
Appendix

A Analytical Studies on Model-based Episodic Memory

A.1 Why Is Trajectorial Recall (TR) Loss Good for Episodic Memory?

For proper episodic control, neighboring keys should represent similar trajectories. If we simply
assume that two trajectories are similar if they share many common transitions, training the trajectory
model with TR loss indeed somehow enforces that property. To illustrate, we consider simple linear
Tϕ and Gω such that the reconstruction process becomes

y∗ (t) = W (U−→τ t + V [st′ , at′ ])

Here, we also assume that the query is clean without added noise. Then we can rewrite TR loss for a
trajectory τt

Ltr (τt) =

t∑
t′=1

∥W (U−→τ t + V [st′ , at′ ])− [st′+1, at′+1]∥
2
2

=
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Let us denote S ̸= ∅ the set of common transition steps between 2 trajectories: τ1t1 and τ2t2 , by
applying triangle inequality,

Ltr

(
τ1t1
)
+ Ltr

(
τ2t2
)
≥
∑
t′∈S

∥∥∆t′
(
τ1t1
)∥∥2

2
+
∥∥∆t′

(
τ2t2
)∥∥2

2

≥
∑
t′∈S

∥∥∆t′
(
τ1t1
)
−∆

(
τ2t2
)∥∥2

2

= |S|
∥∥WU

(−→τ 1
t1 −
−→τ 2

t2

)∥∥2
2

If we assume WU
(−→τ 1

t1 −
−→τ 2

t2

)
̸= 0 as −→τ 1

t1 ̸=
−→τ 2

t2 , applying Lemma 2.3 in [12] yields
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where σmin (WU) is the smallest nonzero singular value of WU . As the TR loss decreases and
the number of common transition increases, the upper bound of the distance between two trajectory
vectors decreases, which is desirable. On the other hand, it is unclear whether the traditional transition
prediction loss holds that property.

A.2 Convergence Analysis of write Operator

In this section, we show that we can always find αw such that the writing converges with probability
1 and analyze the convergence as αw is constant. To simplify the notation, we rewrite Eq. 2 as

Mv
i (n+ 1) =Mv

i (n) + λ (n) (Rj (n)−Mv
i (n)) (9)

where i and j denote the current memory slot being updated and its neighbor that initiates the writing,
respectively. λ (n) = αw (n)

⟨⟩ij(n)∑
b∈NKw

j

⟨⟩bj(n)
where NKw

j is the set of Kw neighbors of j. Rj is the

empirical return of the trajectory whose key is the memory slot j, ⟨⟩ij the kernel function of 2 keys
and n the number of updates. As mentioned in [40], this stochastic approximation converges when∑∞

n=1 λ (n) =∞ and
∑∞

n=1 λ
2 (n) <∞.
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By definition, ⟨⟩ij =
1

∥−→τ i−−→τ j∥+ϵ
and ∥−→τ ∥ ≤ 1 since −→τ is the hidden state of an LSTM. Hence, we

have ∀i, j: 0 < 1
2+ϵ ≤ ⟨⟩ij ≤

1
ϵ . Hence, let Bij (n) a random variable denoting

⟨⟩ij(n)∑
b∈NKw

j

⟨⟩bj(n)
–the

neighbor weight at step n, ∀i, j :

ϵ

Kwϵ+ 2Kw − 2
≤ Bij (n) ≤

2 + ϵ

Kwϵ+ 2

That yields
∑∞

n=1 λ (n) ≥ ϵ
Kwϵ+2K−2

∑∞
n=1 αw (n) and

∑∞
n=1 λ

2 (n) ≤(
2+ϵ

Kwϵ+2

)2∑∞
n=1 α

2
w (n). Hence the writing updates converge when

∑∞
n=1 αw (n) = ∞

and
∑∞

n=1 α
2
w (n) <∞. We can always choose such αw (e.g., αw (n) = 1

n+1 ).

With a constant writing rate α, we rewrite Eq. 9 as

Mv
i (n+ 1) =Mv

i (n) + αBij (n) (Rj (n)−Mv
i (n))

= αBij (n)Rj (n) +Mv
i (n) (1− αBij (n))

=

n∑
t=1

αBij (t)

n∏
l=t+1

(1− αBij (l))Rj (t)

+

n∏
t=1

(1− αBij (t))Mv
i (1)

where the second term
∏n

t=1 (1− αBij (t))Mv
i (1)→ 0 as n→∞ since Bij (t) and α are bounded

between 0 and 1. The first term can be decomposed into three terms

n∑
t=1

αBij (t)

n∏
l=t+1

(1− αBij (l))Rj (t) = T1 + T2 + T3

where

T1 =

n∑
t=1

αBij (t)

n∏
l=t+1

(1− αBij (l))Vi

T2 =
n∑

t=1

αBij (t)

n∏
l=t+1

(1− αBij (l))∆Vij (t)

T3 =

n∑
t=1

αBij (t)

n∏
l=t+1

(1− αBij (l)) R̃j (t)

Here,Vi is the true value of the trajectory stored in slot i, ∆Vij (t) = Vj (t) − Vi and R̃j (t) =
Rj (t) − Vj (t) the noise term between the return and the true value. Assume that the value is
associated with zero mean noise and the value noise is independent with the neighbor weights, then
E (T3) = 02.

Further, we make other two assumptions: (1) the neighbor weights are independent across update
steps; (2) the probability pj of visiting a neighbor j follows the same distribution across update steps
and thus, E (Bij (t)) = E (Bij (l)) = E (Bij). We now can compute

2This assumption is true for the Perturbed Cart Pole Gaussian reward noise.
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E (T1) = E

(
n∑

t=1

αBij (t)

n∏
l=t+1

(1− αBij (l))Vi

)

= Vi

n∑
t=1

αE (Bij)

n∏
l=t+1

(1− αE (Bij))

= ViαE (Bij)

n∑
t=1

(1− αE (Bij))
n−t

= ViαE (Bij)
1− (1− αE (Bij))

n

1− (1− αE (Bij))

= Vi (1− (1− αE (Bij))
n
)

As n→∞, E (T1)→ Vi since since Bij (t) and α are bounded between 0 and 1.

Similarly, E (T3) = E (Vj (t)− Vi) = E (Vj (t))− Vi =
∑

j∈NKw
i

pjVj − Vi, which is the approxi-
mation error of the KNN algorithm. Hence, with constant learning rate, on average, the write operator
leads to the true value plus the approximation error of KNN. The quality of KNN approximation
determines the mean convergence of write operator. Since the bias-variance trade-off of KNN is
specified by the number of neighbors K, choosing the right K > 1 (not too big, not too small) is
important to achieve good writing to ensure fast convergence. That explains why our writing to
multiple slots (K > 1) is generally better than the traditional writing to single slot (K = 1).

A.3 Convergence Analysis of refine Operator

In this section, we study the convergence of the memory-based value estimation by applying refine
operator to the memory. As such, we treat the read (−→τ |M) operator as a value function over
trajectory space T and simplify the notation as read (x) where x represents the trajectory. We make
the assumption that the read operator simply uses averaging rule and the set of neighbors stored in
the memory is fixed (i.e. no new element is added to the memory) , then

readt (x) =
∑

i∈NK(x)

BixMv
i,t

where Bix =
⟨Mk

i ,x⟩∑
j∈NK (x)⟨Mk

j ,x⟩
is the neighbor weight and t is the step of updating.

We rewrite the refine operator as

M← write
(
x,max

a
rφ (x, a) + γreadt (y) |M

)
⇔ ∀i ∈ NK(x) :

Mv
i,t+1 =Mv

i,t

+ αw,tBix

(
max

a
rφ (x, a) + γreadt (y)−Mv

i,t

)
where y is the trajectory after taking action a from the trajectory x. Then, after the refine,
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readt+1 (x) =
∑

i∈NK(x)

BixMv
i,t+1

=
∑

i∈NK(x)

Mv
i,tBix (1− αw,t)

+αw,t

∑
i∈NK(x)

(
max

a
rφ (x, a) + γreadt (y)

)
B2

ix

+αw,t

∑
i∈NK(x)

Mv
i,tBix (1−Bix)

= readt (x) (1− αw,t) + αw,tGt (x)

where Gt (x) = max
a

Ut (x, a)
∑

i∈NK(x) B
2
ix +

∑
i∈NK(x)Mv

i,tBix (1−Bix), U (x, a) =

rφ (x, a) + γread (y). To simplify the analysis, we assume the stored neighbors of x are apart
from x by the same distance, i.e., ∀i ∈ NK(x) : Bix = 1

K . That is,

G (x) =
(
max

a
rφ (x, a) + γread (y)

) 1

K
+ read (x)

K − 1

K

Let H an operator defined for the function read : T →R as

Hread (x) =
∑
ŷ∈T

Pa∗ (x, y)Gt (x|a∗)

where a∗ = argmax
a

∑
ŷ∈T Pa (x, y)U (x, a). We will prove H is a contraction in the sup-norm.

Let us denote ∆read (x) = read1 (x)− read2 (x), ∆PU (x, a∗1, a
∗
2) =

∑
y∈T Pa∗

1
(x, y)U1 (x, a

∗
1)

−
∑

y∈T Pa∗
2
(x, y)U2 (x, a

∗
2) and â = argmax

a∗
1 ,a

∗
2

∑
y∈T Pa∗

1
(x, y)U1 (x, a

∗
1),∑

y∈T Pa∗
2
(x, y)U2 (x, a

∗
2). Then,
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Task MBEC MBEC++ DQN
2D Maze 2K N/A 43K

Classical control N/A 39K 43K
Atari games N/A 13M 13M

3D Navigation N/A 13M 13M
Table 2: The number of trainable parameters of MBEC(++) and its main competitor DQN.
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∥∥∥∥∥∥
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K
γ∆read (y)

∥∥∥∥∥∥
∞

+

∥∥∥∥K − 1

K
∆read (x)

∥∥∥∥
∞

≤
∑
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K
γ ∥∆read (y)∥∞

+

∥∥∥∥K − 1

K
∆read

∥∥∥∥
∞

≤ γ +K − 1

K
∥read1 − read2∥∞

Since γ < 1, 0 < γK = γ+K−1
K < 1 ∀K ≥ 1. Thus, H is a contraction in the sup-norm and there

exists a fix-point read∗ such that Hread∗ = read∗.

We define ∆t = readt − read∗, then

∆t+1 = ∆t (x) (1− αw,n) + αw,tFt (x)

where Ft (x) = Gt (x)− read∗ (x). We have

E (Ft (x) | Ft) =
∑
ŷ∈T

Pa∗ (x, y)Gt (x|a∗)− read∗ (x)

= Hreadt (x)− read∗ (x)

Following the proof in [32], E (Ft (x) | Ft) ≤ γK ∥∆t (x)∥∞ and
var (Ft (x) | Ft)<C (1 + ∥∆t (x)∥)2for C > 0. Assume that

∑∞
t=1 αw,t =∞ and

∑∞
t=1 α

2
w,t <∞,

according to [22], ∆t converges to 0 with probability 1 or read converges to read∗.

B Experimental Details

B.1 Implemented baseline description

In this section, we describe baselines that are implemented and used in our experiments. We trained
all the models using a single GPU Tesla V100-SXM2.
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Figure 6: Maze map 3 × 3 (left) and 5 × 5 (right). The agent starts from the left top corner (blue
square) and finds the goal at the right bottom corner (red square).

Model-based Episodic Control (MBEC, ours) The main hyper-parameter of MBEC is the number
of neighbors (K), chunk length (L) and memory slots (N ). Hyper-parameter tuning is adjusted
according to specific tasks. For example, for small and simple problems, K and N tend to be smaller
and L is often about 20−30% of the average length per episode. Across experiments, we follow prior
works using γ = 0.99. We also fix αw = 0.5 to reduce hyperparameter tuning. To implement read
and write, we set K = Kr = Kw and use the kernel ⟨x, y⟩ = 1

∥x−y∥+ϵ with ϵ = 10−3 following
[36].

Unless stated otherwise, the hidden size of the trajectory model is fixed to H = 16 for all tasks. The
reward model is implemented as a 2-layer ReLU feed-forward neural network and trained with batch
size 32 for all tasks. To compute TR Loss, we sample 4 past transitions and add Gaussian noise (mean
0, std. 0.1× ∥q∥2) to the query vector q. Notably, in MBEC++, when training with TD loss, we do
not back-propagate the gradient to the trajectory model to ensure that the trajectory representations
are only shaped by the TR Loss.

In practice, to reduce computational complexity, we do not perform refine operator every timestep.
Rather, at each step, we randomly refine with a probability pu = 0.1. Similarly, we occasionally
update the parameters of the trajectory model. Every L step, we randomly update ϕ and ω using
back-propagation via Ltr with probability prec = 0.5. For Atari games, we stop training the trajectory
model after 5 million steps. On our machine for Atari games, these tricks generally make MBEC++
run at speed 100 steps/s while DQN 150 steps/s.

Deep Q-Network (DQN) Except for Sec. 4.3 and 4.4, we implement DQN3 with the following
hyper-parameters: 3-layer ReLU feed-forward Q-network (target network) with hidden size 144,
target update every 100 steps, TD update every 1 step, replay buffer size 106 and Adam optimizer
with batch size 32. The exploration rate decreases from 1 to 0.01. We tune the learning rate for each
task in range

[
10−3, 10−5

]
. For tasks with image input, the Q-network (target network) is augmented

with CNN to process the image depending on tasks. MBEC++ adopts the same DQN with a smaller
hidden size of 128. Table 2 compares model size between DQN and MBEC(++). Regarding memory
usage, for Atari games, DQN consumes 1,441 MB and MBEC++ 1,620 MB.

Model-Free Episodic Control (MFEC) This episodic memory maintains a value table using
K-nearest neighbor to read the value for a query state and max operator to write a new value. We set
the key dimension and memory size to 64 and 106, respectively. We tune K ∈ {3, 5, 11, 25} for each
task. Unless stated otherwise, we use random projection for MFEC. For VAE-CNN version used in
dynamic maze mode, we use 5-convolutional-layer encoder and decoder (16-128 kernels with 4×4
kernel size and a stride of 2). Other details follow the original paper [4].

3https://github.com/higgsfield/RL-Adventure
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Neural Episodic Control (NEC) This model extends MFEC using the state-key mapping as a CNN
embedding network trained to minimize the TD error of memory-based value estimation. Also, multi-
step Q-learning update is employed for memory writing. We adopt the publicly available source code
4 which follows the same hyper-parameters used in the original paper [36] and apply it to stochastic
control problem by implementing the embedding network as a 2-layer feed-forward neural network.
We tune K ∈ {3, 5, 11, 25} and the hidden size of the embedding network ∈ {32, 64, 128, 256} for
each task.

Proximal Policy Optimization (PPO) PPO [38] is a policy gradient method that simplifies Trust
Region update with gradient descent and soft constraint (maintaining low KL divergence between
new and old policy via objective clipping). We test PPO for the 3D Navigation task using the original
source code of the environment Gym Mini World.

Deep Recurrent Q-Network (DRQN) DRQN [17] is similar to DQN except that it uses LSTM as
the Q-Network. As the hidden state of LSTM represents the environment state for the Q-Network, it
captures past information that may be necessary for the agent in POMDP. We extend DQN to DRQN
by storing transitions with the hidden states in the replay buffer and replacing the feed-forward
Q-Network with an LSTM Q-Network. We tune the hidden size of the LSTM ∈ {128, 256, 512} for
3D navigation task.

B.2 Maze task

Task overview In the maze task, if the agent hits the wall of the maze, it gets −1 reward. If it
reaches the goal, it gets 1 reward. For each step in the maze, the agent get −0.1/n2

e reward. An
episode ends either when the agent reaches the goal or the number of steps exceeds 1000.

To build different modes of the task, we modify the original gym-maze environment5. Fig. 6
illustrates the original 3× 3 and 5× 5 maze structure. We train and tune MBEC and other baselines
for 3× 3 maze task and use the found hyper-parameters for other task modes. For MBEC, the best
hyper-parameters are K = 5, L = 5, N = 1000.

Transition Prediction (TP) loss For dynamic mode and ablation study for stochastic control tasks,
we adopt a common loss function to train the traditional model in model-based RL: the transition
prediction (TP) loss. Trained with the TP loss, the model tries to predict the next observations given
current trajectory and observations. The TP loss is concretely defined as follows,

Ltp = E
(
∥y∗ (t)− [st+1, at+1]∥22

)
(10)

y∗ (t) = Gω (Tϕ ([s̃t, ãt] ,−→τ t−1)) (11)

The key difference between TP loss and TR loss is the timestep index. TP loss takes observations at
current timestep to predict the one at the next timestep. On the other hand, TR loss takes observations
at past timestep and uses the current working memory (hidden state of the LSTM) to reconstruct the
observations at the timestep after the past timestep. Our experiments consistently show that TP loss
is inferior to our proposed TR loss (see Sec. B.3).

B.3 Stochastic classical control task

Task description We introduce three ways to make a classical control problem stochastic. First,
we add Gaussian noise (mean 0, σre = 0.2) to the reward that the agent observes. Second, we add
Bernoulli-like noise (with a probability pre = 0.2, the agent receives a reward −r where r is the true
reward). Finally, we make the observed transition noisy by letting the agent observe the same state

4https://github.com/hiwonjoon/NEC
5https://github.com/MattChanTK/gym-maze
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Figure 7: All learning curves for stochastic classical control task. First row: Gaussian noisy reward.
Second row: Bernoulli noisy reward. Third row: Noisy transition
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Figure 8: Stochastic Mountain Car. Trajectory space in noisy transition using models trained with TR
loss (left), no training (middle) and TP loss (right).

despite taking any action with a probability ptr = 0.5. The randomness only affects what the agent
sees while the environment dynamic is not affected. Three classical control problems are chosen
from Open AI’s gym: CartPole-v0, MountainCar-v0 and LunarLander-v2. For each problem, we
apply the three stochastic configurations, yielding 9 tasks in total.

Fig. 7 showcases the learning curves of DQN, MBEC++, MFEC and NEC for all 9 tasks. MBEC++
is consistently the leading performer. DQN is often the runner-up, yet usually underperforms our
method by a significant margin. Overall, other memory-based methods such as MFEC and NEC
perform poorly for these tasks since they are not designed for stochastic environments.

Memory contribution We determine the episodic and semantic contribution to the final value
estimation by counting the number of times their greedy actions equal the final greedy action,
dividing by the number of timesteps. Concretely, the episodic and semantic contribution is computed
respectively as

∑T
t=1 argmaxat

Qeps (st, at) == argmaxat
Q (st, at)

T∑T
t=1 argmaxat

Qθ (st, at) == argmaxat
Q (st, at)

T

where Qeps (st, at) = QMBEC (st, at) fβ (st,
−→τ t−1), Qθ (st, at) and Q (st, at) represent the

episodic, semantic and final value estimation, respectively.
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Figure 9: Learning curves of several Atari games.
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Figure 10: Loss of reward model and TR loss over training iterations for Atari’s Asterix and Gopher,
respectively.

Fig. 4 illustrates the running average contribution using a window of 100 timesteps. We note that the
contribution of the two does not need to sum up to 1 as both can agree with the same greedy action.

Trajectory space visualization We visualize the memory-based value function w.r.t trajectory
vectors in Fig. 4 (d). As such, we set the trajectory dimension to H = 2 and estimate the value for
each grid point (step 0.05) using read operator as

V (−→τ ) ≈
∑

i∈NKr (−→τ )

〈
Mk

i ,
−→τ
〉
Mv

i∑
j∈NK(−→τ )

〈
Mk

j ,
−→τ
〉

To cope with noisy environment, MBEC relies on noise-tolerant trajectory representation. As
demonstrated in Fig. 8, even when the state representations are disturbed by not changing to
true states, the trajectory representations shaped by the TR loss maintain good approximation and
interpolate well the latent location of disturbed trajectories. In contrast, representations generated by
random model or model trained with TP loss fail to discover latent location of disturbed trajectories,
either collapsing (random model) or shattering (TP loss model).

The failure of TP loss is understandable since it is very hard for predicting the next transition when
half of the ground truth is noisy (ptr = 0.5). On the other hand, TR loss facilitates easier learning
wherein the model only needs to reconstruct past observations which are somehow already encoded
in the current representation.
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Game Nature DQN MFEC NEC MBEC++
Alien 634.8 1717.7 3460.6 1991.2
Amid 126.8 370.9 811.3 369.0

Assault 1489.5 510.2 599.9 4981.3
Asterix 2989.1 1776.6 2480.4 7724.0

Asteroids 395.3 4706.8 2496.1 1456.2
Atlantis 14210.5 95499.4 51208.0 99270.0

Bank Heist 29.3 163.7 343.3 1126.4
Battlezone 6961.0 19053.6 13345.5 30004.0
Beamrider 3741.7 858.8 749.6 5875.2

Berzerk 484.2 924.2 852.8 759.2
Bowling 35.0 51.8 71.8 80.6
Boxing 31.3 10.7 72.8 95.8

Breakout 36.8 86.2 13.6 372.2
Centipede 4401.4 20608.8 12314.5 8693.8

Chopper Command 827.2 3075.6 5070.3 1694.0
Crazy Climber 66061.6 9892.2 34344.0 107740.0

Defender 2877.90 10052.80 6126.10 690956.0
Demon Attack 5541.9 1081.8 641.4 8066.4
Double Dunk -19.0 -13.2 1.8 -1.8

Enduro 364.9 0.0 1.4 343.7
Fishing Derby -81.6 -90.3 -72.2 17.6

Freeway 21.5 0.6 13.5 33.1
Frostbite 339.1 925.1 2747.4 1783.0
Gopher 1111.2 4412.6 2432.3 11386.4
Gravitar 154.7 1011.3 1257.0 428.0
H.E.R.O. 1050.7 14767.7 16265.3 12148.5

Ice Hockey -4.5 -6.5 -1.6 -1.5
James Bond 165.9 244.7 376.8 898.0
Kangaroo 519.6 2465.7 2489.1 16464.0

Krull 6015.1 4555.2 5179.2 9031.38
Kung Fu Master 17166.1 12906.5 30568.1 37100.0

Montezuma’s Revenge 0.0 76.4 42.1 0.0
Ms. Pac-Man 1657.0 3802.7 4142.8 2687.2

Name This Game 6380.2 4845.1 5532.0 7822.8
Phoenix 5357.0 5334.5 5756.5 15051.8
Pitfall! 0.0 -79.0 0.0 0.0
Pong -3.2 -20.0 20.4 20.8

Private Eye 100.0 3963.8 162.2 100.0
Q*bert 2372.5 12500.4 7419.2 8686.0

River Raid 3144.9 4195.0 5498.1 10656.4
Road Runner 7285.4 5432.1 12661.4 55284.0
Robot Tank 14.6 7.3 11.1 23.9

Seaquest 618.7 711.6 1015.3 10460.2
Skiing -19818.0 -15278.9 -26340.7 -10016.0
Solaris 1343.0 8717.5 7201.0 1692.0

Space Invaders 642.2 2027.8 1016.0 1425.6
Stargunner 604.8 14843.9 1171.4 49640.0

Tennis 0.0 -23.7 -1.8 18.8
Time Pilot 1952.0 10751.3 10282.7 6752.0
Tutankham 148.7 86.3 121.6 206.36
Up’n Down 18964.9 22320.8 39823.3 21743.2

Venture 3.8 0.0 0.0 1092.4
Video Pinball 14316.0 90507.7 22842.6 182887.9
Wizard of Wor 401.4 12803.1 8480.7 6252.0
Yars’ Revenge 7614.1 5956.7 21490.5 21889.8

Zaxxon 200.3 6288.1 10082.4 11180.0

Table 3: Scores at 10 million frames.
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Figure 11: 3D Navigation: picking 5 objects task. Top view map (left) and frontal view-port or the
observed state of the agent (middle) and a solution found by MBEC++ (right).

0 .5 1 .0 1 .5 2 .0
S te p 1e 6 1e 6

0 .0

0 .5

1 .0
DQN

DRQN

MBEC+ +

PPO

0 .5 1 .0 1 .5 2 .0
S te p

0 .0

0 .5

1 .0

1 .5

2 .0 DQN

DRQN

MBEC+ +

PPO

Figure 12: 3D Navigation. Average reward for picking 3 (left) and 5 (right) objects over environment
steps (mean and std. over 5 runs).

B.4 Atari 2600 task

We use Adam optimizer with a learning rate of 10−4, batch size of 32 and only train the models within
10 million frames for sample efficiency. Other implementations follows [34] (CNN architecture,
exploration rate, 4-frame stacking, reward clipping, etc.). In our implementation, at timestep t, we
use frames at t,t-1,t-2,t-3 and still count t as the current frame as well as the current timestep. We
tune the hyper-parameters for MBEC++ using the standard validation procedure, resulting in K = 7,
L = 100 and N = 50, 000.

We also follow the training and validation procedure from [34] using a public DQN implementation6.
The CNN architecture is a stack of 4 convolutional layers with numbers of filters, kernel sizes and
strides of [32, 64, 64, 1024],[8, 4, 3, 3] and [4, 2, 1, 1], respectively. The Atari platform is Open AI’s
Atari environments7.

In order to understand better the efficiency of MBEC++, we record and compare the learning curves
of MBEC++, MBEC and DQN (our implementation using the same training procedure) in Fig. 9. We
run the 3 models on 6 games (Alien, Breakout, Fishing Derby, Asterix, Gopher and Hero), and plot
the average performance over 5 random seeds. We observe a common pattern for all learning curves,
in which the performance gap between MBEC++ and DQN becomes clearer around 5 million steps
and gets wider afterwards. We note that MBEC++ demonstrate fast learning curves for some games
(e.g., Breakout and Fishing Derby) that other methods (DQN, MFEC or NEC) struggle to learn.

We realize that early stopping of training trajectory model or reward model does not affect the
performance much as the quality of trajectory representations and reward prediction is acceptable at
about 5 millions steps (see Fig. 10). Early stopping further accelerates the running speed of MBEC++
and also helps stabilize the learning of the Q-Networks.

6https://github.com/Kaixhin/Rainbow
7https://gym.openai.com/envs/#atari
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Model Alien Asterix Breakout Fishing Derby Gopher Hero
Dreamer-v2 2950.1 3100.8 57.0 -13.6 16002.8 13552.9

Our MBEC++ 1991.2 7724.0 372.2 17.6 11386.4 12148.5
Table 4: Dreamver-v2 vs MBEC++ on 6 Atari games at 10M frames. We report the best results of the
models after three runs.

Model Alien Asterix Breakout Fishing Derby Gopher Hero

SIMPLE♣ 378.3 ± 85.5 668.0 ± 294.1 6.1 ± 2.8 -94.5 ± 3.0 510.2 ± 158.4 621.5 ± 1281.3

Our MBEC++ 340.5 ± 39.7 810.1 ± 42.4 11.9 ± 2.0 -81.5 ± 2.3 459.2 ± 60.4 1992.8 ± 1171.9
Table 5: SIMPLE vs MBEC++ on 6 Atari games at 400K frames. Mean and std over 5 runs. ♣ is
from [23].

Table 3 reports the final testing score of MBEC++ and other baselines for all Atari games. We note
that we only conducted five runs for the Atari games mentioned in Fig. 9. For the remaining games,
our limited compute budget did not allow us to perform multiple runs, and thus, we only ran once.
We store the best MBEC++ models based on validation score for each game during training and
test them for 100 episodes. Other baselines’ numbers are reported from [36]. Compared to other
baselines, MBEC++ is the winner on the leaderboard for about half of the games.

Notably, our episodic memory is much smaller than that of others. For example, NEC and EMDQN
maintain 5 millions slots per action (there are total 18 actions). Meanwhile, our best number of
memory slots N is only 50,000.

B.5 3D navigation task

In this task, the agent’s goal is to pick objects randomly located in a big room8. There are 5 possible
actions (moving directions and object interaction) and the number of objects is customizable. We
train MBEC++, DQN and DRQN using the same training procedure and CNN for state encoding as
in the Atari task. Except for DQN, other baselines (DRQN and PPO) uses LSTM to encode the state
of the environment. We also stack 4 consecutive frames to help the models (especially DQN) cope
with the environment’s limited observation. For PPO, we tuned the clipping threshold {0.2, 0.5, 0.8}
and reported the best result (0.2).

Fig. 11 illustrates one sample of the environment map and a solution found by MBEC++. The best
hyper-parameters for MBEC++ are K = 15, L = 20 and N = 10000.

B.6 Ablation study

Classical control We tune MBEC++ with Noisy Transition Mountain Car problem using range
K ∈ {1, 5, 15}, L = {1, 10, 50}, N = {500, 3000, 30000}. We use the best found hyper-parameters
(K = 15, L = 10, N = 3000) for all 9 problems. The learning curves of MBEC++ in Noisy
Transition Mountain Car are visualized in Fig. 5 (the first 3 plots).

We also conduct an ablation study on MBEC++: (i) without TR loss, (ii) with TP loss instead (iii),
without multiple write (Kw = 1) and (iv) without memory refining. The result demonstrates that
ablating any components reduces the performance of MBEC++ significantly (see Fig. 5 (the final
plot)).

Dynamic consolidation We compare our dynamic consolidation with traditional fixed combinations
in both simple and complex environments. Fixed combination baselines use fixed β in Eq. 7, resulting
in

Q (st, at) = QMBEC (st, at)β +Qθ (st, at)

In CartPole (Gaussian noisy reward), all fixed combinations achieve moderate results, yet fails to
solve the task after 10,000 training steps. Dynamic consolidation learning to generate dynamic β, in
contrast, completely solves the task (see Fig. 13 (a)).

8https://github.com/maximecb/gym-miniworld
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Figure 13: Ablation studies on dynamic consolidation (a,b) and pread (c). All curves are reported
with mean and std. over 5 runs.

In Atari game’s Riverrraid–a more complex environment, the performance gap between dynamic β
and fixed β becomes clearer. Average reward of dynamic consolidation reaches nearly 7,000 while
the best fixed combination’s (β = 0.1) is less than 3,000 (see Fig. 13 (b)).

Tuning pread Besides modified modes introduced in the main manuscript, we investigate MBEC
with different pread and DQN in a bigger maze (5× 5) for the original setting. As shown in Fig. 13
(c), many MBEC variants successfully learn the task, significantly better in the number of completed
episodes compared to random and DQN agents. We find that when pread = 1 (only average reading),
the performance of MBEC is negatively affected, which indicates that the role of max reading is
important. Similar situation is found for for pread = 0 (only max reading). Among all variants,
pread = 0.7 shows stable and fastest learning. Hence, we set pread = 0.7 for all other experiments in
this paper.
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