
Appendices

A Choosing Audio Representations

To get a sense of whether the audio representations we chose generalize (§ 2.2), we measure PER for
eight different languages of the MLS dataset (§ E.1) when inputting representations of the multilingual
wav2vec 2.0 XLSR-53 model. Figure A1 confirms that block 15 provides good performance across a
range of languages and we will use block 15 as the representation for speech audio in all subsequent
experiments.
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Figure A1: Supervised phoneme recognition on eight languages of the MLS dataset in terms of mean
PER and standard deviation for different wav2vec 2.0 blocks to represent the raw audio (cf. Figure 2).
We consider English, German, Spanish, French, Italian, Dutch, Polish and Portuguese.

B Segmenting the Audio Signal

Figure A2: Example of segmenting the audio signal of the utterance jane may earn more. The top line
shows the segmentation by the k-means segmentation method, the second line is the segmentation of
Viterbi decoding with the GAN, and the third line shows the gold segmentation of human annotators
from the TIMIT dataset. At the bottom, we show the corresponding spectogram, although, the input
to our method is raw audio. The utterance has TIMIT ID MGLB0_SX4.

Figure A2 illustrates how the k-means segmentation strategy results in very granular units compared
to the gold segments corresponding to phonemes. Based on the k-means units, the unsupervised
model can then recover segments that correspond very closely to phonemic units identified by humans.

Table A1 shows that k-means clustering results in very high precision but low recall when recovering
gold phoneme boundaries on TIMIT. The Viterbi outputs of our model (wav2vec-U) result in more
balanced, and better, accuracy because neighboring segments with the same predicted label are
combined into a larger segment.
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Table A1: Quantitative evaluation of segment boundaries with respect to human labeled segment
boundaries. We report precision, recall and f-measure using a 20ms tolerance.

Method Precision Recall F1

DAVEnet + peak detection [Harwath and Glass, 2019] .893 .712 .792
CPC + peak detection [Kreuk et al., 2020] .839 .836 .837

k-means on wav2vec 2.0 features .935 .379 .539
wav2vec-U Viterbi prediction .598 .662 .629

C Pre-processing the Audio and the Text Data

PER

Baseline 21.4 ± 1.2
w/o begin/end SIL tokens 25.8 ± 0.7
w/o audio silence removal 29.3 ± 2.0
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Figure A3: Unsupervised performance when augmenting the unlabeled text data with silence tokens.
We add silence tokens to the unlabeled text to better resemble the speech audio which does contain
silences. Silence tokens surrounding sentences and not removing silences from the audio results in
better performance (left), and we show different rates of silence token insertion in the unlabeled text
data (right). We report mean PER and standard deviation over 20 random seeds of unsupervised
training on Librispeech dev-other.

The phonemized text data is pre-processed by adding silence tokens (§ 2.4). We empirically motivate
this choice as follows: First, we add a SIL token to the beginning and the end of all phonemized
unlabeled text sentences. Figure A3 (left) shows that this improves accuracy. The same table shows
the detrimental effect of not removing silences from the audio data (§ 2.2). Second, we randomly
insert SIL between words, or groups of phonemes corresponding to words. Figure A3 (right) shows
that inserting the silence token at a rate of 0.25 yields the best end accuracy.
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Figure A4: Effectiveness of the unsupervised cross-validation metric for model development com-
pared to using a labeled development set (Supervised). We report PER on TIMIT core-dev/test (§ E.1)
for the GAN (wav2vec-U) and with self-training (wav2vec-U + ST).

How effective is the unsupervised cross-validation metric we present (§ 3.3)? To get a sense of
this, we compare the performance of cross-validation with a labeled development to cross-validation
with our unsupervised metric on the TIMIT benchmark. We cross-validate GAN hyper-parameters,
different checkpoints for early stopping, language model decoding hyper-parameters (§ E.4) and
HMM decoding hyper-parameters for self-training (§ E.5). Figure A4 shows that the unsupervised

16



metric has only between 0.3-1.2 higher PER compared to using a labeled development set. This
enables model development of unsupervised speech recognition systems without labeled data at only
a small drop in accuracy compared to the ideal setting where labeled development data is available.

E Experimental Setup

E.1 Datasets

We consider several corpora and a variety of languages to evaluate our approach. TIMIT is a
small English dataset on which previous unsupervised speech recognitition work was conducted.
Librispeech is a standard benchmark with nearly 1,000 hours of labeled English speech audio and
MLS is a multilingual benchmark with eight European languages. In addition, we also consider
non-European languages from the ALFFA and CommonVoice corpora.

TIMIT. This dataset contains about five hours of audio recordings with time-aligned phonetic
transcripts [Garofolo et al., 1993]. To compare to prior work, we consider two setups: the matched
setting uses text and speech from the same set of utterances to train the model while the unmatched
setting ensures that the unlabeled text data does not contain the transcriptions of the audio data.
For the matched setup, we follow the standard train/dev/test split of TIMIT as done in Yeh et al.
[2019]. This is 3,696/400/192 train/dev/test utterances which contains only SX (compact) and SI
(diverse) sentences. For the unmatched setting, we follow Chen et al. [2019] by training on 3,000
speech utterances and 1,000 transcriptions from the training portion of the complete dataset split.
We use the remaining 620 training utterances for validation, and test on 1,680 sentences for testing.
The complete dataset split contains 4,620 training and 1,680 testing utterances, with additional SA
(dialect) sentences.

Librispeech and Libri-Light. The Librispeech corpus contains 960 hours of transcribed speech
audio (LS-960) for training. The data is based on read English audio books. For unsupervised
training, we only use the speech audio data but not the transcriptions. We use the official Librispeech
language modeling data as unlabeled text data with the Libri-Light data removed [Synnaeve et al.,
2020].6 This is a large text corpus of 635m words but we show that much smaller amounts of text
and speech data still result in the same performance (Appendix G). We evaluate on the standard
dev-other/clean and test-clean/other sets. For development, we compute the unsupervised metric
(§ 3.3) on dev-other. We also experiment with the audio data from Libri-Light (LL-60k) for which
we follow the pre-processing of Kahn et al. [2020b] resulting in 53.2k hours of speech audio.

Multilingual LibriSpeech (MLS). The Multilingual Librispeech dataset [Pratap et al., 2020] is
a large corpus of read audiobooks from Librivox in eight languages and we experiment with the
following six languages: Dutch (du), French (fr), German (de), Italian (it), Portuguese (pt), Spanish
(es). The latest version of this corpus contains around 50k hours including 44k hours in English.
However, for unsupervised learning we only use 100 hours of speech audio for each language. As
unlabeled text data, we use the LM data provided by MLS.

ALFFA. We experiment with the Swahili data from the ALFFA project [Gelas et al., 2012, Abate
et al., 2005, Tachbelie et al., 2014] which is read speech. There are 9.2 hours of speech audio training
data and we use the language modeling data provided by ALFFA as unlabeled text data as well as
newscrawl 2008-2014, 2018-2020.7

CommonVoice. This is a multilingual corpus of read speech for 38 languages [Ardila et al., 2020].
We focus on two low-resource languages Kyrgyz (ky) and Tatar (tt) and use 1.8 hours and 4.6 hours of
speech audio, respectively. As unlabeled text data for Kyrgyz we use the Kyrgyz community corpus

6https://github.com/flashlight/wav2letter/tree/master/recipes/sota/2019#
non-overlap-lm-corpus-librispeech-official-lm-corpus-excluded-the-data-from-librivox

7http://data.statmt.org/news-crawl/sw
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2017,8 and newscrawl 2008-2014 and 2018-2020.9 For Tatar we use the Tatar community corpus
2017,10 and newscrawl 2005-2011.11 We evaluate on the dev and test split of Rivière et al. [2020].

E.2 Phonemization

TIMIT provides time-aligned phonetic transcriptions annotated with an inventory of 60 phones
adapted from the ARPAbet system, which treats silence as a phoneme. In addition, it includes a
mapping from the 60 phoneme inventory to 48- and 39-phoneme inventories. Phoneme error rates are
typically computed on the 39-phoneme inventory [Povey et al., 2011], which we map the phonetic
transcripts to for training.

For Librispeech, we use the G2P phonemizer [Park and Kim, 2019] which uses the CMU dictionary
to look up English word pronunciations, falling back to a neural network trained to output a phoneme
sequence given a word. We phonemize the Librispeech LM corpus, with Librispeech and Librivox
text data removed [Synnaeve et al., 2020]. We convert the full phoneme set to a reduced set containing
39 phonemes by removing the numerical stress markers from the vowels.

For other corpora, including English in the MLS dataset, we use Phonemizer which supports a
large number of various languages, but is less accurate than G2P for English.12 We disable the
language-switching labels and prune phonemes that appear fewer than 1000 times in the text corpus.

E.3 Unsupervised Training Details

Models are implemented in fairseq [Ott et al., 2019]. The generator and discriminator are optimized
with Adam [Kingma and Ba, 2015] using β1 = 0.5 and β2 = 0.98. The discriminator has a weight
decay of 1e− 4 while the generator does not use weight decay. The discriminator is trained with a
learning rate of 1e− 5 and the generator with 1e− 4, which are held constant throughout the training.
We train for a total of 150k steps, during which we alternate optimizing the discriminator and the
generator (so each are updated 75k times in total). Each training step is performed using a batch of
160 randomly chosen samples from the unlabeled audio data and 160 randomly chosen text samples
from the unlabeled text data. Training takes about 12 hours on a single V100 GPU.

The discriminator is composed of three causal convolution blocks with a hidden size of 384 and a
kernel size of 6, resulting in a receptive field size of 16 segments. The input into the discriminator is
an |O| dimensional vector representing the probability distribution over the phoneme vocabulary, and
the output is a single logit for each time-step, indicating how likely the sample is to be from the data
distribution. The first layer serves as embedding for the |O| phonemes.

The generator is a single non-causal convolution with kernel size 4. The input to the generator are
the segment representations S of dimension 512 and the output is an |O| dimensional vector. The
generator contains about 90k parameters and we do not backpropagate to the segment representations.
We combine subsequent generator predictions prior to feeding them into the discriminator as described
in § 3.1 and apply a softmax normalization. During training, we use dropout with p = 0.1 to the
input of the generator [Srivastava et al., 2014].

For each language, we tune the following hyper-parameters using the unsupervised cross-validation
metric (§ 3.3): the gradient penalty weight λ is selected from the range [1.5, 2.0], the smoothness
penalty weight γ from [0.5, 0.75], the phoneme diversity loss weight η from [2, 4], and we train 5
seeds for each configuration for a total of 40 models.

E.4 Decoding

We wish to decode the output of either phoneme-based models, resulting from unsupervised training,
or letter-based models, resulting from subsequent self-training (§ E.5) using a language model.

8https://corpora.uni-leipzig.de?corpusId=kir_community_2017
9http://data.statmt.org/news-crawl/ky

10https://corpora.uni-leipzig.de?corpusId=tat_community_2017
11https://corpora.uni-leipzig.de/en?corpusId=tat_news_2005-2011
12https://github.com/bootphon/phonemizer
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To do so we build WFSTs [Mohri et al., 2002] using PyKaldi [Can et al., 2018], a Python port
of Kaldi [Povey et al., 2011]. The WFST takes as input the model emissions and if we decode to
words, then we use the same phonemizer with which we pre-processed the unlabeled text data to
build a mapping between phonemes to words. The WFST is composed with a 4-gram language
model [Heafield, 2011] pruned to keep only 4-grams occurring more than 3 times. We add self-loops
that mimic CTC behavior [Zhang et al., 2020a] where blank symbols (silence for the GAN or actual
blank symbol for letter models) are mapped to epsilons and consecutive predictions of the same
symbol are collapsed.

During decoding, we average the predicted phoneme distributions for segments which have the same
argmax prediction. We provide acoustic scale as a parameter to the Kaldi decoder and we also add a
scalar ν to the blank token emission (silence for GAN models and blank for others). We tune the
optimal weights for these two parameters by minimizing a quantity that measures fluency of the
output as well as faithfulness to the model output. In particular we minimize the following quantity
on an unlabeled development set - assuming a phoneme-based model which we wish to decode to
words:

Ns∑
j=1

HLM (P̄j)×max
(
ED(P̄j , Pj), µ

)
(7)

where {Pj}Ns
j=1 are the Viterbi model outputs, {P̄j}Ns

j=1 are the word-based outputs of the WFST
converted to phonemes (or simply phoneme-based outputs if decoded to phonemes), HLM (Pj) is the
entropy of a language model, ED is an edit distance such as PER for phonemes or character error
rate for letter-based model models, and µ = 0.03. In practice, trivial solutions may achieve very low
entropy. We counteract this by replacing HLM (P̄j) by the average entropy of the language model
training data if HLM (P̄j) is lower than the entropy of the training data. We tune acoustic scale in the
interval [0, 8], and ν in [−3, 8].

For Librispeech experiments, we also decode with a Transformer language model [Baevski and Auli,
2018] trained on the Librispeech LM corpus using the beam search decoder of Pratap et al. [2019].
The Transformer LM is identical to Synnaeve et al. [2020] and contains 20 blocks, model dimension
1,280, inner dimension 6,144 and 16 attention heads. We tune acoustic scale with a beam of 50 and
test performance is measured with beam 500.

E.5 Self-Training

For self-training, we perform two iterations: first, we pseudo-label the training data with the unsu-
pervised GAN model and train an HMM on the pseudo-labels. Second, we relabel the training data
with the HMM and then fine-tune the original wav2vec 2.0 model using the HMM pseudo-labels
with a CTC loss [Graves et al., 2006]. HMM models use phonemes as output, while wav2vec 2.0
models use letters. Both are decoded using WFST decoders into words. wav2vec 2.0 self-training
for Librispeech uses the same fine-tuning parameters as the original wav2vec 2.0 model fine-tuned
on 100 hours of Librispeech data, but we reduce masking probability to 0.25, reduce the batch size
to 800k frames and train on 8 V100 GPUs for 80k updates.13 We use the last checkpoint instead of
early stopping. For TIMIT self-training, we use the one hour fine-tuning parameters of the original
wav2vec 2.0 model.14 This performs 13k updates on 4 V100 GPUs.

F Self-training Strategies

The self-training strategy we use is as follows: once the GAN is trained, we use it together with a
language model to pseudo-label the unlabeled audio, then we train an HMM on the labels and repeat
pseudo-labeling with the HMM in order to fine-tune the wav2vec 2.0 model whose representation
were originally fed to the GAN. Finally, we use the fine-tuned wav2vec 2.0 model to decode the test
set.

13https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/config/
finetuning/vox_100h.yaml

14https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/config/
finetuning/vox_1h.yaml
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Table A2: PER on TIMIT for various self-training strategies. We compare the performance of just
the GAN output (wav2vec-U) to one or two iterations of subsequent self-training with an HMM.
We contrast this to using the HMM for re-segmenting the audio data as done in prior work [Chen
et al., 2019]. We also consider self-training based on fine-tuning the original wav2vec 2.0 model
(fine-tune) in or two self-training iterations [Xu et al., 2020a] as well as a combination of HMM and
fine-tuning-based self-training.

Model LM core-dev core-test all-test

wav2vec-U 4-gram 17.0 17.8 16.6
+ HMM 4-gram 13.7 14.6 13.5
+ HMM + HMM 4-gram 13.3 14.1 13.4
+ HMM resegment + GAN 4-gram 13.6 14.4 13.8
+ fine-tune 4-gram 12.0 12.7 12.1

+ fine-tune - 12.1 12.8 12.0
+ fine-tune + fine-tune - 12.0 12.7 12.0

+ HMM + fine-tune - 11.3 11.9 11.3
+ HMM + fine-tune 4-gram 11.3 12.0 11.3

Table A2 shows that fine-tuning with an HMM (wav2vec-U + HMM) leads to substantial improve-
ments, however, a second iteration of HMM self-training leads to much smaller additional gains
(wav2vec-U + HMM + HMM). Using the HMM to re-segment the speech audio followed by repeated
GAN training (wav2vec-U + HMM resegment + GAN), similar to Chen et al. [2019], does not
improve performance over just HMM self-training.

Another option is to directly fine-tune wav2vec 2.0 on the labels assigned by the GAN model
(wav2vec-U + fine-tune) and this performs very well. However, another round of self-training
based on a fine-tuned wav2vec 2.0 model does not improve performance (wav2vec 2.0 + fine-tune
+ fine-tune). We believe that this is due to overfitting since the fine-tuned model has over 300m
parameters. This is in line with recent observations about overfitting in self-training for speech
recognition [Likhomanenko et al., 2021].

The HMM is less likely to overfit in the way the LARGE wav2vec 2.0 model does. We therefore found
it effective to perform a single round of HMM self-training followed by wav2vec 2.0 fine-tuning
(wav2vec-U + HMM + fine-tune). After two rounds of self-training, we do not require a language
model anymore for this benchmark which is likely because the language model has been distilled
into the model to a large degree.
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Figure A5: Effect of the amount of unlabeled audio data (left) and text data (right) on unsupervised
training in terms of PER on Librispeech dev-other.

For the experiments on Librispeech we used large amounts of unlabeled speech audio and text data
for adversarial learning (960 hours of unlabeled speech audio and nearly 31m sentences of text data).
For TIMIT we used much less data, only about 3.15h of speech audio and 140k phonemes of text
data for the matched setup. Next, we perform controlled experiments on Librispeech to get a sense of
how much data is sufficient to achieve good performance.
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Figure A5 (left) shows that 9.6h of speech audio data still achieves excellent performance. Similarly,
Figure A5 (right) shows that only about 3,000 sentences of text data are sufficient to achieve a similar
level of accuracy as using all of the text data.

H Hyperparameter Ablations

Table A3: Ablation of various data settings, pre-processing steps, cluster sizes, PCA sizes and using
the full phoneme set.

Ablation mean PER ± std %-converged (PER < 40)

Baseline 21.4 ± 1.2 100%

9.6h audio, 3k text 21.2 ± 1.1 100%
96h audio, 3k text 21.1 ± 1.3 95%

w/o clustering, pca, mean pool - 0%
w/o clustering - 0%
w/o 2nd stage mean pool - 0%
w/o PCA - 0%

64 clusters 23.1 ± 0.7 100%
256 clusters 22.3 ± 1.1 100%

256 PCA 21.6 ± 1.1 100%
768 PCA 28.0 ± 1.5 90%

use full phone set 23.51 ± 1.3 100%
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