
A PROOFS OF TECHNICAL ANALYSIS
In this section, we provide formal proofs of our technical analysis in

detail. For better legibility, we first recall the equations and results

that we need for our proofs.

∀𝝎 ∈ Ω, max

𝜋∈Π
𝜙 (𝑽 (𝜋)), (4)

where Ω is the set of valid preference weights sorted in descending

order, 𝑽 (𝜋) = E𝜋 [
∑∞
𝑡=0 𝛾

𝑡 𝒓𝑡 ] is the expected discounted return,

and 𝜙 (𝑱 ) = ∑𝐷
𝑖=1𝑤𝑖𝑽(𝑖 ) with 𝑽(1) ≤ · · · ≤ 𝑽(𝑛) .

Lemma A.1. For any MOMDP with linear preferences over objec-
tives, the CCS contains an optimal policy for any linear combination
of the objectives.

Proof. Let S be the state space, A be the action space, and

𝒓 : S × A → 𝒓𝐷 be the vector-valued reward function, where 𝐷

is the number of objectives. Consider a linear preference vector

𝝎 ∈ Ω, where Ω = {𝝎 ∈ 𝒓𝐷 :

∑𝐷
𝑖=1𝑤𝑖 = 1,𝑤𝑖 ≥ 0}. For any

policy 𝜋 , the expected return under a preference 𝝎 is given by

𝝎
(
E𝜋

[∑∞
𝑡=1 𝛾

𝑡−1𝒓 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠
] )
. Thus, the optimal policy 𝜋∗𝝎

for preference 𝝎 satisfies

𝜋∗𝝎 = argmax

𝜋
𝝎𝑇 𝑽𝜋 (𝑠), ∀𝑠 ∈ S.

By the definition of the CCS, for any 𝝎 ∈ Ω, there exists a policy
𝜋CCS ∈ CCS such that

𝝎𝑇 𝑽𝜋CCS (𝑠) ≥ 𝝎𝑇 𝑽𝜋 (𝑠), ∀𝜋 ∈ Π,∀𝑠 ∈ S.

To prove the proposition, let’s recall the Convex Hull Value Itera-

tion (CHVI) algorithm [5]. Note that the CHVI algorithm iteratively

updates the value function for each state by considering the convex

hull of the achievable rewards via

𝑽 (𝑠) = max

𝑎∈A

∑︁
𝑠′∈S

𝑷 (𝑠′ | 𝑠, 𝑎)CH
(
𝒓 (𝑠, 𝑎) + 𝛾𝑽 (𝑠′)

)
,

where CH(·) denotes the convex hull operation. This update rule
ensures that the value function 𝑽 (𝑠) lies within the convex hull of

the achievable rewards and the CH(·) achievable value functions
𝑽𝜋 (𝑠) | 𝜋 ∈ Π forms the CCS. Therefore, for any linear preference

vector 𝝎, there must exist at least a policy 𝜋CSS such that

𝝎𝑇 𝑽𝜋CCS (𝑠) = max

𝜋∈Π
𝝎𝑇 𝑽𝜋 (𝑠), ∀𝑠 ∈ S.

The resulting policies form the CSS, which are sufficient to cover all

linear preferences 𝝎 ∈ Ω. Thus, for any linear combination of ob-

jectives, the optimal policy can be found within the CSS, confirming

its sufficiency and optimality. □

While GGF introduces non-linear fairness objectives, its piece-

wise linearity and concavity allow representation as a maximum of

linear functions, which ensures that solutions lie within the CCS.

The following proposition establishes the sufficiency of the CCS in

representing optimal policies for 𝜙𝝎 preference weights.

Proposition A.1. For any 𝑠 ∈ S in an MOMDP and a piecewise-
linear concave welfare function 𝜙𝝎 (e.g., GGF) that can be represented
as, 𝜙𝝎 (𝑽𝜋 (𝑠)) = min𝜎∈S𝐷

{
𝝎⊤
𝜎 𝑽

𝜋 (𝑠)
}
, there exists a policy 𝜋∗ ∈

CCS such that:

𝜙𝝎 (𝑽𝜋∗
(𝑠)) ≥ 𝜙𝝎 (𝑽𝜋 (𝑠)) ∀𝜋 ∈ Π.

Proof. Consider an arbitrary permutation 𝜎𝐴 ∈ S𝐷 . Since 𝜙𝝎 is

a piecewise-linear and concave function, under a fixed permutation

𝜎𝐴 it becomes:

𝜙𝝎 (𝑽𝜋 (𝑠)) = 𝝎⊤
𝜎𝐴

𝑽𝜋 (𝑠) .
Let 𝜋𝐴 ∈ Π be the policy that maximizes this linear scalarization:

𝜋𝐴 = argmax

𝜋∈Π
𝜔⊤
𝜎𝐴

𝑽𝜋 (𝑠).

By the definition of CCS and the result from Lemma A.1, there exist

a 𝜋∗ ∈ CCS such that

𝜙𝝎𝜎𝐴
(𝑽𝜋∗

(𝑠)) ≥ 𝜙𝝎𝜎𝐴
(𝑽𝜋𝐴 (𝑠)) .

Thus,

𝜙𝝎𝜎𝐴
(𝑽𝜋∗

(𝑠)) ≥ 𝜙𝝎𝜎𝐴
(𝑽𝜋 (𝑠)) ∀𝜋 ∈ Π

Because this holds for any permutation 𝜎 ∈ S𝐷 , we cam conclude

that for any policy 𝜋 ∈ Π, there exists a corresponding 𝜋∗ ∈ CCS

such that

∀𝜋 ∈ Π, ∃𝜋∗ ∈ 𝐶𝐶𝑆, 𝜙𝝎 (𝑽𝜋∗
(𝑠)) ≥ 𝜙𝝎 (𝑽𝜋 (𝑠)) .

□

Fairness of Non-Stationary Policies. In fair MORL, learning

non-stationary policies can be particularly beneficial, as they lever-

age historical information to make more informed decisions and

adapt over time (see Example 4.2).

Proposition A.2. Let the reward 𝒓 be nonnegative, and Π𝑆 and
Π𝑁𝑆 be the sets of stationary and non-stationary policies, respectively.
For any 𝑠 ∈ S in an MOMDP and a given 𝜙𝝎 , there exists a non-
stationary policy 𝜋𝑁𝑆 ∈ Π𝑁𝑆 that achieves a higher welfare score
than any stationary policy 𝜋𝑆 ∈ Π𝑆 , i.e.,

∃𝜋NS ∈ ΠNS : 𝜙𝝎 (𝑽𝜋NS (𝑠)) ≥ max

𝜋S∈ΠS
𝜙𝝎 (𝑽𝜋S (𝑠))

Proof. Let the state value function be defined by:

𝑽 (𝑠) = E
[
𝑮𝑡

��� 𝑠𝑡 = 𝑠]
where the return 𝑮𝑡 is given by:

𝑮𝑡 =
∞∑︁
𝑘=0

𝛾𝑘 𝒓𝑡+𝑘+1 .

Suppose an episode begins at time 𝑡 and terminates at time 𝑇
end

.

For any intermediate time 𝑇 with 𝑡 ≤ 𝑇 < 𝑇
end

, we can decompose

the return into two parts:

𝑮𝑡 = 𝒓𝑡+1 + 𝛾𝒓𝑡+2 + · · · + 𝛾𝑇−𝑡−1𝒓𝑇︸                                 ︷︷                                 ︸
𝑮 (1)
𝑡

+𝛾𝑇−𝑡 (𝒓𝑇+1 + 𝛾𝒓𝑇+2 + . . . )︸                            ︷︷                            ︸
𝑮 (2)
𝑡

.

With above decomposition, We define value function as two parts:

Early-period value function: 𝑽1 (𝑠) = E
[
𝑮 (1)
𝑡

��� 𝑠𝑡 = 𝑠]
Late-period value function: 𝑽2 (𝑠) = E

[
𝑮 (2)
𝑡

��� 𝑠𝑇 = 𝑠

]
so that

𝑽 (𝑠) = 𝑽1 (𝑠) + 𝛾𝑇−𝑡𝑽2 (𝑠)
At time 𝑇 , stationary policy 𝜋𝑆 selects action solely based on late

period value function 𝑽2 (𝑠), while non-stationary policy has access



to both early 𝑽1 (𝑠) and late period value function 𝑽2 (𝑠) and can

condition its action selection on the combined information given

by two value functions.

Under a stationary policy, The total value can be presented as:

𝑽𝜋𝑆 (𝑠) = 𝑽1 (𝑠) + 𝛾𝑇−𝑡
argmax

𝑽2 (𝑠 )
{𝜙𝝎 [𝑽2 (𝑠)]}

In contrast, under a non-stationary policy the total value is given

by

𝑽𝜋𝑁𝑆 (𝑠) = argmax

𝑽1 (𝑠 ),𝑽2 (𝑠 )
{𝜙𝝎 [𝑽1 (𝑠) + 𝛾𝑇−𝑡𝑽2 (𝑠)]}

therefore:

∃𝜋NS ∈ ΠNS : 𝜙𝝎 (𝑽𝜋NS (𝑠)) ≥ max

𝜋S∈ΠS

𝜙𝝎 (𝑽𝜋S (𝑠))

This completes the proof. □

Optimality of Stochastic Policies for Fairness. Unlike the

single-objective scenario, in MORL, a deterministic policy may

not be optimal. A fairer solution can often be achieved through

randomization.

Proposition A.3. Let ΠST be the set of stochastic policies and ΠD
be the set of deterministic policies. For an MOMDP M and a concave
welfare function such as𝜙𝝎 , there exists a stochastic policy 𝜋ST ∈ ΠST
such that:

𝜙𝝎 (𝑽𝜋ST ) ≥ max

𝜋D∈ΠD
𝜙𝝎 (𝑽𝜋D ) .

Proof. The key idea here is that a stochastic policy can repre-

sent a convex combination of deterministic policies for any concave

welfare function 𝜙𝝎 [9]. Hence, stochastic policies can achieve out-

comes in the objective space that are unattainable by deterministic

policies. Specifically, for 𝜙𝝎 , a deterministic policy 𝜋D yields a fixed

utility vector 𝑽𝜋D
while a stochastic policy 𝜋ST can yield a distribu-

tion over utility vectors. Thanks to concavity of 𝜙𝝎 , which makes

our problem in 3 convex optimization and Jensen’s inequality [25],

we obtain

𝜙𝝎
(
E𝜏∼𝜋 [𝑽𝜋st ]

)
≥ E𝜏∼𝜋

[
𝜙𝝎 (𝑽𝜋st )

]
. (5)

Since 𝜙𝝎 is a piecewise linear concave function, there exists a

stochastic policy 𝜋st that is a convex combination of deterministic

policies such that

E𝜏∼𝜋 [𝜙 (𝑽𝜋st )] ≥ max

𝜋d∈ΠD

𝜙 (𝑽𝜋d ) . (6)

By combining (5) and (6), we can obtain

𝜙 (E𝜏∼𝜋 [𝑽𝜋st ]) ≥ E𝜏∼𝜋 [𝜙 (𝑽𝜋st )] ≥ max

𝜋d∈ΠD

𝜙 (𝜙𝜋d )] .

This completes the proof. □

The optimality of stochastic policies implies that restricting the

search for fair solutions to deterministic policies is insufficient.

Stochastic policies offer a broader range of solutions and may better

capture the trade-offs among multiple objectives, enhancing the

overall fairness of the policy.

B FAIRNESS
In a fair single-policy setting, where the goal is to learn a single

policy treating all users equally, three fairness principles, efficiency,

equity, and impartiality, are defined below.

Definition B.1. Efficiency states that among two feasible solu-
tions, if one solution is (weakly or strictly) preferred by all users, then
it should be preferred to the other one, e.g., 𝒖 ≻ 𝒖′ ⇒ 𝜙 (𝒖) > 𝜙 (𝒖′),
where 𝜙 (𝒖) is the scalar utility function that specifies the value of a
solution.

Intuitively, the efficiency property specifies that given all else

equal, one prefers to increase a user’s utility. In the MORL set-

ting, the efficiency property simply means Pareto dominance. More

specifically, a solution is considered efficient if it is not dominated

by any other solution for all objectives.

Next, we discuss the significance of the equity property, which

is a stronger property than efficiency and is often associated with

distributive justice, as it refers to the fair distribution of resources

or opportunities. This property ensures that a fair solution follows

the Pigou-Dalton principle [34], which states the transferring of

rewards from the more advantaged users to the less advantaged

users.

Definition B.2. A solution satisfies the Pigou-Dalton principle
if for all 𝒖, 𝒖′ equal except for 𝑢𝑖 = 𝑢′𝑖 + 𝛿 and 𝑢 𝑗 = 𝑢′

𝑗
− 𝛿 where

𝑢′
𝑖
− 𝑢′

𝑗
> 𝛿 > 0, 𝜙 (𝒖) > 𝜙 (𝒖′).

Finally, we discuss the impartiality property. This property is

rooted in the principle of “equal treatment of equals”, which states

that individuals sharing similar characteristics should be treated

similarly.

Definition B.3. In a system, individuals with similar characteris-
tics should be treated similarly, i.e., the solution should be independent
of the order of its arguments 𝜙 (𝒖) = 𝜙 (𝒖𝜎 ), where 𝜎 is a permutation
and 𝒖𝜎 is the vector obtained from vector 𝒖 permuted by 𝜎 .

B.1 Welfare Function
A welfare function, denoted as 𝜙 : R𝐷 → R, aggregates the utilities
of all users (or objectives) and offers a metric of the overall desir-

ability of a solution for the entire group, where 𝝎 represents the

set of aggregation weights for all objectives. One well-established

welfare function used in this paper is the generalized Gini wel-

fare function. The generalized Gini welfare function constitutes a

specific instance of the ordered weighted average (OWA)[54]. It

is a renowned welfare function employed in multi-objective op-

timization [19, 46, 47, 52, 56, 57, 60], initially devised to quantify

income distribution inequality in economics [53]. The generalized

Gini welfare function is defined as follows:

𝐺𝝎 (𝒖) =
𝐷∑︁
𝑖=1

𝜔𝜎 (𝑖 )𝑢 = 𝒘𝑇𝜎 𝒖 , (7)

where 𝜎 ∈ S𝐷 , which depends on 𝝎, is the permutation that sorts

the components of 𝝎 and 𝝎𝜎 = (𝜔𝜎 (1) , . . . , 𝜔𝜎 (𝐷 ) ). Equation (7)

holds as the weights are rearranged based on the utility vector,

assigning the largest weight to the smallest component of 𝒖, the
second-largest weight to the second-smallest component of 𝒖, and
so forth.



The generalized Gini welfare function satisfies the three fairness

properties. Due to the positive weights, it is monotonically related

to Pareto dominance, fulfilling the efficiency property. Moreover,

the reordering of the components in the welfare function makes

it symmetric with respect to its components, satisfying the impar-

tiality property. Lastly, as the generalized Gini weights are positive

and decreasing, it is Schur-concave, meeting the equity property.

Among numerouswelfare functions, the generalized Gini welfare

function possesses several favorable properties, namely, simplicity

as it is a weighted sum in the Lorenz space [12, 38], well-understood

properties axiomatized by Weymark [53], and generality. These

favorable properties make it a suitable choice for addressing the

challenge of finding fair solutions. Moreover, it is notably a concave

function, which will make the solution to our problem easier.

To emphasize the versatility of the generalized Gini welfare func-

tion, various special cases can be derived by adjusting its weights

accordingly. These cases include:

• Maxmin fairness: Setting 𝜔1 = 1 and 𝜔𝑖 = 0 for 𝑖 =

2, · · · , 𝐾 corresponds to the maxmin notion of fairness [41].

• Regularized maxmin fairness: Assigning 𝜔1 = 1 and

𝜔𝑖 = 𝜀 for 𝑖 = 2, · · · , 𝐾 aligns with the regularized maxmin

notion of fairness.

• Utilitarian approach: Setting 𝜔𝑖 = 1/𝐾 represents the

utilitarian approach.

• Leximin fairness: If the ratio𝜔 𝑗/𝜔 𝑗+1 tends toward infinity,
it corresponds to the leximin notion of fairness [28, 41].

C DESCRIPTIONS OF ENVIRONMENTS
C.1 Species Conservation
In the field of ecology, the challenge of conserving interdependent

endangered species is paramount. The simulation environment

focuses on the balance required in the conservation of two such

species: the sea otter and the northern abalone, which are currently

endangered. The predation relationship between these species, with

sea otters feeding on abalones, presents a unique challenge that re-

quires careful consideration of fairness and equity in conservation

efforts. Based on the framework in [10], we define the state space

as the current population numbers of the sea otters and northern

abalones. The action space consists of: introducing sea otters, enforc-

ing antipoaching measures, controlling sea otter populations, im-

plementing a combination of half-antipoaching and half-controlled

sea otters, or taking no action. Each action carries significant eco-

logical consequences; for instance, while the reintroduction of sea

otters is essential for maintaining the abalone population, it must be

carefully managed to prevent the abalone’s extinction. Conversely,

overlooking other management actions could lead to the demise

of either species. The transition function employed in our model

accounts for population dynamics, including external threats such

as poaching and oil spills. Since our objective is to optimize the

population densities of both species, we define the reward function

as the densities of both species, i.e., 𝐷 = 2.

C.2 Resource Gathering
In this scenario of resource gathering, we consider a 5×5 grid world
domain inspired from [5]. This domain presents a unique challenge

centered around the acquisition of three types of resources: gold,

gems, and stones, thereby establishing a multi-objective framework

with K = 3. The autonomous agent is positioned within this grid

world, and resources are distributed randomly across various lo-

cations. As a resource is collected by the agent, it is immediately

regenerated at a new random location within the grid, ensuring

a perpetual availability of resources. In this problem, the state is

characterized by the agent’s current location on the grid and a

cumulative count of each type of resource collected over the course

of the agent’s trajectory. The agent can navigate the grid through

actions aligned with the four cardinal directions: up, down, left,

and right, facilitating movement across the grid. To add complexity

to the resource management challenge, resources are assigned dif-

fering values, reflecting their relative importance. Specifically, gold

and gems are attributed a value of 1, underscoring their significance,

whereas stones are considered less valuable, with a value of 0.4. This

valuation leads to an intentionally uneven distribution of resources

within the grid, comprising two stones, one gold, and one gem. This

configuration is designed to simulate a scenario where the agent

must not only maximize the collection of resources but also achieve

a balanced acquisition across the different types of resources. The

overarching objective for the agent in this environment is dual: to

maximize the total value of resources collected while ensuring an

equitable collection across the various resource types. Achieving

this balance is crucial for optimizing the agent’s resource-gathering

strategy, enhancing its overall utility and adaptability within the dy-

namic grid world. This nuanced approach to resource management

in a simulated environment offers insights into the complexities

of resource distribution and acquisition strategies, contributing to

the broader discourse on multi-objective optimization in dynamic

settings.

C.3 Multi-Product Web Advertising
We now consider the multi-product web advertising (MWP) prob-

lem, where an online store offers 𝐷 distinct types of products for

sale and an intelligent agent makes strategic decisions at each

timestep about which advertisement to display: a product-specific

advertisement for one of the products 𝑖 ∈ [0, ..., 𝐷 − 1], or a general
advertisement that is not tailored to any specific product. The effec-

tiveness of an advertisement is contingent upon its relevance to the

customer’s recent web activity, with appropriate advertisements

significantly increasing the likelihood of a purchase, whereas inap-

propriate ones may deter the customer altogether. The state space

of this problem is defined by the number of products available in

the store, augmented by the number of visits, purchases, and exits.

A visit state indicates a customer’s interest in a particular product, a

purchase state signifies the completion of a transaction, and an exit

state occurs when a customer leaves the website without making

a purchase. The action space is expanded to 𝑛 + 1 actions, where

actions 0 through 𝑛 correspond to displaying advertisements for

specific products, and action 𝑛 represents the option to show a

general advertisement that does not target any specific product

in the inventory. This additional action introduces an additional

layer of complexity, as the agent must decide the optimal moment

to transition between states. The reward function is designed such

that the agent receives a reward of 1 in the 𝑖𝑡ℎ dimension of the



reward vector if a product of type 𝑖 is sold after the display of its ad-

vertisement. The primary objective of this problem is to maximize

the aggregate returns from product sales while striving for an equi-

table distribution of sales across the different product types. This

goal underscores the need for fair solutions that not only optimize

overall profitability but also ensure a balanced representation of

product sales, thereby addressing the dual challenges of efficiency

and equity in this domain.

D HYPERPARAMETERS
To ensure reproducibility, we have meticulously documented all

hyperparameters across different environments in Tables 1,2,3, and

4. We utilize the well-known high-quality MORL baselines
1
for

implementing baseline algorithms. In these tables, we present the

hyperparameters corresponding to Envelope, GPI, PCN, and our

proposed algorithms in three distinct environments, namely, species

conservation (SC), resource gathering (RC), and multi-web product

advertising (MWP).

1
https://github.com/LucasAlegre/morl-baselines



Table 2: Set of hyperparameters used for training Envelope.

Hyperparameter SC RC MWP

Discount factor (𝛾 ) 0.99 0.99 0.99

Learning rate (𝛼) 0.0001 0.0005 0.005

Batch size 64 64 64

Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256

Buffer Size 50000 50000 50000

Initial Epsilon 1.0 1.0 1.0

Final Epsilon 0.05 0.05 0.05

Epsilon Decay Steps 50000 50000 50000

Learning Starts 100 100 100

Gradient Updates 1 1 5

Max Gradient Norm 1.0 1.0 1.0

Ω Distribution Gaussian Gaussian Gaussian

Tau 0.5 0.5 0.5

Table 3: Set of hyperparameters used for training our proposed methods.

Hyperparameter SC RC MWP

Discount factor (𝛾 ) 0.99 0.99 0.99

Learning rate (𝛼) 0.0001 0.0005 0.005

Batch size 64 64 64

Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256

Buffer Size 50000 50000 50000

Initial Epsilon 1.0 1.0 1.0

Final Epsilon 0.05 0.05 0.05

Epsilon Decay Steps 50000 50000 50000

Learning Starts 100 100 100

Gradient Updates 1 1 5

Max Gradient Norm 1.0 1.0 1.0

Ω Distribution Gaussian Gaussian Gaussian

Tau 0.5 0.5 0.5

Table 4: Set of hyperparameters used for training GPI.

Hyperparameter SC RC MWP

Discount factor (𝛾 ) 0.99 0.99 0.99

Learning rate (𝛼) 0.0001 0.0005 0.005

Batch size 128 128 256

Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256

Num Networks 2 2 2

Buffer Size 50000 50000 50000

Initial Epsilon 1.0 1.0 1.0

Final Epsilon 0.05 0.05 0.05

Epsilon Decay Steps 50000 50000 50000

Learning Starts 100 100 100

Gradient Updates 1 1 5



Table 5: Set of hyperparameters used for training PCN.

Hyperparameter SC RC MWP

Discount factor (𝛾 ) 0.99 0.99 0.99

Learning rate (𝛼) 0.0001 0.0001 0.0005

Batch size 128 256 128

Hidden Layers 64 x 64 64 x 64 64 x 64

Desired Return [1, 1] [200, 200, 200] [100, 100, 100, 100, 100]

Buffer Size 500000 500000 1000000

Max Horizon 5000 1000 1000


