (Cl, Ck).

The probabilistic volume for cluster Ck is defined as

V OL(Ck) = V OL(out)(Ck) + V OL(in)(Ck) =
∑
i,j

(Ai,j + Aj,i) ·Pj,k.

Then, it holds true that V OL(Ck) ≥W (Ck, Cl) for all l ∈ {0, . . . ,K − 1} and

min(V OL(Ck), V OL(Cl)) ≥ max(W (Ck, Cl),W (Cl, Ck)) ≥ |W (Ck, Cl)−W (Cl, Ck)|. (2)

When there exists a strong imbalance, then |W (Ck, Cl)−W (Cl, Ck)| ≈ max(W (Ck, Cl),W (Cl, Ck)).
As an extreme case, if Pj,l = 1 for all nonnegative terms in the summations in Eq. (1), and
V OL(in)(Ck) = 0, then |W (Ck, Cl)−W (Cl, Ck)| = V OL(Ck).

1



Under review as a conference paper at ICLR 2022

A.2 VARIANTS OF NORMALIZATION

Recall that the imbalance term involved in most of our experiments, named CIvol_sum, is defined as

CIvol_sum(k, l) = 2
|W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

∈ [0, 1]. (3)

An alternative, which does not take volumes into account, is given by

CIplain(k, l) =

∣∣∣∣W (Ck, Cl)−W (Cl, Ck)

W (Ck, Cl) +W (Cl, Ck)

∣∣∣∣ = 2

∣∣∣∣ W (Ck, Cl)
W (Ck, Cl)−W (Cl, Ck)

− 1

2

∣∣∣∣ ∈ [0, 1]. (4)

We call this cut flow imbalance CIplain as it does not penalize extremely unbalanced cluster sizes.

To achieve balanced cluster sizes and still constrain each imbalance term to be in [0, 1], one solution is
to multiply the imbalance flow value by the minimum of V OL(Ck) and V OL(Cl), and then divide by
max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′))), where T = {(Ck, Cl) : 0 ≤ k < l ≤ K − 1, k, l ∈ Z}.
The reason for using T is that CIplain(k, l) is symmetric with respect to k and l, and CIplain(k, l) = 0
whenever k = l. Note that the maximum of the minimum here equals the second largest volume
among clusters. We then obtain CIvol_min as

CIvol_min(k, l) = CIplain(k, l)× min(V OL(Ck), V OL(Cl))
max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′)))

. (5)

Another potential choice, denoted CIvol_max, whose normalization follows from the same reasoning
as CIvol_sum, is given by

CIvol_max(k, l) =
|W (Ck, Cl)−W (Cl, Ck)|

max(V OL(Ck), V OL(Cl))
∈ [0, 1]. (6)

A.3 VARIANTS OF CHOOSING THE PAIRWISE IMBALANCE SCORES

We consider three variants for choosing the cluster pairs.
• (1) The “sort" variant picks the largest β pairwise cut imbalance values, where β is half of the
number of nonzero entries in the off-diagonal entries of the meta-graph adjacency matrix F, if the
meta-graph is known or can be approximated. For example, when we have a “cycle" meta-graph
with three clusters and no ambient nodes, then β = 3. When we have a “path" meta-graph with three
clusters and ambient nodes, then β = 1.
• (2) The “naive" variant considers all possible

(
K
2

)
pairwise cut imbalance values.

• (3) The “std" variant only considers pairwise cut imbalance values that are 3 standard deviations
away from the imbalance values; the standard deviation is calculated under the null hypothesis that
the between-cluster relationship has no direction preference, i.e. Fk,l = Fl,k, as follows.

Suppose two clusters have only noisy links between them (no edge in the meta-graph F). Suppose
also that the underlying network is fixed in terms of the number of nodes and where edges exist; the
only randomness stems from the direction of an edge. Then, for each edge between these two clusters,
say, clusters Ck and Cl, the edge direction is random, i.e. the edge is from Ck to Cl with probability
0.5, and Cl to Ck with probability 0.5 also. Let Ek,l denote the set of edges between Ck and Cl if Ek,l
is not empty, then for every edge e ∈ Ek,l, define a Rademacher random variable Xe by

Xe =

{
1 if the edge is from Ck to Cl,
−1, otherwise.

(7)

Then (Xe + 1)/2 ∼ Ber(0.5) is a Bernoulli(0.5) random variable with mean 2× 0.5− 1 = 0 and
variance 22 × 0.5 × (1 − 0.5) = 1. In the case of unweighted edges, the total number of edges
between Ck and Cl is |Ek,l| = W (Ck, Cl)+W (Cl, Ck), and that the sum ofXe terms is

∑
e∈Ek,l Xe =

W (Ck, Cl) −W (Cl, Ck). In the case of weighted edges, with symmetric edge weights wi,j = wj,i
given and only edge direction random, it holds that W (Ck, Cl)−W (Cl, Ck) =

∑
e∈Ek,l Xewe.

Let us assume that the edge indicators are independent and that
∑
e∈Ek,l w2

e > 0. Under the null

hypothesis that there is no meta-graph edge between Ck and Cl, the random variable
∑

e∈Ek,l Xewe√∑
e∈Ek,l w2

e

2



Under review as a conference paper at ICLR 2022

has mean 0 and variance 1. Assuming that the weights are bounded above and that
∑
e∈Ek,l w2

e is
bounded away from 0 with increasing network size, we can employ the Central Limit Theorem for
sums of independent random variables, see for example Theorem 3.4 in Chen et al. (2010). Then,
under the null hypothesis, approximately 99.7 % of the observations would fall within 3 standard
deviations from 0. While this calculation makes many assumptions and ignores reciprocal edges, the
resulting threshold is still a useful guideline for restricting attention to pairwise imbalance values
which are very likely to capture a true signal.

A.4 SELECTION OF THE LOSS FUNCTION

Table 1: Naming conventions for objectives and loss functions

Selection variant / CI CIvol_sum CIvol_min CIvol_max CIplain

sort Osort
vol_sum,Lsort

vol_sum Osort
vol_min,Lsort

vol_min Osort
vol_max,Lsort

vol_max Osort
plain,Lsort

plain
std Ostd

vol_sum,Lstd
vol_sum Ostd

vol_min,Lstd
vol_min Ostd

vol_max,Lstd
vol_max Ostd

plain,Lstd
plain

naive Onaive
vol_sum,Lnaive

vol_sum Onaive
vol_min,Lnaive

vol_min Onaive
vol_max,Lnaive

vol_max Onaive
plain ,Lnaive

plain

Table 1 provides naming conventions of all the twelve pairs of variants of objectives and loss functions
used in this paper. We select the loss functions for DIGRAC based on two representative models,
and compare the performance of different loss functions. We use d = 32, hidden units, h = 2 hops,
and no seed nodes. Figures 1(a) and 2 compare twelve choices of loss combinations on a DSBM
with n = 1000 nodes, K = 5 blocks, ρ = 1, p = 0.02 without ambient nodes, with a complete
meta-graph structure. The subscript indicates the choice of pairwise imbalance, and the superscript
indicates the variant of selecting pairs. Figures 1(b) and 3 are based on a DSBM with n = 1000
nodes, K = 5 blocks, ρ = 1, p = 0.02 without ambient nodes, with a cycle meta-graph structure.

These figures indicate that the “sort" variant generally provides the best test ARI performance and
the best overall global imbalance scores, among which using normalizations CIvol_sum and CIvol_max

perform the best. Lsort
vol_min appears to behave worse than Lsort

vol_sum and Lsort
vol_max, even when using the

“sort" variant to select pairwise imbalance scores. One possible explanation is that Lsort
vol_min does not

penalize extreme volume sizes, and that it takes minimum as well as maximum which, as functions
of the data, are not as smooth as taking a summation. Throughout our experiments in the main text,
we hence use the loss function Lsort

vol_sum.

B IMPLEMENTATION DETAILS

B.1 CODE

To fully reproduce our results, anonymized code and preprocessed data are available at https:
//anonymous.4open.science/r/1b728e97-cc2b-4e6a-98ea-37668813536c.

B.2 HARDWARE

Experiments were conducted on a compute node with 8 Nvidia RTX 8000, 48 Intel Xeon Silver
4116 CPUs and 1000GB RAM, a compute node with 4 NVIDIA GeForce RTX 2080, 32 Intel Xeon
E5-2690 v3 CPUs and 64GB RAM, a compute node with 2 NVIDIA Tesla K80, 16 Intel Xeon
E5-2690 CPUs and 252GB RAM, and an Intel 2.90GHz i7-10700 processor with 8 cores and 16
threads.

With this setup, all experiments for spectral methods, MagNet, DiGCN and DIGRAC can be com-
pleted within two days, including repeated experiments, to obtain averages over multiple runs. DGCN
and DiGCN_ib have much longer run time (especially DGCN, which is space-consuming, and we
cannot run many experiments in parallel), with a total of three days for both of them to finish. The
slow speed stems from the competitor methods; some of the other GNN methods take a long time to
run. Table 1 in the main text shows N/A values for Bi_sym and for DD_sym exactly for this reason.
Empirically, DIGRAC is the fastest among all GNN methods to which it is compared.
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(a) DSBM(“complete", F,
n = 1000,K = 5, p = 0.02, ρ = 1)
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(b) DSBM(“cycle", F,
n = 1000,K = 5, p = 0.02, ρ = 1)

Figure 1: ARI comparison of loss functions on DSBM with 1000 nodes, 5 blocks, ρ = 1, p = 0.02
without ambient nodes, of cycle (left) and complete (right) meta-graph structures, respectively. The
first component of the legend is the choice of pairwise imbalance, and the second component is the
variant of selecting pairs. The naming conventions for the abbreviations in the legend are provided in
Table 1.
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Figure 2: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, of the complete meta-graph structure. The legend is the
same as Figure 1(a).
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Figure 3: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, of the cyclic meta-graph structure. The legend is the same
as Figure 1(a).

B.3 DATA

The results comparing DIGRAC with other methods on synthetic data are averaged over 50 runs, five
synthetic networks under the same setting, each with 10 different data splits. For synthetic data, 10%
of all nodes are selected as test nodes for each cluster (the actual number is the ceiling of the total
number of nodes times 0.1, to avoid falling below 10% of test nodes), 10% are selected as validation
nodes (for model selection and early-stopping; again, we consider the ceiling for the actual number),
while the remaining roughly 80% are selected as training nodes (the actual number can never be
higher than 80% due to using the ceiling for both the test and validation splits). To further clarify
the training setup, we use 0% of the labels in training. As DIGRAC is a self-supervised method
in principle we could use all nodes for training. However for a fair comparison with other GNN
methods we use only 80% of the nodes for training. For supervised methods our split of 80% - 10% -
10% is a standard split. For the non-GNN methods, all nodes are used for training.

For both synthetic and real-world data sets, we extract the largest weakly connected component for
experiments, as our framework could be applied to different weakly connected components, if the
digraph is disconnected. Isolated nodes do not include any imbalance information. As customary in
community detection, they are often omitted in real networks. When “ground-truth" is given, test
results are averaged over 10 different data splits on one network. When no labels are available, results
are averaged over 10 different data splits.

Averaged results are reported with error bars representing one standard deviation in the figures, and
plus/minus one standard deviation in the tables.

Our synthetic data, DSBM, which we denote by DSBM (M,1(ambient), n,K, p, ρ, η), is built
similarly to Cucuringu et al. (2020) but with possibly unequal cluster sizes: • (1) Assign cluster sizes
n0 ≤ n1 ≤ · · · ≤ nK−1 with size ratio ρ ≥ 1 , as follows. If ρ = 1 then the first K − 1 clusters have
the same size bn/Kc and the last cluster has size n− (K − 1)bn/Kc. If ρ > 1, we set ρ0 = ρ

1
K−1 .

Solving
∑K−1
i=0 ρi0n0 = n and taking integer value gives n0 =

⌊
n(1− ρ0)/(1− ρK0 )

⌋
. Further, set

ni = bρ0ni−1c, for i = 1, · · · ,K − 2 if K ≥ 3, and nK−1 = n −
∑K−2
i=0 ni. Then the ratio of
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the size of the largest to the smallest cluster is approximately ρK−10 = ρ. • (2) Assign each node
randomly to one of K clusters, so that each cluster has the allocated size. • (3) For node vi, vj ∈ Ck,
independently sample an edge from node vi to node vj with probability p · F̃k,k. • (4) For each pair
of different clusters Ck, Cl with k 6= l, for each node vi ∈ Ck, and each node vj ∈ Cl, independently
sample an edge from node vi to node vj with probability p · F̃k,l.
For real-world data sets, we choose the number K of clusters in the meta-graph and the number β
of edges between clusters in the meta-graph as follows. As they are needed as input for DIGRAC,
we resort to Herm_rw (Cucuringu et al., 2020) as an initial view of the network clustering. When a
suitable meta-graph is suggested in a previous publication, then we use that choice. Otherwise, the
number K of clusters is determined using the clustering from Herm_rw. First, we pick a range of
K, and for each K, we calculate the global imbalance scores and plot the predicted meta-graph flow
matrix F′ based on the clustering from Herm_rw. Its entries are defined as

F′(k, l) = 1(W (Ck, Cl) +W (Cl, Ck) > 0)× W (Ck, Cl)
W (Ck, Cl) +W (Cl, Ck)

. (8)

These entries can be viewed as predicted probabilities of edge directions. Then, we choose K from
this range so that the predicted meta-graph flow matrix has the highest imbalance scores and strong
imbalance in the predicted meta-graph flow matrix.

The choice of β is as follows. We plot the ranked pairs of CIplain values from Herm_rw and select the
β which is at least as large as K− 2, to allow the meta-graph to be connected, and which corresponds
to a large drop in the plot.

Here we provide a brief description for each of the data sets; Table 2 gives the number, n, of nodes,
the number, |E|, of directed edges, the number |Er|, of reciprocal edges (self-loops are counted once
and for u 6= v, a reciprocal edge u→ v, v → u is counted twice) as well as their percentage among
all edges, for the real-world networks, illustrating the variability in network size and density (defined
as |E|/[n(n− 1)]).
• Telegram (Bovet & Grindrod, 2020) is a pairwise influence network between n = 245 Telegram
channels with |E| = 8, 912 directed edges. It is found in Bovet & Grindrod (2020) that this network
reveals a core-periphery structure in the sense of Elliott et al. (2020). Following Bovet & Grindrod
(2020) we assume K = 4 clusters, and the core-periphery structures gives β = 5.
• Blog (Adamic & Glance, 2005) records |E| = 19, 024 directed edges between n = 1, 212 political
blogs from the 2004 US presidential election. In Adamic & Glance (2005) it is found that there is an
underlying structure with K = 2 clusters corresponding to the Republican and Democratic parties.
Hence we choose K = 2 and β = 1.
• Migration (Perry, 2003) reports the number of people that migrated between pairs of counties
in the US during 1995-2000. It involves n = 3, 075 countries and |E| = 721, 432 directed edges
after obtaining the largest weakly connected component. We choose K = 10 and β = 9, following
Cucuringu et al. (2020). Since the original digraph has entries extremely large, to cope with these
outliers, we preprocess the input network by

Ai,j =
Ai,j

Ai,j + Aj,i
1(Ai,j > 0),∀i, j ∈ {1, · · · , n}, (9)

which follows the preprocessing of Cucuringu et al. (2020). The results for not doing this preprocess-
ing is provided in Table 10.
• WikiTalk (Leskovec et al., 2010) contains all users and discussion from the inception of Wikipedia
until Jan. 2008. The n = 2, 388, 953 nodes in the network represent Wikipedia users and a directed
edge from node vi to node vj denotes that user i edited at least once a talk page of user j. There
are |E| = 5, 018, 445 edges. We choose K = 10 clusters among candidates {2, 3, 5, 6, 8, 10}, and
β = 10.
• Lead-Lag (Bennett et al., 2021) contains yearly lead-lag matrices from 269 stocks from 2001 to
2019. We choose K = 10 clusters based on the GICS industry sectors (Phillips & Ormsby, 2016),
and choose β = 3 to emphasize the top three pairs of imbalance values. The lead-lag matrices are
built from time series of daily price log returns, as detailed in (Bennett et al., 2021). The lead-lag
metric for entry (i, j) in the network encodes a measure of the extent to which stock i leads stock j,
and is obtained by applying a functional that computes the signed normalized area under the curve
(auc) of the standard cross-correlation function (ccf). The resulting matrix is skew-symmetric, and
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entry (i, j) quantifies the extent to which stock i leads or lags stocks j, thus leading to a directed
network interpretation. Starting from the skew-symmetric matrix, we further convert negative entries
to zero, so that the resulting digraph can be directly fed into other methods; note that this step does
not throw away any information, and is pursued only to render the representation of the digraph
consistent with the format expected by all methods compared, including DIGRAC. Note that the
statistics given in Table 2 are averaged over the 19 years.

Table 2: Summary statistics for the real-world networks.

data set n |E| density weighted |Er| |Er|
|E| (%)

Telegram 245 8,912 1.28 · 10−2 True 1,572 17.64
Blog 1,222 19,024 1.49 · 10−1 True 4,617 24.27
Migration 3,075 721,432 7.63 · 10−2 True 351,100 48.67
WikiTalk 2,388,953 5,018,445 8.79 · 10−7 False 723,526 14.42
Lead-Lag 269 29,159 4.04 · 10−1 True 0.00 0.00

As input features, after obtaining eigenvectors from Hermitian matrices constructed as in Cucuringu
et al. (2020), we standardize each column vector so that it has mean zero and variance one. We use
these features for all GNN methods except MagNet, since MagNet has its own way of generating
random features of dimension one.

B.4 HYPERPARAMETERS

We conduct hyperparmeter selection via a greedy search. To explain the details, consider for example
the following synthetic data setting: DSBM with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02,
without ambient nodes under different hyperparameter settings. By default, we use the loss function
Lsort

vol_sum, d = 32 hidden units, hop h = 2, and no seed nodes. Instead of a grid search, we tune
hyperparameters according to what performs the best in the default setting of the respective GNN
method. The procedure starts with a random setting. For the next iteration, the hyperparameters are
set to the current best setting (based on the last iteration), independently. For example, if we start with
a = 1, b = 2, c = 3, and we find that under this default setting, the best a (when fixing b = 2, c = 3)
is 2 and the best b (when fixing a = 1, c = 3) is 3, and the best c is 3 (when fixing a = 1, b = 2),
then for the next iteration, we set a = 2, b = 3, c = 3. If two settings give similar results, we choose
the simpler setting, for example, the smaller hop size. When we reach a local optimum, we stop
searching. Indeed, just a few iterations (less than five) were required for us to find the current setting,
as DIGRAC tends to be robust to most hyperparameters.

Figure 4, 5 and 6 are plots corresponding to the same setting but for three different meta-graph
structures, namely the complete meta-graph structure, the cycle structure but with ambient nodes, and
the complete structure with ambient nodes, respectively.

In theory, more hidden units give better expressive power. To reduce complexity, we use 32 hidden
units throughout, which seems to have desirable performance. We observe that for low-noise
regimes, more hidden units actually hurt performance. We can draw a similar conclusion about the
hyperparameter selection. In terms of τ, DIGRAC seems to be robust to different choices. Therefore,
we use τ = 0.5 throughout.

B.5 USE OF SEED NODES IN A SEMI-SUPERVISED MANNER

B.5.1 SUPERVISED LOSS

For seed nodes in V seed, similar to the loss function in Tian et al. (2019), we use as a supervised loss
function the sum of a cross-entropy loss and a triplet loss. The cross-entropy loss is given by

LCE = − 1

|V seed|
∑

vi∈V seed

K∑
k=1

1(vi ∈ Ck) log ((pi)k) , (10)

where 1 is the indicator function, Ck denotes the kth cluster, and (pi)k denotes the kth entry of
probability vector (pi). With the function L : R2 → R given by L(x, y) = [x − y]+ (where the
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Figure 4: Hyperparameter analysis on different hyperparameter settings on the complete DSBM with
1000 nodes, 5 clusters, ρ = 1, and p = 0.02 without ambient nodes.
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Figure 5: Hyperparameter analysis on different hyperparameter settings on the complete DSBM with
1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.

subscript + indicates taking the maximum of the expression value and 0), the triplet loss is defined as

Ltriplet =
1

|S|
∑

(vi,vj ,vk)∈S

L(CS(zi, zj),CS(zi, zk), (11)

where S ⊆ V seed × V seed × V seed is a set of node triplets: vi is an anchor seed node, and vj is a seed
node from the same cluster as the anchor, while vk is from a different cluster; and CS(zi, zj) is the
cosine similarity of the embeddings of nodes vi and vj . We choose cosine similarity so as to avoid
sensitivity to the magnitude of the embeddings. The triplet loss is designed so that, given two seed
nodes from the same cluster and one seed node from a different cluster, the respective embeddings of
the pairs from different clusters should be farther away than the embedding of the pair within the
same cluster.

We then consider the weighted sum LCE + γtLtriplet as the supervised part of the loss function for
DIGRAC, for some parameter γt > 0. The parameter γt arises as follows. The cosine similarity
between two randomly picked vectors in d dimensions is bounded by

√
ln(d)/d with high probability.

In our experiments d = 32, and
√

ln(2d)/(2d) ≈ 0.25. In contrast, for fairly uniform clustering, the
cross-entropy loss grows like log n, which in our experiments ranges between 3 and 17. Thus some
balancing of the contribution is required. Following Tian et al. (2019), we choose γt = 0.1 in our
experiments.

B.5.2 OVERALL OBJECTIVE FUNCTION

We recall the objective function and the loss function

Osort
vol_sum =

1

β

∑
(Ck,Cl)∈T (β)

CIvol_sum(k, l), and Lsort
vol_sum = 1−Osort

vol_sum, (12)

from the main text. By combining Eq. (10), Eq. (11), and Eq. (12), our objective function for
semi-supervised training with known seed nodes minimizes

L = Lsort
vol_sum + γs(LCE + γtLtriplet), (13)
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Figure 6: Hyperparameter analysis on different hyperparameter settings on the cycle DSBM with
1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.

where γs, γt > 0 are weights for the supervised part of the loss and triplet loss within the supervised
part, respectively. We set γs = 50 as we want our model to perform well on seed nodes. The weights
could be tuned depending on how important each term is perceived to be.

B.6 TRAINING

For all synthetic data, we train DIGRAC with a maximum of 1000 epochs, and stop training when no
gain in validation performance is achieved for 200 epochs (early-stopping). For real-world data, no
“ground-truth" labels are available; we use all nodes to train and stop training when the training loss
does not decrease for 200 epochs, or when we reach the maximum number of epochs, 1000.

For the two-layer MLP, we do not have a bias term for each layer, and we use Rectified Linear Unit
(ReLU) followed by a dropout layer with 0.5 dropout probability between the two layers, following
Tian et al. (2019). We use Adam (Kingma & Ba, 2014) as the optimizer and `2 regularization with
weight decay 5 · 10−4 to avoid overfitting. We use as learning rate 0.01 throughout.

B.7 IMPLEMENTATION DETAILS FOR THE COMPARISON METHODS

In our experiments, we compare DIGRAC against five spectral methods and five GNN-based
supervised methods on synthetic data, and spectral methods on real data. The reason we are not able
to compare DIGRAC with the above GNNs on these data sets is due to the fact that these data sets
do not have labels, which are required by the other GNN methods. We use the same hyperparameter
settings stated in these papers. Data splits for all models are the same; the comparison GNNs are
trained with 80% nodes under label supervision.

For MagNet, we use q = 0.25 for the phase matrix as in (Zhang et al., 2021), because it is mentioned
that q = 0.25 lays the most emphasis on directionality, which is our main focus in this paper. Code
for MagNet is from https://github.com/matthew-hirn/magnet. We use the code from
https://github.com/flyingtango/DiGCN/blob/main/code/digcn.py to obtain
the log of probability matrix P for the methods DiGCN and DiGCN_app. The only difference
between these two methods is whether or not to use approximate Laplacian based on personalized
PageRank. The “adj_type" options for them correspond to “or" and “appr", respectively.

For DiGCN_ib, we use the code from https://github.com/flyingtango/DiGCN/blob/
main/code/digcn_ib.py with option “adj_type" equals “ib". As a recommended option in
Tong et al. (2020a), we use three layers for DiGCN_ib and two layers for DiGCN and DiGCN_app.
All other settings are the same as in the original paper (Tong et al., 2020a).

B.8 ALGORITHM AND COMPLEXITY ANALYSIS

To avoid computationally expensive and space unfriendly matrix operations, as described in Eq. (1)
in the main text, DIGRAC uses an efficient sparsity-aware implementation, described in Algorithm
1, without explicitly calculating the sets of powers As,h and At,h. We omit the subscript V for ease
of notation. The algorithm is efficient in the sense that it takes sparse matrices as input, and never
explicitly computes a multiplication of two n× n matrices. Therefore, for input feature dimension
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din and hidden dimension d, if d′ = max(din, d) � n, time and space complexity of DIMPA, and
implicitly DIGRAC, is O(|E|d′h2 + 2nd′K) and O(2|E|+ 4nd′ + nK), respectively (Harrison &
Joseph, 2018; Greiner & Jacob, 2010).

Indeed, it is a current shortcoming of DIGRAC that it does not scale well to very large networks;
however, this limitation is also shared by all the GNN competitors compared against in the paper, and
some of the spectral methods. DIGRAC scales well in the sense that when the underlying network is
sparse, the sparsity is preserved throughout the pipeline. In contrast, Bi_sym and DD_sym (Satuluri
& Parthasarathy, 2011) construct derived dense matrices for manipulation, rendering the methods no
longer scalable. These methods resulted in N/A values in Table 1 in the main text. For large-scale
networks, DIMPA is amenable to a minibatch version using neighborhood sampling, similar to the
minibatch forward propagation algorithm in Hamilton et al. (2017); Markowitz et al. (2021). We
are also aware of a framework (Fey et al., 2021) for scaling up graph neural networks automatically,
where theoretical guarantees are provided, and ideas there will be exploited in future. We expect that
the theoretical guarantees could be adapted to our situation.

Algorithm 1: Weighted Multi-Hop Neighbor Aggregation (DIMPA).

Input :(Sparse) row-normalized adjacency matrices A
s
,A

t
; initial hidden representations

Hs,Ht; hop h(h ≥ 2); lists of scalar weights
Ωs = (ωsM,M ∈ As,h),Ωt = (ωtM,M ∈ At,h).

Output :Vector representations zi for all vi ∈ V given by Z.

X̃s ← A
s
Hs; X̃t ← A

t
Ht;

Zs ← Ωs[0] ·Hs + Ωs[1] · X̃s; Zt ← Ωt[0] ·Ht + Ωt[1] · X̃t;
for i← 2 to h do

X̃s ← A
s
X̃s; X̃t ← A

t
X̃t;

Zs ← Zs + Ωs[i] · X̃s; Zt ← Zt + Ωt[i] · X̃t;
end
Z = CONCAT (Zs,Zt);

C MORE RESULTS ON SYNTHETIC DATA

C.1 AN ADDITIONAL META-GRAPH STRUCTURE

Recall that the Directed Stochastic Block Models used in our experiments depend on a meta-graph
adjacency matrix F and a filled version of it, F̃, for some number of clusters, K, and noise level
η ≤ 0.5. The meta-graph adjacency matrix F is generated from some meta-graph structure, called
M. Based onM, the filled meta-graph F̃ replaces every zero in F that is not part of the imbalance
structure with 0.5, independently of the choice of η. It is the filled meta-graph F̃ which we feed
into the DSBM generation process.The filled meta-graph creates a number of ambient nodes which
correspond to entries which are not part of the imbalance structure and thus are not part of a
meaningful cluster; the set of ambient nodes is also called the ambient cluster.

Here, we introduce an additional meta-graph structure, called “multipartite", following Elliott et al.
(2019). First, when there are no ambient nodes: we divide the index set into three sets; setting
i1 = bK9 c, i2 = b 3K9 c+ i1, let

Fk,l = (1− η)1(k < i1, i1 ≤ l < i2) + η1(i1 ≤ k < i2, l ≥ i2)

+(1− η)1(k ≥ i2, i1 ≤ l < i2) + η1(i1 ≤ k < i2, l < i1).

When we have ambient nodes, the construction involves two steps, with the first step the same as the
above but with the following changes: divide the indices into three sets, with set boundaries given by
i1 = bK−19 c, i2 = b 3(K−1)9 c+ i1. The second step is to assign 0 (respectively, 0.5) to the last row
and the last column of F (respectively, F̃).

10
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Figure 7: Node clustering test ARI comparison on four additional synthetic data sets. Dashed lines
highlight DIGRAC’s performance. Error bars are given by one standard error. Abbreviations for all
the methods are given in Section 4 in the main text.

C.2 ADDITIONAL COMPARISON PLOTS AND ANALYSIS

Figure 7 compares the numerical performance of DIGRAC with other methods except InfoMap,
which performs rather poorly in our synthetic experiments in the main text, on four more settings of
synthetic data, namely, a cycle structure with three clusters, a complete structure with ten clusters,
a multipartite structure with ten clusters, and a star structure with five clusters. Indeed, Infomap
clusters all nodes into one big cluster for all of our synthetic experiments. Considering the results in
Section 5 and Figure 7, we remark that DIGRAC gives state-of-the-art results on a wide range of
network densities and noise levels, on different scales of the networks, and with different meta-graph
structures, whether or not ambient nodes exist.

Note that the multipartite, the cycle and the star settings correspond to the intuition behind Tong
et al. (2020a) which assumes that nodes are similar if their set of kth-order neighbourhoods are
similar; here the second-order neighbourhoods are similar by design. For networks with underlying
meta-graph structure “star", “cycle" or “multipartite", clusters could be determined by grouping
nodes that share similar in-neighbors and out-neighbors together, which aligns well with the second-
order proximity used in DGCN and DiGCN_ib from Tong et al. (2020b). Therefore, these methods
are naturally well-suited for dealing with the such synthetic data. We also note that although
DIGRAC does not explicitly use second-order proximity, it can achieve comparable performance
with DGCN and DiGCN_ib. This indicates DIGRAC’s flexibility to adapt to directed networks with
different underlying topologies, without explicitly utilizing higher-order proximity. On the other hand,
DiGCN_ib is fully supervised, and takes much more space and time to implement, than DIGRAC.
This is partially due to the use of the so-called inception blocks in DiGCN_ib, where multi-scale
directed structure features are encoded and fused with a fusion function. As stated in Tong et al.
(2020a), the worst space complexity is O(k′n2), where k′ is the order of proximity to consider (we
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use k′ = 2 throughout). The eigenvalue decomposition in the preprocessing step is O(n3). We also
remark that the approximate Laplacian based on personalized PageRank, when no inception blocks
are used, performs no better than the simpler implementation without the approximation. We conclude
that overall DIGRAC is a fast method for general directed clustering when directionality is the
main signal, which performs as well as custom-tailored methods when the proximity neighborhood
heuristic holds, while outperforming all tested methods on the complete meta-graph, where the
proximity neighborhood heuristic does not hold.

D ADDITIONAL RESULTS ON REAL-WORLD DATA

D.1 EXTENDED RESULT TABLES

Tables 3, 4, 5 and 6 provide a detailed comparison of DIGRAC with spectral methods. Since no
labeling information is available and all of the other competing GNN methods require labels, we do
not compare DIGRAC with them on these real data sets.

In Tables 3, 4, 5 and 6, we report 12 combinations of global imbalance scores by data set. The naming
convention of these imbalance scores is provided in Table 1. To assess how balanced our recovered
clusters are in terms of sizes, we also report the size ratio, which is defined as the size of the largest
predicted cluster to the smallest one, and the standard deviation of sizes, size std, in order to show
how varied the sizes of predicted clusters are. For a relatively balanced clustering, we expect the
latter two terms to be small.

Table 3: Performance comparison on Telegram. The best is marked in bold red and the second best
is marked in underline blue.

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.04±0.00 0.21±0.00 0.21±0.00 0.21±0.01 0.20±0.01 0.14±0.00 0.32±0.01
Osort

vol_min 0.47±0.00 0.67±0.00 0.61±0.00 0.66±0.02 0.66±0.02 0.19±0.00 0.79±0.06
Osort

vol_max 0.03±0.00 0.20±0.00 0.20±0.00 0.20±0.01 0.19±0.01 0.12±0.00 0.29±0.01
Osort

plain 1.00±0.00 0.80±0.00 0.75±0.00 0.78±0.03 0.76±0.04 0.59±0.00 0.96±0.01
Ostd

vol_sum 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Ostd

vol_min 0.16±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.49±0.00 0.73±0.03
Ostd

vol_max 0.01±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.29±0.00 0.25±0.01
Ostd

plain 0.68±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.90±0.05
Onaive

vol_sum 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.23±0.00 0.27±0.01
Onaive

vol_min 0.11±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.32±0.00 0.72±0.04
Onaive

vol_max 0.00±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.20±0.00 0.24±0.01
Onaive

plain 0.63±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.89±0.06
size ratio 24.750 242.000 242.000 242.000 242.00 53 3.090
size std 35.57 104.360 104.360 104.360 104.360 63.460 26.39

Tables 3, 4, 5, 6, 7, 8 and 9 reveal that DIGRAC provides competitive global imbalance scores in
all of the 12 objectives introduced, and across all the real data sets, usually outperforming all the
other methods. Among the tables, Table 9 provides results in terms of the distance to the best yearly
performance, averaged across the 19 years; DIGRAC usually outperforms all the other methods
across all the years. Note that Bi_sym and DD_sym are not able to generate results for WikiTalk, as
large n × n matrix multiplication with its transpose causes memory issue, when n = 2, 388, 953.
Small values of the size ratio and size standard deviation suggest that the normalization in the loss
function penalizes tiny clusters, and that DIGRAC tends to predict balanced cluster sizes.
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Table 4: Performance comparison on Blog. The best is marked in bold red and the second best is
marked in underline blue.

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Osort

vol_min 0.02±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Osort

vol_max 0.05±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Osort

plain 1.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_sum 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Ostd

vol_min 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_max 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Ostd

plain 0.73±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_sum 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Onaive

vol_min 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_max 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Onaive

plain 0.76±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
size ratio 1.270 8.700 2.450 6.100 11.93 44.26 1.860
size std 64.50 485 256.200 439 516.500 584 183.20

Table 5: Performance comparison on Migration. The best is marked in bold red and the second best
is marked in underline blue. InfoMap results are omitted here as it predicts a single huge cluster and
could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.03±0.00 0.01±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.05±0.00
Osort

vol_min 0.19±0.00 0.08±0.00 0.08±0.00 0.15±0.02 0.05±0.00 0.18±0.03
Osort

vol_max 0.03±0.00 0.01±0.00 0.01±0.00 0.03±0.00 0.02±0.00 0.04±0.00
Osort

plain 0.24±0.00 0.20±0.00 0.17±0.00 0.40±0.01 0.49±0.06 0.29±0.04
Ostd

vol_sum 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.04±0.01
Ostd

vol_min 0.10±0.00 0.05±0.00 0.05±0.00 0.08±0.01 0.04±0.00 0.16±0.03
Ostd

vol_max 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.03±0.01
Ostd

plain 0.13±0.00 0.12±0.00 0.11±0.00 0.20±0.01 0.20±0.01 0.26±0.01
Onaive

vol_sum 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.04±0.01
Onaive

vol_min 0.09±0.00 0.04±0.00 0.04±0.00 0.08±0.01 0.01±0.00 0.16±0.03
Onaive

vol_max 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.03±0.01
Onaive

plain 0.12±0.00 0.10±0.00 0.08±0.00 0.19±0.00 0.19±0.03 0.26±0.01
size ratio 7.780 6.070 4.360 36.05 1035.90 4.420
size std 135.210 132.76 103.43 335.790 353.060 264.500
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Table 6: Performance comparison on WikiTalk. The best is marked in bold red and the second best is
marked in underline blue. InfoMap results are omitted here as its large number of predicted clusters
leads to memory error in imbalance calculation.

Metric/Method DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.18±0.03 0.15±0.02 0.00±0.00 0.24±0.05
Osort

vol_min 0.10±0.03 0.22±0.05 0.26±0.00 0.28±0.13
Osort

vol_max 0.16±0.03 0.09±0.01 0.00±0.00 0.19±0.04
Osort

plain 0.87±0.08 0.99±0.01 0.98±0.00 1.00±0.00
Ostd

vol_sum 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Ostd

vol_min 0.09±0.02 0.09±0.02 0.27±0.00 0.18±0.08
Ostd

vol_max 0.15±0.04 0.04±0.00 0.00±0.00 0.11±0.02
Ostd

plain 0.72±0.03 0.70±0.05 0.98±0.00 0.84±0.06
Onaive

vol_sum 0.10±0.02 0.04±0.00 0.00±0.00 0.12±0.01
Onaive

vol_min 0.06±0.03 0.07±0.02 0.26±0.00 0.15±0.07
Onaive

vol_max 0.09±0.02 0.03±0.00 0.00±0.00 0.09±0.01
Onaive

plain 0.64±0.04 0.61±0.04 0.98±0.00 0.76±0.06
size ratio 1190162.25 2217434.50 250.48 71765.14
size std 713813.72 660060.33 657941.88 643220.37

Table 7: Performance comparison on Lead-Lag for year 2015. The best is marked in bold red and
the second best is marked in underline blue. InfoMap results are omitted here as it usually predicts a
single huge cluster and could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.00 0.07±0.00 0.06±0.00 0.07±0.00 0.06±0.01 0.15±0.00
Osort

vol_min 0.53±0.06 0.50±0.02 0.45±0.07 0.50±0.03 0.46±0.06 0.50±0.02
Osort

vol_max 0.07±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.15±0.01
Osort

plain 0.65±0.03 0.67±0.03 0.59±0.03 0.65±0.03 0.65±0.02 0.55±0.07
Ostd

vol_sum 0.04±0.00 0.04±0.00 0.04±0.00 0.04±0.00 0.04±0.00 0.11±0.02
Ostd

vol_min 0.27±0.03 0.27±0.02 0.24±0.02 0.27±0.02 0.26±0.04 0.35±0.04
Ostd

vol_max 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.10±0.02
Ostd

plain 0.39±0.02 0.39±0.01 0.37±0.02 0.39±0.02 0.40±0.02 0.38±0.04
Onaive

vol_sum 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.08±0.03
Onaive

vol_min 0.20±0.02 0.20±0.02 0.17±0.03 0.20±0.02 0.20±0.03 0.25±0.08
Onaive

vol_max 0.02±0.00 0.03±0.00 0.02±0.00 0.03±0.00 0.03±0.00 0.08±0.03
Onaive

plain 0.29±0.01 0.29±0.01 0.26±0.02 0.30±0.01 0.30±0.01 0.31±0.05
size ratio 3.070 3.110 3.060 2.89 2.95 15.640
size std 8.390 7.94 8.680 7.28 8.050 18.680
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Table 8: Performance comparison on Lead-Lag. Results in each year is averaged over ten runs. Mean
and standard deviation (after ±) are calculated over the 19 years. The best is marked in bold red and
the second best is marked in underline blue. InfoMap results are omitted here as it usually predicts a
single huge cluster and could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03
Osort

vol_min 0.51±0.10 0.48±0.09 0.47±0.10 0.51±0.11 0.50±0.10 0.47±0.09
Osort

vol_max 0.07±0.01 0.06±0.01 0.06±0.01 0.07±0.01 0.07±0.01 0.14±0.03
Osort

plain 0.66±0.09 0.64±0.08 0.63±0.08 0.66±0.09 0.65±0.09 0.53±0.09
Ostd

vol_sum 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03
Ostd

vol_min 0.27±0.04 0.27±0.04 0.25±0.04 0.27±0.03 0.27±0.03 0.38±0.07
Ostd

vol_max 0.04±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.11±0.02
Ostd

plain 0.40±0.05 0.39±0.05 0.38±0.05 0.40±0.05 0.40±0.05 0.44±0.07
Onaive

vol_sum 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.08±0.04
Onaive

vol_min 0.20±0.05 0.19±0.05 0.18±0.05 0.19±0.04 0.19±0.04 0.26±0.10
Onaive

vol_max 0.03±0.01 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.00 0.08±0.03
Onaive

plain 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11
size ratio 3.67 3.34 3.900 4.110 3.880 8.070
size std 9.31 9.14 10.090 10.490 10.360 17.060

Table 9: Performance comparison on Lead-Lag, where we evaluate the performance distance to the
best one in each year. Results in each year is averaged over ten runs. Mean and standard deviation
(after ±) are calculated over the 19 years. The best is marked in bold red and the second best is
marked in underline blue. InfoMap results are omitted here as it usually predicts a single huge cluster
and could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.02 0.08±0.02 0.08±0.02 0.07±0.02 0.07±0.02 0.00±0.00
Osort

vol_min 0.01±0.01 0.05±0.03 0.06±0.03 0.02±0.02 0.02±0.02 0.06±0.04
Osort

vol_max 0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.00±0.00
Osort

plain 0.01±0.02 0.03±0.03 0.05±0.03 0.01±0.02 0.02±0.02 0.14±0.03
Ostd

vol_sum 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.00±0.00
Ostd

vol_min 0.10±0.05 0.11±0.04 0.13±0.05 0.11±0.05 0.11±0.05 0.00±0.00
Ostd

vol_max 0.07±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.00±0.00
Ostd

plain 0.04±0.03 0.05±0.04 0.06±0.04 0.04±0.04 0.04±0.03 0.00±0.00
Onaive

vol_sum 0.05±0.03 0.06±0.03 0.06±0.03 0.05±0.03 0.05±0.03 0.00±0.00
Onaive

vol_min 0.06±0.07 0.07±0.06 0.08±0.07 0.07±0.08 0.07±0.08 0.00±0.00
Onaive

vol_max 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03 0.00±0.00
Onaive

plain 0.03±0.06 0.05±0.05 0.06±0.06 0.04±0.06 0.04±0.06 0.01±0.02
size ratio 1.04 0.71 1.270 1.480 1.250 5.440
size std 0.58 0.41 1.360 1.770 1.630 8.340
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Figure 8: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on the Telegram data set. Lines are used to highlight DIGRAC’s performance.

D.2 RANKED PAIRWISE IMBALANCE SCORES

We also plot the ranked pairwise imbalance scores for all data sets except Blog, which has only one
possible pairwise imbalance score. For Lead-Lag, we only plot the year 2015 as an example; the
plots for the other years are similar. Figures 8, 9, 10 and 11 illustrate that DIGRAC is able to provide
comparable or higher pairwise imbalance scores for the leading pairs, especially on CIvol_min pairs.
We also observe that except for CIplain, DIGRAC has a less rapid drop in pairwise imbalance scores
after the first leading pair compared to Herm and Herm_rw, which can have a few pairs with higher
imbalance scores than DIGRAC.
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Figure 9: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on the Migration data set. Lines are used to highlight DIGRAC’s performance.
InfoMap results are omitted as it predicts one single huge cluster and could not produce imbalance
results.
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Figure 10: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on WikiTalk data set. Lines are used to highlight DIGRAC’s performance. InfoMap
results are omitted here because it triggers memory error due to the large number of predicted clusters.
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Figure 11: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on Lead-Lag data set. Lines are used to highlight DIGRAC’s performance. InfoMap
results are omitted here because it only predicts a single cluster.

D.3 PREDICTED META-GRAPH FLOW MATRIX PLOTS

For each data set, we plot the predicted meta-graph flow matrix F′ defined in Eq. (8).

From Figure 12, we conclude that DIGRAC is able to recover a directed flow imbalance between
clusters in all of the selected data sets. Figure 12a shows a clear cut imbalance between two clusters,
possibly corresponding to the Republican and Democratic parties. Figure 12b plots imbalance flows
in the real data set Telegram, where cluster 3 is a core-transient cluster, cluster 0 is a core-sink cluster,
cluster 2 is a periphery-upstream cluster, while cluster 1 is a periphery-downstream cluster (Elliott
et al., 2020; Bovet & Grindrod, 2020). For WikiTalk, illustrated in Figure 12d, the lower-triangular
part entries are typically source nodes for edges, while the upper-triangular part are target nodes. For
Lead-Lag, taking the year 2015 as an example, DIGRAC is also able to recover high imbalance in the
data.

We also note that DIGRAC would not necessarily predict the same number of clusters as assumed,
so that we do not need to specify the exact number of clusters before training DIGRAC; specifying
the maximum number of possible clusters suffices.
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Figure 12: Predicted meta-graph flow matrix from DIGRAC of five real-world data sets.

D.4 MIGRATION PLOTS

We compare DIGRAC to five spectral methods for recovering clusters for the US migration data set,
and plot the recovered clusters on a map, in Figure 13.

The visualization in Figure (a-c) shows that clusters align particularly well with the political and
administrative boundaries of the US states, as previously observed in Cucuringu et al. (2013). This
outcome is not deemed too insightful, as it trivially reveals the fact there there is significant intra-
state and inter-state migration, and does not uncover any of the information on latent migration
patterns between far-away states, and more generally, between regions which are not necessarily
geographically cohesive.

D.5 COPING WITH OUTLIERS

As mentioned in Section B.3, the preprocessing step to use ratio of migration instead of absolute
migration numbers is a way to cope with outliers (here, extremely large entries in the original digraph)
in Migration. To validate the effectiveness of this approach to cope with outliers, Table 10 provides
imbalance results for Migration when we do not transform the nonzero entries into ratios. Comparing
with Table 5, we witness an overall decrease in the performance. In this case InfoMap no longer
predicts a single huge cluster. However, its predicted number of clusters is about 44, which is too
large. This also implies that InfoMap is very sensitive to the magnitude of digraph entries, while
DIGRAC is not. Indeed, InfoMap gives 43 (too many) clusters for Blog, 19 (too many) for Telegram,
1 (too small) for Migration, and 17498 (far too many) for WikiTalk.

We compare DIGRAC to five spectral methods as well as InfoMap for recovering clusters for the US
migration data set without the preprocessing step discussed earlier, and plot the recovered clusters
on a map in Figure 15. Note that all methods, except DIGRAC, recover either clusters which are
trivially small in size or contain one very large dominant cluster (as in (a), (b), (e) and to some extent,
also (f)). The DISG_LR clustering and InfoMap clustering provide clear geographic boundaries, but
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Figure 13: US migration predicted clusters, along with the geographic locations of the counties as
well as state boundaries (in black). InfoMap results are omitted here because it only produces one
huge cluster. The input data is normalized, following Eq. (9).

were not able to recover the imbalance among clusters. Other spectral methods generally have a
dominant cluster containing most of the nodes, whereas DIGRAC has more balanced cluster sizes.

When employing methods that symmetrize the adjacency matrix (as in (a) and (b)), the migration
flows between counties in different states will be lost in the process. Furthermore, the visualization in
Figure (c) shows that clusters align particularly well with the political and administrative boundaries
of the US states, as previously observed in Cucuringu et al. (2013). The same is for Figure (d).
This outcome is not deemed very insightful, as it trivially reveals the fact that there is significant
intra-state and inter-state migration, and does not uncover any of the information on latent migration
patterns between far-away states, and more generally, between regions which are not necessarily
geographically cohesive.

Figure 14 further plots the top three pairs of clusters based on four different imbalance scores given
by DIGRAC. As shown in the figure, DIGRAC uncovers the migration trend from outside to inside,
across states. This trend of the directed flow agrees with that discussed in Perry (2003), with many
people migrating from New York and California to the inner states.

E DISCUSSION OF RELATED METHODS THAT ARE NOT COMPARED AGAINST
IN THE MAIN TEXT

To further emphasize the importance of directionality, our synthetic data sets have no difference in
density between clusters; their sole signal is in the directionality of the edges. If all edge directions
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(b) CIvol_sum: 2nd pair
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(c) CIvol_sum: 3rd pair
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(g) CIvol_max: top pair
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(i) CIvol_max: 3rd pair
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(j) CIplain: top pair
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Figure 14: US migration predicted cluster pairs with top imbalance, along with the geographic
locations of the counties as well as state boundaries (in black). Red (label 1) is the sending cluster
while blue (label 2) is the receiving cluster. Yellow (label 0) denotes all the other locations being
considered. Subcaptions show the imbalance score and the rank based on that score.

were to be removed, then no algorithm out there should be available to detect the clusters. To further
support our claim why some methods mentioned in Section 2 in the main text are not appropriate for
comparison, we have applied the default setting versions of the Louvain method (Dugué & Perez,
2015), the Leiden algorithm (Traag et al., 2019) and OSLOM (Lancichinetti et al., 2011), to our
synthetic data sets, and find that they do not detect the structure in the data, with ARI and NMI values
very close to zero, and very low imbalance values. In particular, Louvain and Leiden tend to give a
larger number of clusters than the ground truth which is designed to have small cluster sizes. OSLOM
outputs clusters with extreme sizes, either a huge cluster containing (almost always) all the nodes, or
every node forming a cluster by itself.

On the real-world data sets, these methods often give numbers of clusters that do not match our
expectations. (Blog has two underlying parties, Telegram has a four-cluster core-periphery struc-
ture). Louvain clusters nodes from Blog into 8-13 clusters (too many), Telegram into 4-5 clusters
(acceptable), Migration into 5-7 clusters (acceptable), WikiTalk into 150-219 clusters (too many), and
Lead-Lag into 10-55 clusters (acceptable or a bit too many). Leiden gives 12 (too many) clusters
for Blog, 4-5 for Telegram, 5-6 for Migration, 170-248 (too many) for WikiTalk, and 10-55 clusters
(acceptable or a bit too many) for Lead-Lag. OSLOM gives 6 clusters for Blog (too many), 16 for
Telegram (too many), and 46 for Migration (too many). It could not generate results for WikiTalk
after running for 12 hours, and hence we omit its discussion here. On Lead-Lag, OSLOM places
every node in a single cluster for most of the years, and clusters the rest of the years into either a huge
single cluster or two clusters.
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Table 10: Performance comparison on Migration (without preprocessing). The best is marked in
bold red and the second best is marked in underline blue.

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.02±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.07±0.00 0.01±0.00 0.04±0.00
Osort

vol_min 0.24±0.00 0.20±0.01 0.12±0.02 0.14±0.00 0.21±0.01 0.05±0.02 0.18±0.02
Osort

vol_max 0.02±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.06±0.00 0.00±0.00 0.04±0.00
Osort

plain 0.61±0.00 0.46±0.00 0.29±0.02 0.26±0.00 0.62±0.02 0.40±0.00 0.32±0.11
Ostd

vol_sum 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Ostd

vol_min 0.03±0.00 0.09±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.03
Ostd

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Ostd

plain 0.19±0.00 0.23±0.00 0.14±0.01 0.12±0.00 0.32±0.01 0.25±0.01 0.21±0.03
Onaive

vol_sum 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Onaive

vol_min 0.02±0.00 0.08±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.04
Onaive

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Onaive

plain 0.16±0.00 0.22±0.00 0.13±0.01 0.11±0.00 0.31±0.01 0.22±0.00 0.21±0.03
size ratio 8.500 3043.80 722.620 25.780 3059.20 415.880 203.230
size std 58.96 912.100 861.280 409.900 917.230 844.750 342.38

None of the methods outperform DIGRAC on our chosen performance measures from Table 1, except
on the Lead-Lag data set. With regards to the 12 imbalance measures from SI Table 4, leaving
out OSLOM as before, Louvain and Leiden perform poorly on all of the real data sets, except on
Lead-Lag. Indeed, for Lead-Lag, the number of clusters we use for DIGRAC is ten according to
the GICS sector memberships. However, if we use the sector memberships as labels, the imbalance
values are poor, which implies that ten may not be a desirable choice of the number of clusters.
Further, DIGRAC usually clusters the nodes into smaller number of clusters, while Louvain and
Leiden usually cluster the nodes into a larger number of clusters (usually around 30, and sometimes
above 50 clusters).

Table 11: Performance comparison on Lead-Lag, including Louvain and Leiden. Results in each year
is averaged over ten runs. Mean and standard deviation (after ±) are calculated over the 19 years.
The best is marked in bold red and the second best is marked in underline blue. InfoMap results are
omitted here as it usually predicts a single huge cluster and could not generate imbalance results.
Louvain and Leiden yield essentially identical results and often attain the highest objectives, while
DIGRAC almost always places either first or second across all methods considered.

Metric/Method Louvain/Leiden Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.08±0.02 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03
Osort

vol_min 0.15±0.04 0.51±0.10 0.48±0.09 0.47±0.10 0.51±0.11 0.50±0.10 0.47±0.09
Osort

vol_max 0.08±0.02 0.07±0.01 0.06±0.01 0.06±0.01 0.07±0.01 0.07±0.01 0.14±0.03
Osort

plain 0.15±0.04 0.66±0.09 0.64±0.08 0.63±0.08 0.66±0.09 0.65±0.09 0.53±0.09
Ostd

vol_sum 0.23±0.06 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03
Ostd

vol_min 0.46±0.11 0.27±0.04 0.27±0.04 0.25±0.04 0.27±0.03 0.27±0.03 0.38±0.07
Ostd

vol_max 0.23±0.05 0.04±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.11±0.02
Ostd

plain 0.46±0.11 0.40±0.05 0.39±0.05 0.38±0.05 0.40±0.05 0.40±0.05 0.44±0.07
Onaive

vol_sum 0.23±0.06 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.08±0.04
Onaive

vol_min 0.46±0.11 0.20±0.05 0.19±0.05 0.18±0.05 0.19±0.04 0.19±0.04 0.26±0.10
Onaive

vol_max 0.23±0.05 0.03±0.01 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.00 0.08±0.03
Onaive

plain 0.46±0.11 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11
size ratio 124.530 3.67 3.34 3.900 4.110 3.880 8.070
size std 47.960 9.31 9.14 10.090 10.490 10.360 17.060
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(b) DD_sym

120 110 100 90 80 70
25

30

35

40

45

50

0
1
2
3
4
5
6
7
8
9
10

La
be

l
(c) DISG_LR
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(e) Herm
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(f) Herm_rw
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(g) DIGRAC

Figure 15: US migration predicted clusters, along with the geographic locations of the counties as
well as state boundaries (in black). The input digraph has extremely large entries; unlike in Figure
13, we do not employ here the normalization given by Eq. (9). Altogether, this demonstrates the
robustness of DIGRAC to outliers in the data, which is not a characteristic of other state-of-the-art
methods such as Herm and Herm_rw.
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