
A Appendix

A.1 Analysis of bifurcation curves

A.1.1 PLRNNs

The standard PLRNN [18], given in eq. (1) in sect. 3.1, was defined by

zt = Fθ(zt−1, st) = Azt−1 + Wϕ(zt−1) + Cst + h,

where ϕ(zt−1) = max(zt−1, 0). There are various extensions of this basic architecture like the
dendPLRNN [10] or the ‘shallow PLRNN’ (shPLRNN) [24], as used in sect. 5.1 for training on
single cell membrane potentials. The latter is essentially a 1-hidden-layer version of the form

zt = Fθ(zt−1, st) = Azt−1 +W1ϕ(W2zt−1 + h2) +Cst + h1, (6)

with W1 ∈ RM×L and W2 ∈ RL×M , L ≥ M , connectivity matrices, h1 ∈ RM , h2 ∈ RL bias
terms, and all other parameters and variables as in eq. (1). While this formulation is beneficial for
training, the shPLRNN can essentially be rewritten in standard PLRNN form (see [24]).

Assume that DΩ(t) := diag(dΩ(t)) is a diagonal matrix with an indicator vector dΩ(t) :=
(d1, d2, · · · , dM ) such that dm(zm,t) =: dm = 1 whenever zm,t > 0, and zero otherwise. Then eq.
(1) can be rewritten as

zt = (A+WDΩ(t−1))zt−1 + Cst + h =: WΩ(t−1) zt−1 + Cst + h.

Let us ignore the inputs for simplicity. There are 2M different configurations for matrix DΩ(t−1) and
so 2M different forms for matrix WΩ(t−1) in the system

zt = Fθ(zt−1) = WΩ(t−1) zt−1 + h. (7)

Thus, the phase space of the system is divided into 2M sub-regions corresponding to the indexed
matrices

WΩk := A+WDΩk , k = 1, 2, · · · , 2M , (8)

see [38, 39] for more details. For M = 2, assuming

W =

(
w11 0

w21 0

)
, (9)

in (8), we have

WΩ1 = WΩ3 =

(
a11 0

0 a22

)
= A,

WΩ2 = WΩ4 =

(
a11 + w11 0

w21 a22

)
. (10)

Hence, for this parameter constellation, the map simplifies as there exists only one border which
divides the phase space into two distinct sub-regions, such that (7) can be rewritten as a map of the
form(

z1,t

z2,t

)
= T (z1,t−1, z2,t−1)

=



TL(z1,t−1, z2,t−1) =

(
al c

bl d

)
︸ ︷︷ ︸

AL

(
z1,t−1

z2,t−1

)
+

(
h1

h2

)
; z1,t−1 ≤ 0

TR(z1,t−1, z2,t−1) =

(
ar c

br d

)
︸ ︷︷ ︸

AR

(
z1,t−1

z2,t−1

)
+

(
h1

h2

)
; z1,t−1 ≥ 0

, (11)
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with al = a11, ar = a11+w11, br = w21, d = a22, bl = c = 0. The map (11) is a PWL dynamical
system whose phase space is split into left and right half-planes (sub-regions) by the borderline Σ
(z2-axis). Note that bifurcation curves of the 2d PLRNN (7) in the (a11, a11+w11)-parameter space
can be determined analogous to those of the PWL map (11) in the (al, ar)-parameter space.

Another way to simplify the PLRNN to a 2d (M = 2) PWL map with just a single border is to
remove one of the ReLU nonlinearities and define ϕ(zt−1) = (ϕ1(z1,t−1), β z2,t−1)

T, where β ∈ R
and ϕ1 is some variant of the ReLU function such as the leaky or parametric ReLU given by

ϕ1(z) =

{
z; z > 0

α z; z ≤ 0
(α ∈ R). (12)

Then DΩ(t) := diag(d1, β) such that

d1(z1,t) =: d1 =

{
1; z1,t > 0

α; z1,t ≤ 0
, (13)

and so

WΩ1 = WΩ3 =

(
a11 + αw11 βw12

αw21 a22 + βw22

)
=:

(
al c

bl d

)
,

WΩ2 = WΩ4 =

(
a11 + w11 βw12

w21 a22 + βw22

)
=:

(
ar c

br d

)
. (14)

This gives another example of a representative of 2d PWL maps with only one border defined in eq.
(11). We are pointing this out because eq. (11) is a generic system considered more widely in the
discrete dynamical systems literature [5, 6], and also was the basis for the analyses below and in
Fig. 1.

A.1.2 Fixed points of the map (11) and their bifurcations

For al, ar, bl, br, c, d, h1, h2 ∈ R, the map (11) has the following two fixed points

OL/R =
(
z
L/R
1 , z

L/R
2

)T
=

(
(1− d)h1 + c h2

(1− d)(1− al/r)− bl/r c
,

bl/r h1 + (1− al/r)h2

(1− d)(1− al/r)− bl/r c

)T

. (15)

The fixed points OL and OR exist iff zL1 < 0 and zR1 > 0 respectively; otherwise they are virtual.
Hence, the existence regions of admissible fixed points are

EOL =

{
(h1, h2, al, bl, c, d)

∣∣ (1− d)h1 + c h2

(1− d)(1− al)− bl c
< 0

}
,

EOR =

{
(h1, h2, ar, br, c, d)

∣∣ (1− d)h1 + c h2

(1− d)(1− ar)− br c
> 0

}
. (16)

Let DL/R be the determinant and TL/R the trace of AL/R, and

PL/R(λ) = λ2 − (al/r + d)λ+ al/r d− bl/r c = λ2 − TL/R λ+DL/R, (17)

its characteristic polynomial. The corresponding eigenvalues are given by

λ1,2(OL/R) =
al/r + d

2
±
√
(al/r − d)2 + 4 bl/r c

2
=
TL/R

2
±

√
T 2
L/R − 4DL/R

2
, (18)

which are always real for bl/r c ≥ 0, while for bl/r c < 0 they are real provided that |al/r − d| >
2
√
−bl/r c. For complex conjugate eigenvalues of AL/R obviously |λ|2 = DL/R. Thus computing

the real eigenvalues, the stability condition for the fixed points is determined as

−(1 +DL/R) < TL/R < 1 +DL/R. (19)

Accordingly, the stability region of the fixed points OL and OR can be obtained by PL/R(±1) =
1∓ (al/r + d) + al/r d− bl/r c > 0 and DL/R < 1 as

SL/R =

{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r d− bl/r c < 1,
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1± (al/r + d) + al/r d− bl/r c > 0

}
. (20)

Note that when DL/R < 0, all the eigenvalues are real and so there cannot be any spiralling orbit.
Remark 1. Consider the PLRNN (2) with M = 2. For the parameter setting (3), i.e.

WΩ1 = WΩ3 =

(
a11 0

0 a22

)
=: AL, WΩ2 = WΩ4 =

(
a11 + w11 0

w21 a22

)
=: AR,

(21)

the two fixed points OL/R =
(
z
L/R
1 , z

L/R
2

)T
are given by

OL =

(
h1

1− a11
,

h2

1− a22

)T

, OR =

(
h1

1− a11 − w11
,
w21 h1 + (1− a11 − w11)h2

(1− a22)(1− a11 − w11)

)T

.

(22)

Hence, the existence regions of admissible fixed points are

EOL =

{
(h1, a11, a22)

∣∣ h1

1− a11
< 0

}
, EOR =

{
(h1, a11, a22, w11)

∣∣ h1

1− a11 − w11
> 0

}
,

and their stability regions can be obtained as

SL =

{
(h1, a11, a22) ∈ EOL

∣∣ a11 a22 < 1, 1± (a11 + a22) + a11 a22 > 0

}
, (23)

SR =

{
(h1, a11, a22, w11) ∈ EOR

∣∣(a11 + w11)a22 < 1, 1± (a11 + w11 + a22) + (a11 + w11)a22 > 0

}
.

Remark 2. If bl/r c = 0, then λ1,2(OL/R) are real and the stability regions SL/R become

SL/R =

{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ bl/r c = 0, −1 ≤ al/r ≤ 1, −1 ≤ d ≤ 1

}
. (24)

The fixed points are regular saddles for all parameters that belong to{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r + d > 1, al/r d− al/r − d+ 1 < bl/r c < al/r d

}
,

(25)

and in this case λ1(OL/R) > 1, 0 < λ2(OL/R) < 1. Furthermore, they are flip saddles (i.e., with
one negative eigenvalue) if parameters are in{

(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r + d > 1, al/r d < bl/r c < al/r d+ al/r + d + 1

} ⋃
{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ d− al/r − d+ 1 < bl/r c < al/r d+ al/r + d+ 1,

0 < al/r + d ≤ 1, al/r

}
, (26)

for which λ1(OL/R) > 1, −1 < λ2(OL/R) < 0, as well as in{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r + d ≤ −1, al/r d < bl/r c < al/r d− al/r − d+ 1

}⋃
{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r d+ al/r + d+ 1 < bl/r c < al/r d− al/r + d− 1,

− 1 < al/r + d < 0

}
(27)
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such that 0 < λ1(OL/R) < 1, λ2(OL/R) < −1.

When bl/r c < 0 and |al/r − d| < 2
√
−bl/r c, the eigenvalues are complex conjugates and both OL

and OR are spirally attracting (attracting focus) if al/r d− bl/r c < 1. In this case, if al/r + d > 0
then they are clockwise spiral, while for al/r + d < 0 the spiralling motion will be counterclockwise.
Moreover, for al/r d− bl/r c > 1 they are repelling foci. Finally, for al/r d− bl/r c = 1, the fixed
points are locally centers and they undergo a CB at the following boundaries:

CL =

{
(al, bl, c, d)

∣∣ bl c < 0, |al − d| < 2
√
−bl c, al d− bl c = 1

}
,

CR =

{
(ar, br, c, d)

∣∣ br c < 0, |ar − d| < 2
√
−br c, ar d− br c = 1

}
. (28)

At these boundaries, the fixed points lose their stability with a pair of complex conjugate eigenvalues
crossing the unit circle. For the parameters belonging to CL/R, the Jacobian JL/R is a rotation matrix
whose determinant is equal to 1. In this case, JL/R can be determined by a rotation number which is
either rational (pq ) or irrational (ρ). Therefore, in some neighborhood of OL/R, there is a region filled
with invariant ellipses such that they are periodic with period p (if the rotation number is a rational
number p

q ) or quasiperiodic (if the rotation number is an irrational number ρ); for more information
see [60, 59]. For (1− d)h1 + c h2 ̸= 0, at the boundary

τL =

{
(h1, h2, al, bl, c, d)

∣∣ 1− al − d+ al d− bl c = 0

}
, (29)

the fixed point OL undergoes a DTB, since, if the parameters tend to τL, then OL → ±∞ and
λ(OL) → 1. Similarly, for (1 − d)h1 + c h2 ̸= 0, a DTB occurs for the fixed point OR at the
boundary

τR =

{
(h1, h2, ar, br, c, d)

∣∣ 1− ar − d+ ar d− br c = 0

}
. (30)

A DTB of a fixed point results in its disappearance, as in this case the fixed point becomes virtual
which may lead to changes in the global dynamics [6]. Furthermore, the BCB curves are given by

ξL =

{
(h1, h2, al, bl, c, d)

∣∣ (1− d)(1− al)− bl c ̸= 0, (1− d)h1 + c h2 = 0

}
, (31)

and

ξR =

{
(h1, h2, ar, br, c, d)

∣∣ (1− d)(1− ar)− br c ̸= 0, (1− d)h1 + c h2 = 0

}
. (32)

In addition, the DFB curves for the fixed points OL and OR are

FL =

{
(h1, h2, al, bl, c, d)

∣∣ 1 + al + d+ al d− bl c = 0

}
,

FR =

{
(h1, h2, ar, br, c, d)

∣∣ 1 + ar + d+ ar d− br c = 0

}
. (33)

Remark 3. The existence regions EOL and EOR are bounded by the BCB curves ξL and ξR.
Remark 4. The stability regions SL/R of fixed points (eq. (20)) are bounded by the DTB curves
τL/R (eqn. (29) and (30)), the DFB curves FL/R (eq. (33)), and the CB curves al/r d− bl/r c = 1.
For instance, for d = 1, SL/R are illustrated in Fig. S1(a). In this case, the stability regions only
exist for bl/r c < 0 and al/r − d < −2

√
−bl/r c. Moreover, as shown in Fig. S1(b), for d = 0.01,

these stability regions can exist for both cases bl/r c < 0, al/r − d < −2
√
−bl/r c (in blue), and

bl/r c < 0, al/r − d > 2
√
−bl/r c (in green), but not for bl/r c ≥ 0. Furthermore, if c = 1, there are

stability regions SL/R for the two cases bl/r c < 0, al/r−d < −2
√
−bl/r c (in blue), and bl/r c > 0

(in purple); see Fig. S2(a). Finally, when c = 0, as explained in Remark 2, the stability regions have
the form (24), i.e.

SL/R =

{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ c = 0, bl/r ∈ R, −1 ≤ al/r, d ≤ 1

}
. (34)

which are displayed in Fig. S2(b).
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Figure S1: Stability regions SL/R. Left: for d = 1; right: for d = 0.01. The case bl/r c < 0,
al/r − d < −2

√
−bl/r c is plotted in blue, and the case bl/r c < 0, al/r − d > 2

√
−bl/r c is drawn

in green.

Figure S2: Stability regions SL/R. Left: for c = 1; the case bl/r c < 0, al/r − d < −2
√
−bl/r c is

plotted in yellow, and the case bl/r c > 0 is drawn in purple. Right: for c = 0.

Since the system (11) is a linear map in each sub-region L and R, there cannot be any n-cycle,
n ≥ 2, with all periodic points on only one linear side. So, all period-n orbits have both letters L and
R in their symbolic sequence.

A.1.3 2-cycles of the map (11) and their bifurcations

The 2-cycleORL of the map (11) is determined by solving the equation TL◦TR(z1, z2) = (z1, z2)
T

where

TL◦TR(z1, z2) =

(
al ar + br c al c+ c d

ar bl + br d d2 + bl c

)(
z1

z2

)
+

(
c h2 + h1

(
al + 1

)
bl h1 + h2

(
d+ 1

)) . (35)

In this case if
(
I − JL JR

)
is invertible, then the solution (z1, z2)

T =
(
z
(1)
1 , z

(1)
2

)T
is given by

(
z
(1)
1 , z

(1)
2

)T
=

( (
(1− d)h1 + c h2

)(
al + d+ al d− bl c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

,

h2

(
1 + d− al ar − br c− al ar d+ ar bl c

)
+ h1

(
bl + ar bl + br d+ al br d− bl br c

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

)
.

(36)

Also TR
(
z
(1)
1 , z

(1)
2

)
=
(
z
(2)
1 , z

(2)
2

)T
yields

(
z
(2)
1 , z

(2)
2

)T
=

( (
(1− d)h1 + c h2

)(
ar + d+ ar d− br c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

,

h2

(
1 + d− al ar − bl c− al ar d+ al br c

)
+ h1

(
br + al br + bl d+ ar bl d− bl br c

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

)
.

(37)

Hence, the existence region of the 2-cycle ORL is

EORL =

{
(h1, h2, al, bl, c, d)

∣∣ (
(1− d)h1 + c h2

)(
al + d+ al d− bl c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

> 0,
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(
(1− d)h1 + c h2

)(
ar + d+ ar d− br c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

< 0

}
. (38)

The characteristic polynomial of JRL = JL JR =

(
al ar + br c al c+ c d

ar bl + br d d2 + bl c

)
is given by

PORL(λ) = λ2 − (d2 + al ar + bl c+ br c)λ+ (ar d− br c)(al d− bl c), (39)

and

DRL = (ar d− br c)(al d− bl c),

PORL(1) = (ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1,

PORL(−1) = (ar d− br c)(al d− bl c) + c(bl + br) + d2 + al ar + 1,

λ1,2(ORL) =
al ar + c(bl + br) + d2

2

±
√
(al ar + bl c)2 + (br c+ d2)2 + 2(al ar − bl c)(br c− d2) + 4 c d(al br + ar bl)

2
.

(40)

Thus, the stability region of ORL is

SRL =

{
(h1, h2, al/r, bl/r, c, d) ∈ EORL

∣∣ − 1 < (ar d− br c)(al d− bl c) < 1,

− (ar d− br c)(al d− bl c)− 1 < c(bl + br) + d2 + al ar < (ar d− br c)(al d− bl c) + 1

}
.

(41)

In addition, for
(
(1− d)h1 + c h2

)(
al + d+ al d− bl c+ 1

)
̸= 0, the set

τRL =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ al ar + bl c+ br c+ d2 − al ar d
2 − bl br c

2 + al br c d

+ ar bl c d− 1 = 0

}
, (42)

is the DTB curve for the 2-cycle ORL. As in this case, for the parameter values belonging to τRL,
the points of the 2-cycle ORL tend to ±∞, and the corresponding eigenvalue tends to one. Moreover,
for (1− d)h1 + c h2 ̸= 0, the BCB curves of ORL can be computed as

ξ1RL =

{
(h1, h2, al, bl, c, d)

∣∣ al + d+ al d− bl c+ 1 = 0

}
,

ξ2RL =

{
(h1, h2, ar, br, c, d)

∣∣ ar + d+ ar d− br c+ 1 = 0

}
. (43)

Note that here the condition (1− d)h1 + c h2 ̸= 0 guarantees a regular BCB in the sense that only
one periodic point of ORL collides with the switching boundary; for more details see [6]. Besides,

FRL =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ alar + blc+ brc+ d2 + al ard
2 + bl brc

2

− al br c d− ar blcd+ 1 = 0

}
, (44)

is the DFB curve of the 2-cycle ORL.

Remark 5. One can see that for (1− d)h1 + c h2 ̸= 0 the DFB curves of the fixed points OL and
OR (FL and FR) and the BCB boundaries of the 2-cycle ORL (ξ1RL and ξ2RL) are the same. In this
case, the DFB of the fixed points can lead to the (attracting) 2-cycle ORL.
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A.1.4 3-cycles of the map (11) and their bifurcations

Here, we investigate the existence, stability and bifurcation structure of maximal or basic 3-cycles.
Note that for the continuous map (11), basic n-cycles ORLn−1 (n ≥ 3) exist in pairs with their
complementary cycles (ORLn−2R), and they appear via BCBs such that one of them may be attracting
and the other repelling [6, 20, 38]. In this case, a BCB of basic cycles demonstrates a non-smooth fold
bifurcation which includes a stable basic orbit and an unstable nonbasic orbit [6, 5, 19]. Furthermore,
the complementary orbits can have nonempty stability regions such that, similar to the basic orbits,
they are bounded by curves of BCBs, DTBs and DFBs [6, 5].

Basic 3-cycles ORL2 and their complementary cycles OR2L. The basic 3-cycle ORL2 can be
obtained from the equation TL ◦ TL ◦ TR(z1, z2) = (z1, z2)

T where

TL ◦ TL ◦ TR(z1, z2) =

(
ar(a

2
l + bl c) + br(al c+ c d) c(a2l + bl c) + d(al c+ c d)

br(d
2 + bl c) + ar(al bl + bl d) d(d2 + bl c) + c(al bl + bl d)

)(
z1

z2

)

+

(
h1

(
bl c+ al(al + 1) + 1

)
+ h2

(
al c+ c(d+ 1)

)
h1

(
bl d+ bl(al + 1)

)
+ h2

(
bl c+ d(d+ 1) + 1

)) . (45)

If
(
I − J2

L JR
)

is invertible, then the solution (z1, z2)
T =

(
z
(1)
1 , z

(1)
2

)T
is

(z
(1)
1 , z

(1)
2 )T =

(((1− d)h1 + c h2

)
G1

G
,
G2

G

)T
, (46)

where

G1 = a2l d
2 + a2l d+ a2l − 2al blcd− alblc+ ald

2 + ald+ al + b2l c
2 − blcd+ blc+ d2 + d+ 1,

G = −a2l ar − d3 − c
(
al bl + al br + ar bl + d(2 bl + br)

)
+ (ar d− br c)(al d− bl c)

2 + 1,

G2 = h2 + blh1 + dh2 + d2h2 + alblh1 + blch2 + bldh1 − a2l arh2 + brd
2h1 − arb

2
l ch1

− a2l ardh2 + albrd
2h1 + blbrc

2h2 − arb
2
l c

2 h2 − a2l ard
2h2 + a2l br d

2h1 + b2l br c
2h1

+ al ar bl h1 − al br c h2 − ar bl c h2 + ar bl d h1 + bl br ch1 − br c dh2 + al ar blch2

+ al ar bl dh1 − al br c d h2 − bl br c dh1 + 2al ar bl c dh2 − 2al bl br c dh1. (47)

Further

TR(z
(1)
1 , z

(1)
2 ) =

(
z
(2)
1 , z

(2)
2

)T
=
(((1− d)h1 + c h2

)
K1

G
,
K2

G

)T
,

TL(z
(2)
1 , z

(2)
2 ) =

(
z
(3)
1 , z

(3)
2

)T
=
(((1− d)h1 + c h2

)
H1

G
,
H2

G

)T
, (48)

where

K1 = ar + d+ alar + blc+ ard+ ard
2 + d2 + alard− albrc− brcd+ alard

2 + blbrc
2

− albrcd− arblcd+ 1,

K2 = h2 + brh1 + dh2 + d2h2 + albrh1 + brch2 + bldh1 − a2l arh2 + a2l brh1 + bld
2h1

+ a2l brch2 + arbld
2h1 + blbrc

2h2 − a2l ard
2h2 + b2l brc

2h1 − alblch2 − arblch2 + albldh1

+ bl br ch1 − bl cd h2 + alarbldh1 − al blbrch1 − ar bl c dh2 − blbrc dh1 + al arbld
2h1

− al blbrc
2h2 − arb

2
l cdh1 + a2l brcdh2 + al ar bl c d h2 − al bl br c d h1 − a2l ardh2,

H1 = al + d+ alar + ald+ brc+ ald
2 + d2 + alard− ar blc− blcd+ alard

2 + blbrc
2

− albrcd− arblcd+ 1,

H2 = h2 + blh1 + dh2 + d2h2 + b2l c
2h2 + arblh1 + blch2 + brdh1 − a2l arh2 + b2l ch1

22



+ bld
2h1 − a2l ardh2 − blcdh2 + albld

2h1 + a2l brdh1 − b2l cdh1 − a2l ard
2h2 + b2l brc

2h1

+ alarblh1 − alblch2 − albrch2 + albrdh1 + alarblch2 − alblbrch1 − alblcd h2

+ alarbld
2h1 − alblbrc

2h2 − arb
2
l cdh1 + a2l brcdh2 + alarblcdh2 − alblbrcdh1. (49)

Therefore, the existence region of the 3-cycle ORL2 is given by

EORL2 =

{
(h1, h2, al, bl, c, d)

∣∣ ((1− d)h1 + c h2

)
G1

G
> 0,

(
(1− d)h1 + c h2

)
K1

G
< 0,(

(1− d)h1 + c h2

)
H1

G
< 0

}
, (50)

where G,G1,K1 and H1 are defined in (47) and (49). On the other hand, the characteristic
polynomial of

JRL2 = J2
L JR =

(
ar(a

2
l + bl c) + br(al c+ c d) c(a2l + bl c) + d(al c+ c d)

br(d
2 + bl c) + ar(al bl + bl d) d(d2 + bl c) + c(al bl + bl d)

)
,

is

PORL2 (λ) = λ2 −
(
a2
l ar + d3 + c

(
albl + albr + arbl + d(2bl + br)

))
λ+ (ard− brc)(ald− blc)

2.

(51)

According to

DRL2 = (al d− bl c)
2(ar d− br c),

PORL2 (1) = −a2l ar − d3 − c
(
albl + albr + arbl + d(2bl + br)

)
PORL2 (−1) = a2l ar + d3 + c

(
albl + albr + arbl + d(2bl + br)

)
+ (ard− brc)(ald− blc)

2 + 1,
(52)

the stability region of the 3-cycle ORL2 is given by

SRL2 =

{
(h1, h2, al/r, bl/r, c, d) ∈ EORL2

∣∣ − 1 < (al d− bl c)
2(ar d− br c) < 1,

− (ald− blc)
2(ar d− brc)− 1 < a2l ar + d3 + c

(
albl + albr + arbl + d(2bl + br)

)
< (al d− bl c)

2(ar d− br c) + 1

}
. (53)

Furthermore, for (1− d)h1 + c h2 ̸= 0 and G1, G2, K1, K2, H1, H2 ̸= 0, the DTB curve for the
3-cycle ORL2 is

τRL2 =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ br a2l cd2 − ar a
2
l d

3 + ara
2
l − 2 br alblc

2d+ 2ar al bl c d
2

+ al bl c+ br al c+ br b
2
l c

3 − ar b
2
l c

2d+ 2 blcd+ arbl c+ br c d+ d3 − 1 = 0

}
.

(54)

For (1− d)h1 + c h2 ̸= 0

ξ1RL2 =

{
(h1, h2, ar, br, c, d)

∣∣K1 = ar + d+ alar + bl c+ ard+ ard
2 + d2 + alard

− al br c− br c d+ al ar d
2 + bl br c

2 − al br c d− ar bl c d+ 1 = 0

}
,

ξ2RL2 =

{
(h1, h2, ar, br, c, d)

∣∣H1 = al + d+ al ar + al d+ br c+ al d
2 + d2 + al ar d
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− ar bl c− bl c d+ al ar d
2 + bl br c

2 − al br c d− ar bl c d+ 1 = 0

}
, (55)

are (regular) BCB curves of ORL2 . Furthermore, the set

FRL2 =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ − br a
2
l cd

2 + ara
2
l d

3 + ara
2
l + 2bralblc

2d− 2aralblcd
2

+ alblc+ bralc− brb
2
l c

3 + ar b
2
l c

2d+ 2blcd+ arblc+ br c d+ d3 + 1 = 0

}
,

(56)

is the DFB curve of ORL2 . As noted, the basic 3-cycle ORL2 exists in a pair with its complementary
cycleOR2L. Moreover, the existence region ofOR2L can easily be found by interchanging the letters
L andR in all notations of the equations (45)- (49) and considering

z
(1)
1 < 0, z

(2)
1 > 0, z

(3)
1 > 0. (57)

Further, the stability region of the 3-cycle OR2L for the parameter values satisfying (57) is given by

SR2L =

{
(h1, h2, al/r, bl/r, c, d)

∣∣ − 1 < (ar d− br c)
2(al d− bl c) < 1,

− (ard− brc)
2(ald− blc)− 1 < a2ral + d3 + c

(
arbr + arbl + albr + d(2br + bl)

)
< (ar d− br c)

2(al d− bl c) + 1

}
. (58)

Notice that whenever the stable 3-cycle ORL2 exists, its complementary orbit OR2L also exists, but
it is unstable. Furthermore, for (1− d)h1 + c h2 ̸= 0 both the 3-cycles ORL2 and OR2L appear at
the same BCB curves (55). On the other hand, the DTB and DFB curves of the 3-cycle OR2L are
given by

τR2L =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ bla2rcd2 − ala
2
rd

3 + ala
2
r − 2blarbrc

2d+ 2alarbrcd
2

+ ar br c+ blarc+ bl b
2
rc

3 − al b
2
r c

2d+ 2brcd+ albrc+ bl c d+ d3 − 1 = 0

}
,

(59)

and

FR2L =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ − bla
2
rcd

2 + ala
2
rd

3 + ala
2
r + 2blarbrc

2d− 2alarbrcd
2

+ arbrc+ bl arc− bl b
2
rc

3 + al b
2
rc

2 d+ 2brcd+ al br c+ bl c d+ d3 + 1 = 0

}
,

(60)

respectively.

A.1.5 Multiple attractor bifurcations (MABs) of the map (11)

To detect multiple attractor bifurcations for the map (11), a straightforward way is to determine
the overlapping stability regions of different periodic orbits. For instance, as shown in Fig. 1A,
for c = 0.8, d = 0.2, bl = −0.4, br = 0.5, two stability regions SRL and SRL2 overlap in the
(al, ar)-parameter plane (or in the (a11, a11 + w11)-parameter space for the 2d PLRNN (7)). Their
overlapping region, displayed in yellow, reveals the structure of the (al, ar)-parameter plane. This
helps us to find various MABs. Assuming h2 = 0 and varying h1 from a negative value to a positive
one, an MAB of the form

Os
L

h1←→ Os
RL + Os

RL2 , (61)

occurs in the overlapping region. An example of this kind of bifurcation is illustrated in Fig. S3A.
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Moreover, Fig. S4 indicates, for c = 0.9, d = 0.3, bl = −0.6, br = −1.54 , there are nonempty
overlapping regions SRL ∩ SRL2 and SRL2 ∩ SR. This leads to the occurrence of two different
MABs given by (61) and

Os
L

h1←→ Os
R + ORL2 , (62)

for h2 = 0 and h1 changing from negative to positive values. Both of these bifurcations are shown in
Fig. S3A and Fig. S3B, associated with the points P1and P2 in Fig. S4. Note that in Fig. S4, all the
points P2, P3 and P4 belong to the overlapping region SRL2 ∩ SR (in sky blue). These points are
related to the parameter values c = 0.9, d = 0.3, bl = −0.6, br = −1.54, ar = −1.8, h2 = 0, and
they only differ in the parameter al. In this case, one can see that fixing all parameters and changing
only the parameter al, from P2 to P4, the basins of attraction change. The corresponding basins of
attraction for these three points are demonstrated in Fig. S3B (right) and Fig. S5 for h1 = 0.5 (after
the bifurcation).

Figure S3: MAB at c = 0.9, d = 0.3, bl = −0.6, br = −1.54, h2 = 0. A) Left: Bifurcation dia-
gram for al = −0.44 and ar = −1.8 corresponding to the point P1 in Fig. S4. Right: Multistability
of the fixed point Os

R and the 3-cycle Os
RL2 after the bifurcation and their basins of attraction at

h1 = 0.5. B) Left: Bifurcation diagram for al = −0.35 and ar = −2.2 corresponding to the point
P2 in Fig. S4. Right: Multistability of the 2-cycle Os

RL and the 3-cycle Os
RL2 after the bifurcation

and their basins of attraction at h1 = 0.7.

Figure S4: Analytically calculated stability regions for a different parameter setting than used in
Fig. 1. Left: Analytically calculated stability regions SR, SRL and SRL2 , shown in green, red
and blue, respectively, in the (a11, a11 + w11)-parameter plane for a22 = 0.3, w21 = −1.54. The
overlapping regions SRL ∩ SRL2 and SRL2 ∩ SR, representing multi-stable regimes, are given in
yellow and sky blue. Right: Bifurcation curves for the same parameter settings as determined by
SCYFI. Note that SCYFI identifies additional structure (regions demarcated by gray curves) not
included in our analytical derivations.

25



Figure S5: Multistability of the fixed point Os
R and the 3-cycle Os

RL2 at c = 0.9, d = 0.3, bl =
−0.6, br = −1.54, ar = −1.8, h2 = 0 after the bifurcation and their basins of attraction at h1 = 0.5.
Left: al = 0.06 (point P3 in Fig. S4); right: al = 0.26 (point P4 in Fig. S4).

A.2 Proofs of theorems

A.2.1 Proof of theorem 1

Proof. Let L(θ) be some loss function employed for PLRNN training that decomposes in time as
L =

∑T
t=1 Lt. Then

∂L
∂θ

=

T∑
t=1

∂Lt

∂θ
,

∂Lt

∂θ
=

∂Lt

∂zt

∂zt
∂θ

. (63)

Denoting the Jacobian of system (2) at time t by

Jt :=
∂Fθ(zt−1)

∂zt−1
=

∂zt
∂zt−1

, (64)

we have
∂zt
∂θ

=
∂zt

∂zt−1

∂zt−1

∂θ
+

∂+zt
∂θ

= Jt
∂zt−1

∂θ
+

∂+zt
∂θ

, (65)

where ∂+ denotes the immediate partial derivative (see [48] for more details). Assume that Γk is a
k-cycle (k ≥ 1) of (2). Thus, Γk is a set of temporally successive periodic points

Pk := {zt∗k , zt∗k−1, · · · , zt∗k−(k−1)} = {zt∗k , F (zt∗k), . . . , F
k−1
θ (zt∗k)}, (66)

such that all of them are fixed points of

zt+k = F k
θ (zt) = Fθ(Fθ(Fθ(...Fθ(zt)...))), (67)

and k is the smallest such positive integer (for k = 1, Γ1 is a fixed point of Fθ). Similar to (65), the
tangent vector ∂zt+k

∂θ can be computed as

∂zt+k

∂θ
=

∂zt+k

∂zt

∂zt
∂θ

+
∂+zt+k

∂θ
=

k−1∏
r=0

Jt+k−r
∂zt
∂θ

+
∂+zt+k

∂θ
. (68)

Thus, for zt∗k = F k
θ (zt∗k) we have

∂zt∗k

∂θ
=

k−1∏
r=0

Jt∗k−r

∂zt∗k

∂θ
+

∂+zt∗k

∂θ
. (69)

Accordingly

∂zt∗k

∂θ
=

(
I −

k−1∏
r=0

Jt∗k−r

)−1
∂+zt∗k

∂θ
=

adj

(
I −

∏k−1
r=0 Jt∗k−r

)
P∏k−1

r=0 J
t∗k−r

(1)

∂+zt∗k

∂θ
, (70)
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where P∏k−1
r=0 J

t∗k−r
(1) = det

(
I −

∏k−1
r=0 Jt∗k−r

)
. Moreover, from (63) and (70) we have

∥∥∥∥∂Lt

∂θ

∥∥∥∥ =
1

P∏k−1
r=0 J

t∗k−r
(1)

∥∥∥∥∥ ∂Lt

∂zt∗k
adj

(
I −

k−1∏
r=0

Jt∗k−r

)
∂+zt∗k

∂θ

∥∥∥∥∥ . (71)

Now, suppose that Γk undergoes a DTB, such that the fixed or cyclic points given by (66) tend
to infinity and one of their eigenvalues tends to 1 for some parameter value θ = θ0. This implies
P∏k−1

r=0 J
t∗k−r

(1) becomes zero at θ = θ0 and so, due to (70),
∥∥∥∂z

t∗k
∂θ

∥∥∥ goes to infinity. Therefore

the norm of the loss gradient,
∥∥∂Lt

∂θ

∥∥, tends to infinity at θ = θ0 which results in a abrupt jump in the
loss function.

Let {zt1 , zt2 , zt3 , . . .} be an orbit which converges to Γk, i.e.

lim
n→∞

d(ztn ,Γk) = 0. (72)

Then there exists a neighborhood U of Γk and k sub-sequences {ztkm
}∞m=1, {ztkm+1

}∞m=1, · · · ,
{ztkm+(k−1)

}∞m=1 of the sequence {ztn}∞n=1 such that all these sub-sequences belong to U and

a) ztkm+s
= F k(ztk(m−1)+s

), s = 0, 1, 2, · · · , k − 1,

b) lim
m→∞

ztkm+s
= zt∗k−s, s = 0, 1, 2, · · · , k − 1,

c) for every ztn ∈ U there is some s ∈ {0, 1, 2, · · · , k − 1} such that ztn ∈ {ztkm+s
}∞m=1.

This implies for every ztn ∈ U with ztn ∈ {ztkm+s
}∞m=1 , there exists some ñ ∈ N such that

ztn = ztkñ+s
and lim

ñ→∞
ztkñ+s

= zt∗k−s . Consequently, there exists some Ñ ∈ N such that for

every ñ ≥ Ñ both ztkñ+s
and zt∗k−s belong to the same sub-region and so the matrices WΩ(tkñ+s)

and WΩ(t∗k−s) (s ∈ {0, 1, 2, · · · , k − 1}) are identical. Without loss of generality, let s = 0. Since
ztk(ñ+1)

= F k(ztkñ
), so

∂ztk(ñ+1)

∂θ
=

k−1∏
r=0

Jt∗k−r

∂ztkñ

∂θ
+

∂+ztk(ñ+1)

∂θ
. (73)

On the other hand, limn̄→∞
∂ztk(ñ+1)

∂θ = limn̄→∞
∂ztkñ

∂θ , which results in

limn̄→∞
∂ztk(ñ+1)

∂θ
=

(
I −

k−1∏
r=0

Jt∗k−r

)−1

limn̄→∞
∂+ztk(ñ+1)

∂θ

=

adj

(
I −

∏k−1
r=0 Jt∗k−r

)
P∏k−1

r=0 J
t∗k−r

(1)
limn̄→∞

∂+ztk(ñ+1)

∂θ
. (74)

This means as n̄→∞, for any orbit converging to Γk the norm of the loss gradient tends to infinity
at θ = θ0 which completes the proof.

A.2.2 Proof of theorem 2

Proof. Let Γk be a k-cycle (k ≥ 1) of (2) defined by periodic points (66). Suppose further that
Γk undergoes a BCB for some parameter value θ = θ0. Hence, one of its periodic points, e.g.
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zt∗k , collides with one border. Therefore, zmt∗k = 0 for some 1 ≤ m ≤ M by the definition of
discontinuity boundaries in [38, 39]. Similar to the proof of Theorem 1, for θ = A,W we have

∂zt∗k−1

∂θ
=

adj

(
I −

∏k−1
r=0 Jt∗k−1−r

)
P∏k−1

r=0 J
t∗k−1−r

(1)

∂+zt∗k−1

∂θ
, (75)

in which

∂+zt∗k−1

∂wnm
= 1(n,m) DΩ(t∗k) zt∗k ,

∂+zt∗k−1

∂amm
= 1(m,m) zt∗k , (76)

where 1(n,m) is an M ×M indicator matrix with a 1 for the (n,m)’th entry and 0 everywhere else.

Since zmt∗k = 0 at θ = θ0, due to (76)
∂+z

t∗k−1

∂θ becomes the zero vector at θ = θ0. Consequently,∥∥∥∂z
t∗k−1

∂θ

∥∥∥ and so
∥∥∂Lt

∂θ

∥∥ vanishes at θ = θ0. Now it can be shown that at θ = θ0 the loss gradient
goes to zero for every z1 ∈ BΓk

(the proof is similar to the last part of the proof of Theorem 1).

A.2.3 Proof of corollary 1

Proof. For M = 2, let h1 ̸= 0. Then the DFB curves of the fixed point Γ1 coincide with the BCB
curves of the 2-cycle ORL of the form

F1 = ξ1RL = {(h1, h2, a11, a22)|1 + a11 + a22 + a11a22 = 0}, (77)

or

F2 = ξ2RL = {(h1, h2, a11, w11, w21, a22)
∣∣1 + a11 + w11 + a22 + (a11 + w11)a22 = 0}. (78)

For M > 2, assume that Γ1 = {z∗
1} is a fixed point of the system, i.e.

z∗
1 = (I −WΩ(t∗1)

)−1 h =
adj(I −WΩ(t∗1)

)

PI−WΩ(t∗1)
(1)

h, (79)

where PI−WΩ(t∗1)
(1) is the characteristic polynomial of I −WΩ(t∗1)

at 1. Let us denote the first
row of the adjoint matrix of I −WΩ(t∗1)

by adj(I −WΩ(t∗1)
)1. If adj(I −WΩ(t∗1)

)1 h ̸= 0, then
we can analogously demonstrate that the DFB curves of the fixed point align with the BCB curves of
the 2-cycles. This implies that, in accordance with Theorem 2, DFBs of fixed points will also lead to
vanishing gradients in the loss function.

A.2.4 Convergence of SCYFI

To ensure that SCYFI almost surely converges, we can simply choose the number of random
initializations (i.e., Nout in algorithm 1) large enough such that every linear subregion will have
been sampled with probability almost 1.More precisely, drawing uniformly from the 2M different
DΩ-matrices (linear subregions) for initialization, the probability that a particular subregion has not
been drawn after r repetitions is p = (1− 1

2M
)r. Hence, in order to ensure that all 2M subregions

have been visited with probability 1 − ϵ we need r ≥ ⌈ ln(ϵ)

ln(1− 1

2M
)
⌉ iterations. Choosing Nout = r,

we can thus ensure that SCYFI was initialized in each subregion with probability almost 1, and
thus, in the limit, will have probed all subregions for dynamical objects. This argument extends
to k-cycles by replacing 2M by 2kM above (strictly, a more precise bound for k ≥ 2 is given by
2M(k−1) × (2M − 1) = 2Mk − 2M(k−1), due to the fact that the PLRNN (2) is a linear map in each
subregion and, hence, cannot have any k-cycles with all periodic points in only one subregion).
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A.2.5 Proof of theorem 3

Proof. We examine the convergence and scaling behavior of SCYFI for fixed points. A similar
argument applies to k-cycles where k > 1.

Let z∗
1 be a fixed point of the system, i.e.

z∗
1 =

(
I −WΩ(t∗1)

)−1
h. (80)

z∗
1 is a true fixed point iff

(dm(t∗1)− a) · zm,t∗1
> 0, ∀m ∈ {1, 2, · · · ,M}, (81)

where DΩ(t∗1)
= diag(d1(t

∗
1), d2(t

∗
1), · · · , dM (t∗1)) and 0 < a < 1 is a positive real constant.

For examining SCYFI’s efficiency, here we focus on two scenarios that impose specific constraints
on parameters θ; other cases remain to be investigated.

Case (I) : Let R be a randomly generated matrix with uniformly distributed entries in the interval
[0, 1), and h ̸= 0 be a random vector with all its components being non-negative. For an arbitrary
ϵ > 0, we set

A =
1

2 + ∥R∥+ ϵ
diag(R),

W =
1

2 + ∥R∥+ ϵ

(
R− diag(R)

)
. (82)

Then

∥A∥ =
∥diag(R)∥
2 + ∥R∥+ ϵ

<
1

2 + ∥R∥+ ϵ
,

∥W ∥ =
∥R− diag(R)∥
2 + ∥R∥+ ϵ

≤ ∥R∥+ ∥diag(R)∥
2 + ∥R∥+ ϵ

<
1 + ∥R∥

2 + ∥R∥+ ϵ
, (83)

and so ∥A∥+ ∥W ∥ < 1. Therefore

∀t
∥∥WΩ(t)

∥∥ =
∥∥A+WDΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥ ∥∥DΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥ < 1, (84)

and so

∀t ρ(WΩ(t)) ≤
∥∥WΩ(t)

∥∥ < 1. (85)

In this case, for any n ∈ N, we also have∥∥∥∥∥
n∏

i=1

WΩ(ti)

∥∥∥∥∥ ≤
n∏

i=1

∥∥WΩ(ti)

∥∥ ≤ ( ∥A∥+ ∥W∥)n < 1. (86)

This ensures the stability of all fixed points and k-cycles of the system.

According to (85), we have(
I −WΩ(t∗1)

)−1
=

∞∑
n=0

W n
Ω(t∗1)

= I +WΩ(t∗1)
+W 2

Ω(t∗1)
+ · · · . (87)

Hence, all the elements of
(
I −WΩ(t∗1)

)−1
are positive, and so zm,t∗1

> 0 for every t∗1. This implies
that all true and virtual fixed points exist within a singular sub-region. Additionally, only one fixed
point is true, while all the other fixed points are virtual.

Case (II) : Let h = (h1, h2, · · · , hM )T be a random vector with all hm uniformly distributed in
(0, 1] and

βmin = min
{
hm : hm ∈ h, 1 ≤ m ≤M

}
> 0, 0 < βmin ≤ 1,

βmax = max
{
hm : hm ∈ h, 1 ≤ m ≤M

}
> 0, 0 < βmax ≤ 1. (88)
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Assume further that R1 is a randomly generated matrix with uniformly distributed entries in the
interval (−1, 0], and for M ≥ 2

W =
βmin

M + ∥R1∥+ ϵ

(
R1 − diag(R1)

)
. (89)

Consider

αmax = max
{
|wij | : wij ∈W

}
, 0 ≤ αmax <

βmin

M + ∥R∥+ ϵ
(90)

and S ⊂ {1, 2, · · · ,M} = I such that K = 2M−card(S) ≪ 2M . Suppose that R2 =
diag(r1, · · · , rM ) is a randomly chosen diagonal matrix with rm uniformly distributed in (−1, 1)
for m ∈ I \ S, and the other elements (m ∈ S) uniformly distributed in (r∗ − 1, 0) where
r∗ = (M−1)αmax βmax

βmin
. Since

0 ≤ (M − 1)αmax βmax

βmin
<

(M − 1)βmax

M + ∥R∥+ ϵ
≤ (M − 1)

M + ∥R∥+ ϵ
<

(M − 1)

M
< 1, (91)

so −1 ≤ r∗ − 1 < 0.

If

A =
1

2 + ∥R1∥+ ϵ
R2, (92)

then

∥A∥ =
∥R2∥

2 + ∥R1∥+ ϵ
<

1

2 + ∥R1∥+ ϵ
,

∥W ∥ =
βmin ∥R1 − diag(R1)∥

M + ∥R1∥+ ϵ
≤ ∥R1∥+ ∥diag(R1)∥

M + ∥R1∥+ ϵ
<

1 + ∥R1∥
2 + ∥R1∥+ ϵ

, (93)

which implies ∥A∥+ ∥W ∥ < 1. We set ϵ > 0 large enough to satisfy the condition(
I −WΩ(t∗1)

)−1
=

∞∑
n=0

W n
Ω(t∗1)

≈ I +WΩ(t∗1)
∀ t∗1. (94)

On the other hand, for any t we have

WΩ(t) = A+WDΩ(t) =


a11 w12d2(t) w13d3(t) · · · w1MdM (t)

w21d1(t) a22 w23d3(t) · · · w2MdM (t)
w31d1(t) w32d2(t) a33 · · · w3MdM (t)

...
...

...
. . .

...
wM1d1(t) wM2d2(t) wM3d3(t) · · · aMM

 . (95)

Hence

zm,t∗1
= (1 + amm)hm +

M∑
j=1

j ̸=m

wmj dj(t
∗
1)hj = (1 + amm)hm −

M∑
j=1

j ̸=m

|wmj | dj(t∗1)hj . (96)

Since for every t∗1
M∑
j=1

j ̸=m

|wmj | dj(t∗1)hj ≤
M∑
j=1

j ̸=m

|wmj |hj , (97)

so

zm,t∗1
≥ (1 + amm)hm −

M∑
j=1

j ̸=m

|wmj |hj ∀m ∈ I. (98)
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Moreover ass ∈ (r∗ − 1, 0), for every s ∈ S, and thus

ass + 1 >
(M − 1)αmaxβmax

βmin
=

∑M
j=1

j ̸=s

αmaxβmax

βmin
≥

∑M
j=1

j ̸=s

|wsj |hj

hs
. (99)

Therefore, due to (98) and (99), zs,t∗1 > 0 for every t∗1 and s ∈ S. This means that all true
and virtual fixed points only exist within a relatively small number of sub-regions, denoted as
K = 2M−card(S) ≪ 2M . Given our specific initalization of θ, in both cases (I) and (II) there is a set
of K different sub-regions, each associated with a unique DΩ(t) matrix. We refer to the entire set of
these matrices as

DK = {D1, ...,DK}. (100)

SCYFI, by its definition, only moves within the sub-regions that have virtual and true fixed points,
continuing until it discovers a true fixed point (or gets stuck in a virtual cycle). Thus, it can iterate
between J ≤ K sub-regions

DJ = {D1, ...,DJ} ⊆ DK , (101)

or within the set of virtual fixed points

ZL = {z1, ...,zL}. (102)

In case (I), there is only one true fixed point. Since all virtual fixed points are located within the same
single sub-region, SCYFI’s initialization will naturally position it within the correct linear region,
requiring no more than 1 iteration. Hence, it needs at most 2 iterations to find the true fixed point.
Consequently, SCYFI’s scaling is constant.

For case (II), if we suppose that SCYFI follows the virtual/true fixed point structure of the underlying
system in these K sub-regions, the necessity for the probability of discovering the fixed point to be
close to 1, specifically 1− ϵ, is to have

N ≥ ⌈ ln(ϵ)

ln(1− 1
2M−card(S) )

⌉ = ⌈ ln(ϵ)

ln(1− 1
K )
⌉, (103)

iterations. Since 1 ≤ card(S) ≤ M − 1, so K ≥ 2 and ln(1 − 1
K ) ≈ −1

K . For ϵ∗ ≥ ϵ, let
N = ⌈ ln(ϵ∗)

ln(1− 1
K )
⌉ ≥ ⌈ ln(ϵ)

ln(1− 1
K )
⌉, then

N = ⌈ ln(ϵ∗)

ln(1− 1
K )
⌉ ≤ ln(ϵ∗)

ln(1− 1
K )
≈ ln(

1

ϵ∗
)K := cK, (104)

which implies the number of iterations is bounded from above. If, for every M , we choose K small
enough, then the upper bound will stay within a linear growth.

A.2.6 Proof of theorem 4

In GTF [24], during training RNN latent states are replaced by a weighted sum of forward propagated
states zt = Fθ(zt−1) and data-inferred states z̄t = G−1

ϕ (xt) (obtained by inversion of the decoder
model Gϕ):

z̃t := (1− α)zt + αz̄t, (105)

where 0 ≤ α ≤ 1 is the GTF parameter (usually adaptively regulated in training, see [24]). This leads
to the following factorization of Jacobians in PLRNN (2) training:

JGTF
t =

∂zt
∂zt−1

=
∂zt

∂z̃t−1

∂z̃t−1

∂zt−1
=

∂Fθ(z̃t−1)

∂z̃t−1

∂z̃t−1

∂zt−1
= (1− α)J̃t = (1− α)WΩ(t). (106)

Proof. (i) Since ∥A∥+ ∥W ∥ ≤ 1, we have

∀t
∥∥WΩ(t)

∥∥ =
∥∥A+WDΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥∥∥DΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥ ≤ 1, (107)
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and so

∀t ρ(WΩ(t)) ≤
∥∥WΩ(t)

∥∥ ≤ 1, (108)

where ρ denotes the spectral radius of a matrix. In this case, for any n ∈ N, we also have

ρ(

n∏
i=1

WΩ(ti)) ≤

∥∥∥∥∥
n∏

i=1

WΩ(ti)

∥∥∥∥∥ ≤
n∏

i=1

∥∥WΩ(ti)

∥∥ ≤ ( ∥A∥+ ∥W∥)n ≤ 1. (109)

Now, for any 0 < α < 1, the product of Jacobians under GTF is
n∏

i=1

JGTF
ti = (1− α)n

n∏
i=1

J̃ti = (1− α)n
n∏

i=1

WΩ(ti), (110)

and

ρ
( n∏

i=1

JGTF
ti

)
= ρ

(
(1− α)n

n∏
i=1

WΩ(ti)

)
= (1− α)nρ

( n∏
i=1

WΩ(ti)

)
≤ (1− α)n < 1. (111)

Hence ρ
(∏n

i=1 J
GTF
ti

)
< 1 which implies for any n ∈ N and 0 < α < 1, the product

∏n
i=1 J

GTF
ti

has no eigenvalue equal to 1 and so no DTB can occur (see definition of DTB in sect. 3).

(ii) Let ∥A∥+ ∥W ∥ = r > 1, then for any n ∈ N we have

ρ
( n∏

i=1

J̃ti

)
≤ rn, (112)

and thus

ρ
( n∏

i=1

JGTF
ti

)
= (1− α)nρ

( n∏
i=1

WΩ(ti)

)
≤ [(1− α) r]n. (113)

Since 0 < 1 − 1
r < 1, inserting 1 − 1

r < α = α∗ < 1 into the r.h.s. of (113) again gives

ρ
(∏n

i=1 J
GTF
ti

)
< 1 for any n ∈ N, implying that no DTB can occur.
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A.3 Additional results

Figure S6: A) Analytically calculated stability regions for a 2-cycle SRL (red), and a fixed point SR
(green) for the 1d skew tent map, as defined in the figure, in the parameter plane given by (ar, al). B)
Bifurcation diagram along the cross section indicated by the gray line in A, showing a BCB and DFB
occurring simultaneously at ar = −1 and a DTB occurring at ar = 1.

Figure S7: Results from SCYFI (blue) versus analytical results (orange) for the 2-cycle in Fig. 1
(a11 + w11 = −2). Eigenvalues (left) and location in state space (right) for one of the cyclic points.
This confirms that fixed point locations and eigenvalues computed in closed-form and via SCYFI
exactly agree, as they should.

A.3.1 Scaling analysis

Although the results presented in Fig. 2 suggest that SCYFI’s scaling behavior is much better than
theoretically expected, the fact that it is hard to obtain ground truth comparisons for high-dimensional
systems (because of the combinatorial explosion) generally makes an extensive empirical analysis
difficult. For Fig. 2 we therefore focused on scenarios for which we can also provide analytical
curves for an exhaustive search strategy (eq. (5)) and where we then either examined scaling with
cycle-order k for rather low-dimensional systems, or where we explicitly embedded fixed points to
search for which allowed us to move to very high dimensionality M . In general we observed that
the scaling behavior also depended on the PLRNN’s matrix norms and the eigenspectrum of the
embedded fixed points, so we constructed different scenarios where we varied these factors as well.

To construct a fairly well behaved case with low matrix norms, we randomly generated matrices
R with uniformly distributed entries in the interval [−1, 1] and then normalized by its maximal
eigenvalue: We set PLRNN parameters A = 1

λmax
diag(R) and W = 1

λmax
(R − diag(R)), and

chose h uniformly in the interval [−50, 50]. For each of 10 different such systems, we fixed the
number of outer loops and inner loops (Nout, Nin in Algorithm 1) such that a fixed point would be
detected in at least 50/75 independent runs of the algorithm, and then determined the total number n
of linear regions (i.e., across all Nout different initializations) the algorithm needed to cycle through
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to detect a stable fixed point. We also ensured that across all different runs this stable fixed point
would be the same, in accordance with our assumptions. The resulting scaling behavior was well
fitted by a doubly-logarithmic curve of the form c1 ln(ln(M)) + c2 (R2 ≈ 0.913, p < 10−4). This
low-matrix norm scenario with a stable fixed point may be seen as a kind of lower bound on the
scaling.

To embed a specific fixed point z∗, we again start with a matrix R as described above and take
A = diag(R) and W = (R− diag(R)). We then minimize

min
A,W ,h

| z∗ − ((A+W ·DΩ(t∗)) · z∗ + h) |, (114)

subject to A staying diagonal and W off-diagonal (we observed that adding a small Gaussian noise
term to the right appearance of z∗ in eq. 114 which decayed proportionally to the learning rate
improved numerical stability in the optimization process). The such constructed PLRNNs generally
have several fixed points, but to compute n we only search for the inserted fixed point z∗ (making
eq. (5) directly applicable). This way we produced 5 − 10 systems, initializing R with values in
[−0.2, 0.2] (orange curve in Fig. 2B) or [−1.0, 1.0] (blue curve in Fig. 2B), thus effectively restricting
the eigenspectrum of the fixed point as well as the matrix norms of the PLRNN to a certain range.
However, since matrix norms may change during optimization, eq. (114), our procedure is not
strictly guaranteed to produce eigenspectra and matrix norms within a desired range, which is crucial
especially for the first scenario where we wanted to keep norms within a ‘typical range’ (see below).
So here, to ensure consistency among drawn systems and with our assumptions, the mean absolute
eigenvalue of the embedded fixed points was kept close to 0.31 ± 0.05 and the mean maximum
absolute eigenvalue close to 1.25± 0.13. For > 75% of the resulting systems spectral matrix norms
were within the range [1.0, 3.0]. While this produced matrix spectra typical for trained PLRNNs
(> 95% out of 361 PLRNNs trained on various benchmarks and data had spectral matrix norms
within [1.0, 3.0]), the second initialization range resulted in unnaturally large matrix norms and hence
may be seen as providing a kind of upper bound on SCYFI’s scaling behavior. Fig. S8 shows the best
case (left; purple curve in Fig. 2B) and typical (right; orange curve in Fig. 2B) scaling scenarios on
linear scale to better expose the scaling behavior and function fits.

Figure S8: Zoom-ins on linear axes of the scenarios with doubly-logarithmic (left; R2 ≈ 0.913, p <
10−4) and quadratic (right; R2 ≈ 0.925, p < 10−5) scaling behaviors from Fig. 2B.
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Figure S9: A) Initializing SCYFI in a wide array of different subregions (different colors), it quickly
converges – within just a few iterations – to the same set of linear subregions which contain the
dynamical objects of interest (fixed points in this case). B) The number of different subregions
explored by SCYFI when started from different initializations shrinks exponentially fast with the
number of iterations. Shown are means (± stdv) from 10 different systems with M = 10.

A.3.2 Loss jumps & bifurcations in PLRNN training on biophysical model simulations

Here we provide an additional illustration of how SCYFI can be used to dissect bifurcations in
model training. For this, we produced time series of membrane voltage and a gating variable from
a biophysical neuron model [17], on which we trained a dendPLRNN [10] using BPTT [52] with
sparse teacher forcing (STF) [37]. The dendPLRNN used (M = 9 latent states, B = 2 bases) has 218
different linear subregions and |θ| = 124 parameters. Fig. S10A gives the MSE loss as a function of
training epoch (i.e., single SGD updates). The loss curve exhibits several steep jumps. Zooming into
these points and examining the transitions in parameter space using SCYFI, we find they are indeed
produced by bifurcations, with an example given in Fig. S10B. As we had done for Fig. 4 in the main
text, since the state and parameter spaces are very high dimensional, for the bifurcation diagram in
Fig. S10B all extracted k-cycles (k ≥ 1), including fixed points, were projected onto a line given by
the PCA-derived maximum eigenvalue component, and plotted as a function of training epoch. For
the example in Fig. S10B, we found that a BCB (Theorem 2) underlies the transition in the qualitative
dynamics of the PLRNN as training progresses. Fig. S10C illustrates the dendPLRNN dynamics just
before (left) and right after (right) the bifurcation point highlighted in Fig. S10B, together with time
series from the true system.

More generally, whether a bifurcation associated with vanishing gradients produces a loss jump
depends on the system’s dynamics before and after the bifurcation point. In the case of BCBs, one
possible scenario involves a change in stability, as illustrated in Fig . S10. During a BCB, a stable
fixed point (or cycle) can loose stability as it passes through the bifurcation point. The maximum
Lyapunov exponent of an unstable fixed point (or cycle) is positive, resulting in exploding gradients
right after the bifurcation point [37], and consequently to a very steep slope in the loss function near
the bifurcation point as in Fig . S10.
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Figure S10: A) Loss across training epochs for a dendPLRNN (M = 9 states, B = 2 bases) trained
on a biophysical neuron model in a limit cycle (spiking) regime. Red dots indicate training epochs
just before and after a loss jump for which time graphs are given in C and D. B) Bifurcation diagram
of the dendPLRNN as a function of training epoch, with all state space locations of stable (filled
circles) and unstable (open circles) objects projected onto the first principle component. The loss
jump in A is accompanied by a bifurcation from fixed point to cyclic behavior. C) Time series of the
voltage variable (x1) of the biophysical model (gray) and that predicted by the dendPLRNN (black)
before the bifurcation event indicated in B. D) Same directly after the bifurcation event.

Figure S11: Loss jump induced by a degenerate flip bifurcation (DFB). A) Loss during a training
run of a PLRNN (M = 5) on a 2-cycle. The gray line indicates a loss jump corresponding to a DFB
and a simultaneously occurring border collision bifurcation (BCB). B) Bifurcation diagram of the
PLRNN, with the DFB and BCB leading to the destruction of the fixed point and the emergence of a
2-cycle as indicated by the gray line.

A.3.3 Dealing with bifurcations in RNN training

Here are some additional thoughts on how RNN training algorithms could possibly be modified to
deal with bifurcations. If the algorithm finds itself during training in a parameter regime which does
not exhibit the right topological structure, it does not make sense to further dwell within that regime,
or possibly anywhere within the vicinity of the current parameter estimate. Unlike standard SGD,
the algorithm should therefore perhaps take large leaps in parameter space as soon as it gets stuck
in a non-suitable dynamical regime. One possibility to implement this is through a ‘look-ahead’
mechanism that probes for topological properties of regions not visited so far. While fully fleshing
out this idea is beyond this paper, a proof of concept that this may speed up convergence is provided
in Fig. S12. Along similar lines, if we knew the model’s full bifurcation structure in parameter
space ahead of time, we could simply pick a parameter set which corresponds to the right dynamics
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describing patterns in the data best. While of course it will in general not be feasible to chart the whole
bifurcation structure before training (this is in a sense the whole point of a training algorithm), it may
be possible to design smart initialization procedures based on this insight, e.g. probing topological
regimes at randomly selected points in parameter space before starting training and initializing with
parameters that produce a desired type of dynamics (e.g., cyclic behavior) to begin with.

Figure S12: A) Example loss curves for RNNs trained on electrophysiological recordings by BPTT
without (blue) vs. with (black) ’look-ahead’ (the look-ahead function checks whether there would
be a bifurcation away from a stable fixed point when taking 10× the current gradient step). Dashed
yellow line indicates the epoch at which the look-ahead step was executed. B) Average across 6 loss
curves of RNNs trained without (blue) vs. with (black) look-ahead. Error bands = SEM.
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