
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ELEMENTAL: INTERACTIVE LEARNING FROM
DEMONSTRATIONS AND VISION-LANGUAGE MODELS
FOR REWARD DESIGN IN ROBOTICS SUPPLEMENTARY

Anonymous authors
Paper under double-blind review

1 PROMPTS

Initial System Prompt.

You are a feature engineer trying to write relevant features
for the reward function to solve
learning-from-demonstration (inverse reinforcement
learning) tasks as effective as possible.

↪→

↪→

↪→

Your goal is to write a feature function for the environment
that will help the agent construct a linear reward
function with the constructed features via inverse
reinforcement learning to accomplish the task described
in text and the demonstration.

↪→

↪→

↪→

↪→

Your feature function should use useful variables from the
environment as inputs. The feature function signature
must follow:

↪→

↪→

@torch.jit.script
def compute_feature(obs_buf: torch.Tensor) -> Dict[str,

torch.Tensor]:↪→

...
return {}

Since the feature function will be decorated with
@torch.jit.script, please make sure that the code is
compatible with TorchScript (e.g., use torch tensor
instead of numpy array).

↪→

↪→

↪→

You should not wrap the function within a class.

Make sure any new tensor or variable you introduce is on the
same device as the input tensors.↪→

Initial User Prompt.

The Python environment is
{task_obs_code_string}

Write a feature function for the following task:
{task_description}.↪→

Three keyframes of a demonstration for how to accomplish the
task are shown in the image (superimposing agent pos).↪→

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Code output instruction.

The input of the feature function is a torch.Tensor named
`obs_buf` that is a batched state (shape: [batch,
num_obs]).

↪→

↪→

The output of the feature function should be a dictionary
where the keys are the names of the features and the
values are the corresponding feature values for the
input state.

↪→

↪→

↪→

You must respect the function signature.

The code output should be formatted as a python code string:
"```python ... ```".↪→

Some helpful tips for writing the feature function code:

(1) You may find it helpful to normalize the features to
a fixed range by applying transformations↪→

(2) The feature code's input variables must be obs_buf:
torch.Tensor, which corresponds to the state
observation (self.obs_buf) returned by the
environment compute_observations() function. Under
no circumstance can you introduce new input
variables.

↪→

↪→

↪→

↪→

↪→

(3) Each output feature should only one a single
dimension (shape: [batch]).↪→

(4) You should think step-by-step: first, think what is
important in the task based on the task description
and the demonstration and come up with names of the
features, then, write code to calculate each feature

↪→

↪→

↪→

(5) You should be aware that the downstream inverse
reinforcement learning only creates reward functions
that are linear function of the constructed
features; thus, it is important to construct
expressive features that humans do care in this task

↪→

↪→

↪→

↪→

(6) Do not use unicode anywhere such as \u03c0 (pi)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Self-Reflection prompt.

We trained reward and policy via inverse reinforcement
learning using the provided feature function code with
the demonstration.

↪→

↪→

We tracked the feature values as well as episode lengths.

The mean values of the last {eval_avg_horizon} steps from
the learned policy are:↪→

{insert}

Please carefully analyze the feedback and provide a new,
improved feature function that can better solve the
task. Some helpful tips for analyzing the feedback:

↪→

↪→

(1) If the episode lengths are low, it likely means the
policy is unsuccessful↪→

(2) If the feature counts are significantly different
between demo and learned behavior, then this means
IRL cannot match this feature with the demo as it is
written. You may consider

↪→

↪→

↪→

(a) Change its scale

(b) Re-writing the feature: check error in the
feature computation (e.g., indexing the
observation vector) and be careful about outlier
values that may occur in the computation

↪→

↪→

↪→

(c) Discarding the feature

(3) If a feature has near-zero weight, the feature may
be unimportant. You can consider discarding the
feature or rewriting it.

↪→

↪→

(4) You may add/remove features as you see appropriate.

Please analyze each existing features in the suggested
manner above first, and then write the feature function
code.

↪→

↪→

2 ELEMENTAL HYERPARAMETERS

We tune hyperparameters via a grid search. We summarize the ELEMENTAL hyperparameters in
Table 1. All other hyperparameters follow EUREKA’s default setup.

Hyperparameters Value
Reward learning rate α 1.0

Approximate MaxEnt-IRL number of iterations m 5
Policy training steps k 500

Number of algorithm iterations 3
Code samples generated per iteration 1 for ShadowHand, 3 for all other tasks
Policy Neural Network Architecture Fully-connected [32, 32] with ReLU activation

Table 1: Hyperparameters and their values

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: This table compares generalization performance of ELEMENTAL and EUREKA on Ant-
variant environments. Results (mean±std) are averaged over three seeds. Bold denotes the best
performance.

Method Ant Original w/ Reversed Obs w/ Lighter Gravity Ant Running Backward

EUREKA 4.44±2.45 4.11± 2.07 2.94±2.53 3.51±3.03
ELEMENTAL 6.80±1.17 7.40±0.98 4.35±1.20 7.41±1.25
w/o Visual Input 7.03± 1.67 7.07± 1.07 2.57± 0.68 6.02± 2.03

3 DETAILED RESTULS

3.1 GENERALIZATION EXPERIMENT

The mean and standard deviation for generalization experiment across three seeds are shown in
Table 2.

3.2 CASE STUDY

In this subsection, we present a case study illustrating the iterative process of ELEMENTAL on the
Humanoid task. The initial feature function drafted by the Vision-Language Model (VLM) is shown
in Box 1. The proposed features—forward velocity, uprightness, and heading alignment—are well-
aligned with the task objectives of running efficiently while maintaining balance and direction.
These features provide a strong starting point for the learning process.

Using this initial feature function, ELEMENTAL trains the IRL process, calculates the feature
counts for both the generated trajectories and the demonstration, and feeds this feedback back to the
VLM, as shown in Box 2. The feedback reveals key discrepancies, such as lower forward velocity.
Based on this analysis, the VLM revises the feature function, as shown in Box 3. Notably, the
revised function introduces a new feature, lateral velocity, which captures stride consistency by tak-
ing the absolute value of the lateral movement. This demonstrates the VLM’s capability to construct
nonlinear features, expanding the expressiveness of the feature function.

Finally, ELEMENTAL trains the IRL process again using the updated feature function and com-
piles the feedback. The resulting reward weights assign the highest importance to forward velocity,
with relatively minor contributions from stability-related objectives such as uprightness and lat-
eral velocity. This distribution aligns well with human intuition for the task, where speed is the
primary objective, and stability features serve as secondary constraints.

This case study highlights the potential of ELEMENTAL to produce models at every stage of its
pipeline. The feature functions generated by the VLM are human-readable and meaningful, allow-
ing practitioners to inspect and refine them as needed. Additionally, the linear weights learned by
ELEMENTAL during the IRL process indicate the relative importance of each feature in match-
ing the demonstration. The iterative self-reflection mechanism ensures that the learned policies and
reward functions evolve in alignment with the demonstration.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

BOX 1: 1ST ROUND VLM RESULT

To create a feature function aimed at helping a humanoid robot run as fast as possible, we should
focus on features that are most relevant to running speed and ensuring the humanoid's balance
and stability. Useful features could include the forward velocity, balance (uprightness), and
perhaps a component that ensures the humanoid maintains forward momentum without falling.

↪→
↪→
↪→

Here's the feature function based on the observation buffer structure:

```python
import torch
from typing import Dict

@torch.jit.script
def compute_feature(obs_buf: torch.Tensor) -> Dict[str, torch.Tensor]:

# Extract relevant features from the observation buffer
# Assuming obs_buf shape: [batch_size, num_obs]

# Feature: forward velocity (x direction in local frame)
forward_velocity = obs_buf[:, 1]

# Feature: uprightness (use the up projection)
uprightness = obs_buf[:, 10]

# Feature: heading alignment (use the heading projection)
heading_alignment = obs_buf[:, 11]

# Normalize the features
# Assuming value normalizations such as the velocity range, uprightness [-1, 1], heading

alignment [-1, 1]↪→
max_forward_velocity = 10.0 # This is an arbitrary normalization
forward_velocity = forward_velocity / max_forward_velocity # Normalizing forward velocity

# Combine features into output dictionary
features = {

"forward_velocity": forward_velocity,
"uprightness": uprightness,
"heading_alignment": heading_alignment,

}

return features
```

Explanation:

1. **`forward_velocity`**: The observation buffer's second column (`obs_buf[:, 1]`) captures the
forward velocity in the local frame.↪→

2. **`uprightness`**: The observation buffer's 11th column (`obs_buf[:, 10]`) captures the upright
projection, which is crucial to ensure the humanoid isn't falling over.↪→

3. **`heading_alignment`**: The observation buffer's 12th column (`obs_buf[:, 11]`) captures heading
alignment, which helps ensure the humanoid is moving forward in the correct direction.↪→

These features will enable the inverse reinforcement learning process to construct a reward function
that emphasizes running fast while maintaining balance and a straight heading.↪→

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

BOX 2: 1ST ROUND FEEDBACK

Calculating mean features on the demonstration results in the following:
episode_lengths: 1000.0
forward_velocity: 0.57
uprightness: 0.94
heading_alignment: 0.91
We trained reward and policy via inverse reinforcement learning using the provided feature function

code with the demonstration.↪→
We tracked the feature values as well as episode lengths.
The mean values of the last 100 steps from the learned policy are:
forward_velocity: 0.4
uprightness: 0.99
heading_alignment: 0.99
IRL reward: 0.05
episode_lengths: 691.47
IRL feature weights: {'forward_velocity': 0.693, 'uprightness': -0.107, 'heading_alignment': -0.201}
Please carefully analyze the feedback and provide a new, improved feature function that can better

solve the task. Some helpful tips for analyzing the feedback:↪→
(1) If the episode lengths are low, it likely means the policy is unsuccessful
(2) If the feature counts are significantly different between demo and learned behavior, then

this means IRL cannot match this feature with the demo as it is written. You may consider↪→
(a) Change its scale
(b) Re-writing the feature: check error in the feature computation (e.g., indexing the

observation vector) and be careful about outlier values that may occur in the
computation

↪→
↪→
(c) Discarding the feature

(3) If a feature has near-zero weight, the feature may be unimportant. You can consider
discarding the feature or rewriting it.↪→

(4) You may add/remove features as you see appropriate.
Please analyze each existing features in the suggested manner above first, and then write the

feature function code.The input of the feature function is a torch.Tensor named `obs_buf` that
is a batched state (shape: [batch, num_obs]).

↪→
↪→
The output of the feature function should be a dictionary where the keys are the names of the

features and the values are the corresponding feature values for the input state.↪→
You must respect the function signature.
The code output should be formatted as a python code string: "```python ... ```".

Some helpful tips for writing the feature function code:
(1) You may find it helpful to normalize the features to a fixed range by applying

transformations↪→
(2) The feature code's input variables must be obs_buf: torch.Tensor, which corresponds to the

state observation (self.obs_buf) returned by the environment compute_observations()
function. Under no circumstance can you introduce new input variables.

↪→
↪→
(3) Each output feature should only one a single dimension (shape: [batch]).
(4) You should think step-by-step: first, think what is important in the task based on the task

description and the demonstration and come up with names of the features, then, write code
to calculate each feature

↪→
↪→
(5) You should be aware that the downstream inverse reinforcement learning only creates reward

functions that are linear function of the constructed features; thus, it is important to
construct expressive features that humans do care in this task

↪→
↪→
(6) Do not use unicode anywhere such as \u03c0 (pi)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

BOX 3: 2ND ROUND VLM RESULT

Based on the provided feedback and analysis of how the current features are performing, we can
observe a few key points:↪→

1. **Forward Velocity:**
- The policy is achieving a lower forward velocity than in the demonstration. This suggests that

the current method of calculating or normalizing this feature might need adjustment.↪→
- The forward velocity weight is quite significant (`0.693`).

2. **Uprightness:**
- The policy has a higher uprightness than the demonstration. The weight for uprightness is

negative (`-0.107`), which may indicate that the model learns to be overly cautious about
staying upright, potentially at the expense of moving fast. This negative weight suggests we
might need to rethink how this feature is influencing the reward.

↪→
↪→
↪→

3. **Heading Alignment:**
- The policy has a higher heading alignment than the demonstration. Similar to uprightness, the

weight is also negative and relatively significant (`-0.201`), indicating it might be
overemphasizing this feature.

↪→
↪→

Given these points, we aim to improve the feature function by:
1. Adjusting the scaling or normalization of the forward velocity.
2. Revisiting and potentially revising the uprightness and heading alignment features to better

match the demonstration characteristics.↪→
3. Considering new or additional features that might encourage the desired behavior such as

stability or stride consistency.↪→

Here is the improved feature function:

```python
import torch
from typing import Dict

@torch.jit.script
def compute_feature(obs_buf: torch.Tensor) -> Dict[str, torch.Tensor]:

# Extract relevant features from the observation buffer
# Assuming obs_buf shape: [batch_size, num_obs]

# Feature: forward velocity (x direction in local frame)
forward_velocity = obs_buf[:, 1]

# Adjust scaling of forward velocity to emphasize higher speeds, assuming range [-1, 1]
max_forward_velocity = 1.0 # New scaling factor to more accurately reflect achievable max

speeds↪→
forward_velocity = forward_velocity / max_forward_velocity # Normalizing forward velocity

# Feature: uprightness (use the up projection)
uprightness = obs_buf[:, 10]

# Re-normalize uprightness to give more incentive to be upright but not be overly conservative
uprightness = (uprightness - 0.5) * 2 # Adjusting the range to new scaling [-1, 1]

# Feature: heading alignment (use the heading projection)
heading_alignment = obs_buf[:, 11]

# Normalize heading alignment to confirm alignment direction
heading_alignment = (heading_alignment - 0.5) * 2 # Adjusting the range similarly

# Introducing a new feature: lateral velocity (to ensure stability)
lateral_velocity = obs_buf[:, 2]
lateral_velocity = torch.abs(lateral_velocity) # Use absolute value to avoid

penalizing/stabilize sideway motions↪→

# Normalize lateral velocity, supposing it ranges [-1, 1]
max_lateral_velocity = 1.0
lateral_velocity = lateral_velocity / max_lateral_velocity

# Combine features into output dictionary
features = {

"forward_velocity": forward_velocity,
"uprightness": uprightness,
"heading_alignment": heading_alignment,
"lateral_velocity": lateral_velocity

}

return features
```

Explanation:

1. **`forward_velocity`**: Adjusted scaling to make achievable velocities more impactful.
2. **`uprightness`**: Adjusted to a new normalization to try to balance upright positioning without

making the humanoid overly cautious.↪→
3. **`heading_alignment`**: Similar adjustment for normalization.
4. **`lateral_velocity`**: Added a new feature to penalize sideways movement, ensuring stability and

straightforward motion.↪→

These changes aim to provide a more nuanced reward function, hopefully promoting behaviors closer to
the demonstration while balancing speed and stability.↪→

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

BOX 4: 2ND ROUND FEEDBACK

Calculating mean features on the demonstration results in the following:
episode_lengths: 1000.0
forward_velocity: 5.67
uprightness: 0.89
heading_alignment: 0.83
lateral_velocity: 2.31
We trained reward and policy via inverse reinforcement learning using the provided feature function

code with the demonstration.↪→
We tracked the feature values as well as episode lengths.
The mean values of the last 100 steps from the learned policy are:
forward_velocity: 5.04
uprightness: 0.65
heading_alignment: 0.92
lateral_velocity: 2.05
IRL reward: 3.54
episode_lengths: 932.42
IRL feature weights: {'forward_velocity': 0.549, 'uprightness': 0.253, 'heading_alignment': -0.079,

'lateral_velocity': 0.119}↪→
Please carefully analyze the feedback and provide a new, improved feature function that can better

solve the task. Some helpful tips for analyzing the feedback:↪→
(1) If the episode lengths are low, it likely means the policy is unsuccessful
(2) If the feature counts are significantly different between demo and learned behavior, then

this means IRL cannot match this feature with the demo as it is written. You may consider↪→
(a) Change its scale
(b) Re-writing the feature: check error in the feature computation (e.g., indexing the

observation vector) and be careful about outlier values that may occur in the
computation

↪→
↪→
(c) Discarding the feature

(3) If a feature has near-zero weight, the feature may be unimportant. You can consider
discarding the feature or rewriting it.↪→

(4) You may add/remove features as you see appropriate.
Please analyze each existing features in the suggested manner above first, and then write the

feature function code.The input of the feature function is a torch.Tensor named `obs_buf` that
is a batched state (shape: [batch, num_obs]).

↪→
↪→
The output of the feature function should be a dictionary where the keys are the names of the

features and the values are the corresponding feature values for the input state.↪→
You must respect the function signature.
The code output should be formatted as a python code string: "```python ... ```".

Some helpful tips for writing the feature function code:
(1) You may find it helpful to normalize the features to a fixed range by applying

transformations↪→
(2) The feature code's input variables must be obs_buf: torch.Tensor, which corresponds to the

state observation (self.obs_buf) returned by the environment compute_observations()
function. Under no circumstance can you introduce new input variables.

↪→
↪→
(3) Each output feature should only one a single dimension (shape: [batch]).
(4) You should think step-by-step: first, think what is important in the task based on the task

description and the demonstration and come up with names of the features, then, write code
to calculate each feature

↪→
↪→
(5) You should be aware that the downstream inverse reinforcement learning only creates reward

functions that are linear function of the constructed features; thus, it is important to
construct expressive features that humans do care in this task

↪→
↪→
(6) Do not use unicode anywhere such as \u03c0 (pi)

8

	Prompts
	ELEMENTAL Hyerparameters
	Detailed Restuls
	Generalization experiment
	Case Study

