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A Convergence Analysis of RelaySGD

The structure of this section is as follows: Appendix A.1 describes the notations used in the proof;
Appendix A.2 introduces the properties of mixing matrix W and useful inequalities and lemmas;
Appendix A.3 elaborates the results of Theorem I for non-convex, convex, and strongly convex
objectives, all of the technical details are deferred to Appendix A.4, Appendix A.5 and Appendix A.6.

A.1 Notation

We use upper case, bold letters for matrices and lower case, bold letters for vectors. By default,let ‖ · ‖
and ‖ · ‖F be the spectral norm and Frobenius norm for matrices and 2-norm ‖ · ‖2 be the Euclidean
norm for vectors.
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Let τij be the delay between node i and node j and let τmax = maxij τij . Let

Z(t) = [x
(t)
1 , . . . ,x(t)

n ]> ∈ Rn×d

be the state at time t and let

∇F(t) = [∇F1(x
(t)
1 ; ξ

(t)
1 ), . . . ,∇Fn(x(t)

n ; ξ(t)
n )]> ∈ Rn×d

be the worker gradients at time t. Denote Y(t) and G(t) as the state (models) and gradients respec-
tively, of all nodes, from time t− τmax to t.

Y(t) =


Z(t)

Zt−1

...
Zt−τmax

 ∈ Rn(τmax+1)×d, G(t) =


∇F(t)

∇Ft−1

...
∇Ft−τmax

 ∈ Rn(τmax+1)×d.

The mixing matrix W can be alternatively defined as follows

Definition E (Mixing matrix W). Define W,W̃ ∈ Rn(τmax+1)×n(τmax+1) such that RelaySGD can
be reformulated as

Y(t+1) =


W0 W1 . . . Wτmax−1 Wτmax

I 0 . . . 0 0
...

. . .
. . .

...
0 . . . . . . I 0


︸ ︷︷ ︸

W

Y(t) − γ


W0 W1 . . . Wτmax−1 Wτmax

0 0 . . . 0 0
...

. . .
. . .

...
0 . . . . . . 0 0


︸ ︷︷ ︸

W̃

G(t)

where
∑n
i=1 Wi = 1

n1n1
>
n .

A.2 Technical Preliminaries

A.2.1 Properties of W.

In this part, we show that W enjoys similar properties as Perron-Frobenius Theorem in Theorem II
and its left dominant eigenvector π has specific structure in Lemma 4. Then we use the established
tools to prove the key Lemma 1. Finally, we define constants C and C1 in Definition G which are
used to simplify the convergence results in Appendix A.3.

Definition F (Spectral radius.). Let λ1, . . . , λn be the eigenvalues of a matrix A ∈ Cn×n. Then its
spectral radius ρ(A) is defined as:

ρ(A) = max{|λ1|, . . . , |λn|}.

Lemma 4. The W in Definition E satisfies

1. The spectral radius ρ(W) = 1 and 1 is an eigenvalue of W and 1n(τmax+1) ∈ Rn(τmax+1)

is its right eigenvector.
2. The left eigenvector π ∈ Rn(τmax+1) of eigenvalue 1 is nonnegative and [π]i = π0 >

0,∀ i ∈ [n] and π>1n(τmax+1) = 1.

Proof. Since W is a row stochastic matrix, the Gershgorin Circle Theorem asserts the spectral radius

ρ(W) = |λ1(W)| ≤ 1.

It is clear that 1 is an eigenvalue of W and 1n(τmax+1) is its right eigenvector, we have ρ(W) = 1.

Let π ∈ Rn(τmax+1) be the left eigenvector corresponding to 1 and denote it as

π =


π0

π1

...
πτmax

 ∈ Rn(τmax+1)
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where πi ∈ Rn,∀ i = 0, 1, . . . , τmax. Since π = W>π, we have


π0

π1
...

πτmax

 = π = W>π =


W>

0 π0 + π1

W>
1 π0 + π2

...
W>

τmax−1π0 + πτmax

W>
τmax

π0


which holds true in each block. Then summing up all blocks yields

τmax∑
i=0

πi =

(
τmax∑
i=0

W>
i

)
π0 +

τmax∑
i=1

πi =
1

n
1n1

>
nπ0 +

τmax∑
i=1

πi

which means π0 = 1
n1n1

>
nπ0 and therefore π0 = π01n is a vector of same value.

Other coordinate blocks of π can be derived as

πi =

(
τmax∑
k=i

W>
k

)
π0 ∀ i = 1, . . . , τmax.

Since Wi are nonnegative matrices, we can scale π such that π0 > 0 and 1>π = 1. Therefore π is
a nonnegative vector.

Lemma 5. If λ ∈ C is an eigenvalue of W and |λ| = ρ(W) = 1, then λ = 1 and its geometric
multiplicity is 1.

Proof. Let v ∈ Cn(τmax+1) be a right eigenvector corresponding to eigenvalue λ ∈ C which |λ| = 1.

Denote v as

v =


v0

v1

...
vτmax

 ∈ Cn(τmax+1).

where vi ∈ Cn,∀ i = 0, . . . , τmax. Then Wv = λv implies

Wv =


∑τmax

i=0 Wivi
v0

...
vτmax−2

vτmax−1

 = λv =


λv0

λv1
...

λvτmax

 .
The last τ equations ensures vi = λ−iv0 and thus the first equality becomes(

τmax∑
i=0

Wiλ
−i

)
v0 = λv0

Denote v0 = [x1, x2, . . . , xn]> ∈ Cn, then ∀ i = 1, . . . , n∑n
j=1

1
nλ
−τijxj = λxi. (2)

Pick i such that |λxi| = maxj |λxj |, then

|λxi| = |
∑n
j=1

1
nλ
−τijxj | ≤ 1

n

∑n
j=1 |λ−τijxj | =

1
n

∑n
j=1 |λ−τij ||xj | =

1
n

∑n
j=1 |xj | ≤ |xi|

where we use the triangular inequality |a+ b| ≤ |a|+ |b| and |ab| = |a||b| for all a, b ∈ C.

Note that as |λxi| = |λ||xi| = |xi|, the triangular inequality is in fact an equality which means
λ−τijxj could be written as

λ−τijxj = aijξ ∀ j ∈ [n].
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where aij ≥ 0 and ξ ∈ C. Here ξ 6= 0, otherwise v = 0 which contradicts to v is an eigenvector.
Then (2) becomes

1
n

∑n
j=1 aijξ = λaiiξ.

which implies | 1n
∑n
j=1 aij | = |aii|. As |λxi| = maxj |λxj |, we know aii ≥ aij for all j, thus

ai1 = . . . = ain = a ≥ 0,

moreover, a > 0 as a = 0 again leads to v = 0. Then (2) becomes

λaξ = λxi = 1
n

∑n
j=1 λ

−τijxj = 1
n

∑n
j=1 aξ = aξ

which shows λ = 1 as a > 0 and ξ 6= 0.

Therefore, v0 = a1n ∈ Rn and v = a1n(τmax+1) ∈ Rn(τmax+1). It mean the eigenspace of 1 is
one-dimensional and thus its geometric multiplicity is 1.

Lemma 6. The algebraic multiplicity of eigenvalue 1 of W is 1.

Proof. Proof by contradiction. Let P ∈ Rn(τmax+1)×n(τmax+1) be the invertible matrix which
transform W to its Jordan normal form J by

P−1WP = J =

J1

. . .
Jp


where J1 is the block for eigenvalue 1. If we assume the algebraic multiplicity of 1 greater equal
than 2, and use the Lemma 5 that its geometric multiplicity is 1, then J1 should look like

J1 =


1 1

1
. . .
. . . 1

1


which is a square matrix of at least 2 columns. Denote the first two columns of P as p1 and p2. We
can see that p1 = 1n(τmax+1). Then inspecting P−1WP = J for p2 yields

Wp2 = p1 + p2 = 1n(τmax+1) + p2.

Multiply both sides by π> gives

π>Wp2 =π>1n(τmax+1) + π>p2

π>p2 =π>1n(τmax+1) + π>p2

0 =π>1n(τmax+1)

which contradicts Lemma 4 that π>1n(τmax+1) = 1. Thus the algebraic multiplicity of 1 is 1.

Theorem II (Perron-Frobenius Theorem for W). The mixing W of RelaySGD satisfies

1. (Positivity) ρ(W) = 1 is an eigenvalue of W.
2. (Simplicity) The algebraic multiplicity of 1 is 1.
3. (Dominance) ρ(W) = |λ1(W)| > |λ2(W)| ≥ . . . ≥ |λn(τmax+1)(W)|.
4. (Nonnegativity) The W has a nonnegative left eigenvector π and right eigenvector

1n(τmax+1).

Proof. Statements 1 and 4 follow from Lemma 4. Statement 2 follows from Lemma 6. Statement 3
follows from Lemma 5 and Lemma 6.

Lemma 7 (Gelfand’s formula). For any matrix norm ‖ · ‖, we have

ρ(A) = lim
k→∞

‖Ak‖ 1
k .
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Figure 5: Optimal ratios for ρ = p/m for Lemma 1 computed empirically for three common types
of graph topologies.

We characterize the convergence rate of the consensus distance in the following key lemma:
Lemma’ 1 (Key lemma). Given W and π as before. There exists an integer m = m(W) > 0 such
that for any X ∈ Rn(τmax+1)×d we have

‖WmX− 1π>X‖2 ≤ (1− p)2m‖X− 1π>X‖2,

where p = 1
2 (1− |λ2(W)|) is a constant.

All the following optimization convergence results will only depend on the effective spectral gap
ρ := p

m of W. We empirically observe that ρ = Θ(1/n) for a variety of network topologies, as
shown in Figure 5.

Proof of key lemma 1. First, let {λi} and {vi} be the eigenvalues and right eigenvectors of W where
λ1 = 1 and v1 = 1n(τmax+1), then

(W − 1π>)v1 =(W − 1π>)1 = 0

(W − 1π>)vi =Wvi − 1π>vi = Wvi = λivi ∀ i > 1

where π>vi = 0 because

(1− λi)π>vi = π>vi − λiπ>vi = (π>W)vi − π>(Wvi) = 0.

The spectrum of W − 1π> are
{0, λ2, . . . , λn(τmax+1)},

and thus the spectral radius of W − 1π> is |λ2| < 1. Since

Wm − 1π> = (W − 1π>)m,

then Wm − 1π> has a spectral radius of |λ2|m < 1.

Then, we apply Gelfand’s formula (Lemma 7) with A = W − 1π> and can conclude that for a
given ε ∈ (0, 1− |λ2|), there exists a large enough integer m > 0 such that

‖Wm − 1π>‖ = ‖(W − 1π>)m‖ ≤ (ρ(W − 1π>) + ε)m = (|λ2|+ ε)m < 1.

Thus

‖WmX− 1π>X‖2 ≤ ‖Wm − 1π>‖2‖X− 1π>X‖2 ≤ (1− p)2m‖X− 1π>X‖2

where p ∈ (0, 1− |λ2|).
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Definition G. Given W and m, and Ĩ ∈ Rn(τmax+1)×n(τmax+1) is a matrix which satisfies

[Ĩ]ij =

{
1 i = j ≤ n
0 Otherwise.

We define constants C2
1 := maxi=0,...,m−1 ‖WiĨ‖2 and C = C(W) such that

C2 :=
C2

1

‖W∞Ĩ‖2
.

where W∞ := 1π>.

In addition, the ‖1π>Ĩ‖2 can be computed as follows.

Lemma 8. Given Ĩ in Definition G, we have the following estimate

‖1π>Ĩ‖2 = n2(τmax + 1)π2
0 ≤ n3π2

0 .

Proof. For rank r matrix ‖A‖2 ≤ ‖A‖2F ≤ r‖A‖2. Since 1π>Ĩ is a rank 1 matrix, we know that

‖1π>Ĩ‖2 = ‖1π>Ĩ‖2F .

As the first n entries of π are π0, we can compute that

‖1π>Ĩ‖2F = n2(τmax + 1)π2
0 .

A.2.2 Useful inequalities and lemmas

For convex objective, the noise in Assumption B can be defined only at the minimizer x? which leads
to Assumption H. This assumption is used in the proof of Proposition III.

Assumption H (Bounded noise at the optimum). Let x? = arg min f(x) and define

ζ2
i := ‖∇fi(x?)‖2, ζ̄2 := 1

n

∑n
i=1 ζ

2
i . (3)

Further, define

σ2
i := Eξi ‖∇Fi(x?, ξi)−∇fi(x?)‖2

and similarly as above, σ̄2 := 1
n

∑n
i=1 σ

2
i . We assume that σ̄2 and ζ̄2 are bounded.

Lemma 9 (Cauchy-Schwartz inequality). For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n
n∑
i=1

‖ai‖2. (4)

Lemma 10. If function g(x) is L-smooth, then

‖∇g(x)−∇g(y)‖2 ≤ 2L(g(x)− g(y)− 〈x− y,∇g(y)〉), ∀ x,y ∈ Rd. (5)

Lemma 11. Let A be a matrix with {ai}ni=1 as its columns and ā = 1
n

∑n
i=1 ai, Ā = ā1> then

‖A− Ā‖2F =

n∑
i=1

‖ai − ā‖2 ≤
n∑
i=1

‖ai‖2 = ‖A‖2F . (6)

Lemma 12. Let A,B be two matrices

‖AB‖2F ≤ ‖A‖2F ‖B‖2. (7)
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A.3 Results of Theorem I

In this subsection, we summarize the precise results of Theorem I for convex, strongly convex and
non-convex cases. The complete proofs for each case are then given in the following Appendix A.4,
Appendix A.5 and Appendix A.6.

Theorem’ I. Given mixing matrix W and W̃, constant m, p defined in Lemma 1, C, C1 defined in
Definition G. Under Assumption A and B, then for any target accuracy ε > 0,

Non-convex: if the objective is non-convex, then 1
T+1

∑T
t=0 ‖∇f(x̄(t))‖2 ≤ ε after

O
(
σ̄2

nε2
+

Cmσ̄
√
pε3/2

+
C1m

pε

)
Lr0

iterations, where r0 = f(x(0))− f?.

Convex: if the objective is convex and x? is the minimizer, then 1
T+1

∑T
t=0

(
f(x̄(t))− f(x?)

)
≤ ε

after

O

(
σ̄2

nε2
+
Cm
√
Lσ̄

√
pε3/2

+
Lm
√
nC

pε

)
r0

iterations, where r0 = ‖x0 − x?‖2.

Strongly-convex: if the objective is µ strongly convex and x? is the minimizer, then
1
WT

∑T
t=0 wt(E f(x̄(t))− f?) + µE ‖x̄(T+1) − x?‖2 ≤ ε after

Õ
(

σ̄2

µnε2
+
Lm2C2σ̄2

µnp2ε
+
s

a
log

bsr0

ε

)
iterations, where r0 = ‖x0 − x?‖2, wt = (1 − µγnπ0

2 )−(t+1) and WT =
∑T
t=0 wt and a = µnπ0

2 ,
b = 2

nπ0
, s = aT

ln max{ ba
2T2r0
π0σ̄

2 ,2}
.

In all three cases, the convergence rate is independent of the heterogeneity ζ2.

A.4 Proof of Theorem I in the convex case

Let x̄(t) :=
(
π>Y(t)

)>
and Ȳ(t) := 1π>Y(t). Let x? be the minimizer of f and define the

following iterates

• rt := ‖x̄(t) − x?‖2,
• et := f(x̄(t))− f(x?),
• Ξt := 1

n‖Ȳ
(t) −Y(t)‖2F .

The consensus distance Ξt can be written as follows

Ξt =
1

n

n∑
i=1

τmax∑
τ=0

‖x̄(t) − x
(t−τ)
i ‖2. (8)

There is a related term
∑n
i=1

∑n
j=1 ‖x̄(t) − x

(t−τij)
i ‖2 which will be used frequently in the proof.

The next lemma explains their relations.
Lemma 13. For all t ≥ 0

n∑
i=1

n∑
j=1

‖x̄(t) − x
(t−τij)
i ‖2 ≤ n2Ξt.

where x(0) = x(−1) = . . . = x(−τmax).

Proof. Rewrite the τij as an indicator function
n∑
i=1

n∑
j=1

‖x̄(t) − x
(t−τij)
i ‖2 =

n∑
i=1

n∑
j=1

τmax∑
τ=0

1{τ=τij}‖x̄
(t) − x

(t−τ)
i ‖2.
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This term can be relaxed by removing the indicator function
n∑
i=1

n∑
j=1

‖x̄(t) − x
(t−τij)
i ‖2 ≤n

n∑
i=1

τmax∑
τ=0

‖x̄(t) − x
(t−τ)
i ‖2.

Then applying (8) for the consensus distance in vector form completes the proof.

The next two propositions upper bound the difference between stochastic gradients and full gradients.
Proposition III. Under Assumption A and B. Then for t ≥ 0,

E
∥∥∥π>W̃(EG(t) −G(t))

∥∥∥2

≤ 3nπ2
0(L2Ξt + 2Let + σ̄2).

Proof. Use T0 to denote the left hand side quantity

T0 := E
∥∥∥π>W̃(EG(t) −G(t))

∥∥∥2

= E

∥∥∥∥∥∥π0

n

n∑
i=1

n∑
j=1

(∇fj(x
(t−τij)
j )−∇Fj(x

(t−τij)
j ; ξ

(t−τij)
j ))

∥∥∥∥∥∥
2

Cauchy-Schwartz (4)
≤ π2

0

n

n∑
i=1

E

∥∥∥∥∥∥
n∑
j=1

(∇fj(x
(t−τij)
j )−∇Fj(x

(t−τij)
j ; ξ

(t−τij)
j ))

∥∥∥∥∥∥
2

.

Since the randomness inside the norm are independent, we have

T0 ≤
π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇fj(x(t−τij)

j )−∇Fj(x
(t−τij)
j ; ξ

(t−τij)
j )

∥∥∥2

.

Inside the vector norm, we can add and subtract terms the same terms and apply Cauchy-Schwartz (4)

T0 ≤
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∇Fj(x(t−τij)

j ; ξ
(t−τij)
j )−∇Fj(x̄(t); ξ

(t−τij)
j ) +∇fj(x

(t−τij)
j )−∇fj(x̄(t))

∥∥2

+
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x̄(t); ξ

(t−τij)
j )−∇Fj(x?; ξ

(t−τij)
j ) +∇fj(x̄(t))−∇fj(x?)

∥∥∥2

+
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x?; ξ(t−τij)

j ))−∇fj(x?)
∥∥∥2

.

Use the inequality that for a = EY , E‖Y − a‖2 = E‖Y ‖2 − ‖a‖2 ≤ E‖Y ‖2, then we have

T0 ≤
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∇Fj(x(t−τij)

j ; ξ
(t−τij)
j )−∇Fj(x̄(t); ξ

(t−τij)
j )

∥∥2

+
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x̄(t); ξ

(t−τij)
j )−∇Fj(x?; ξ

(t−τij)
j )

∥∥∥2

+
3π2

0

n

n∑
i=1

n∑
j=1

E
∥∥∥∇Fj(x?; ξ(t−τij)

j )−∇fj(x?)
∥∥∥2

Applying Assumption A, Smoothness (5), and Assumption B (or Assumption H) to the three terms
gives

T0 ≤
3L2π2

0

n

n∑
i=1

n∑
j=1

∥∥x(t−τij)
j − x̄(t)

∥∥2
+ 6Lnπ2

0(f(x̄(t))− f(x?)) + 3π2
0nσ̄

2

Lemma 13
≤ 3nπ2

0(L2Ξt + 2Let + σ̄2).

where in the last line we have used our previous Lemma 13.
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The next proposition is very similar to the Proposition III except that it considers the matrix form
instead of the projection onto π.
Proposition IV. Under Assumption A and B. Then for t ≥ 0,

E
∥∥∥W̃(EG(t) −G(t))

∥∥∥2

F
≤ 3(L2Ξt + 2Let + σ̄2).

Proof.

E
∥∥∥W̃(EG(t) −G(t))

∥∥∥2

F

=

n∑
i=1

E

∥∥∥∥∥∥ 1

n

n∑
j=1

(∇F (x
(t−τij)
j ; ξ

(t−τij)
j )−∇fj(x

(t−τij)
j ))

∥∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

n∑
j=1

E
∥∥∥∇F (x

(t−τij)
j ; ξ

(t−τij)
j )−∇fj(x

(t−τij)
j )

∥∥∥2

The rest of the proof is identical to the one of Proposition III.

Lemma 14. (Descent lemma for convex objective.) If γ ≤ 1
10Lnπ0

, then

rt+1 ≤ (1− γµnπ0

2 )rt − γnπ0et + 4γLnπ0Ξt + 3γ2nπ2
0 σ̄

2.

Proof. Expand rt+1 = E ‖x̄(t+1) − x?‖2 as follows

E ‖x̄(t+1) − x?‖2 =E ‖x̄(t) − γπ>W̃G(t) − x?‖2

=E ‖x̄(t) − γπ>W̃EG(t) − x? + γπ>W̃(EG(t) −G(t))‖2

Directly expand it into three terms

E ‖x̄(t+1) − x?‖2 =E
(
‖x̄(t) − γπ>W̃EG(t) − x?‖2 + γ2‖π>W̃(EG(t) −G(t)))‖2

+
〈
x̄(t) − γπ>W̃EG(t) − x?, γπ>W̃(EG(t) −G(t)))

〉)
where the 3rd term is 0 and the second term is bounded in Proposition III. The first term is independent
of the randomness

‖x̄(t) − γπ>W̃EG(t) − x?‖2

=‖x̄(t) − x?‖2 + γ2 ‖π>W̃EG(t)‖2︸ ︷︷ ︸
=:T1

−2γ 〈π>W̃EG(t), x̄(t) − x?〉︸ ︷︷ ︸
=:T2

.

Since π>W̃EG(t) = π0

n

∑n
i=1

∑n
j=1∇fi(x

(t−τij)
i ), first bound T1

T1 = π2
0

∥∥∥∥∥∥ 1

n

n∑
i=1

n∑
j=1

∇fi(x
(t−τij)
i )

∥∥∥∥∥∥
2

= π2
0

∥∥∥∥∥∥ 1

n

n∑
i=1

n∑
j=1

(∇fi(x
(t−τij)
i )−∇fi(x̄(t)) +∇fi(x̄(t))−∇fi(x?))

∥∥∥∥∥∥
2

≤ 2π2
0


∥∥∥∥∥∥ 1

n

n∑
i=1

n∑
j=1

(∇fi(x
(t−τij)
i )−∇fi(x̄(t)))

∥∥∥∥∥∥
2

+

∥∥∥∥∥
n∑
i=1

(∇fi(x̄(t))−∇fi(x?))

∥∥∥∥∥
2


≤ 2π2
0L

2
n∑
i=1

n∑
j=1

∥∥∥x(t−τij)
i − x̄(t)

∥∥∥2

+ 2nπ2
0

n∑
i=1

∥∥∥∇fi(x̄(t))−∇fi(x?)
∥∥∥2

Smoothness (5)
≤ 2π2

0L
2

n∑
i=1

n∑
j=1

∥∥∥x(t−τij)
i − x̄(t)

∥∥∥2

+ 4Ln2π2
0(f(x̄(t))− f(x?)),
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Using again Lemma 13 we have

T1 ≤ 2L2n2π2
0Ξt + 4Ln2π2

0et.

Then bound T2

T2 =
π0

n

n∑
i=1

n∑
j=1

〈∇fi(x
(t−τij)
i ), x̄(t) − x?〉

=
π0

n

n∑
i=1

n∑
j=1

(〈∇fi(x
(t−τij)
i ), x̄(t) − x

(t−τij)
i 〉+ 〈∇fi(x

(t−τij)
i ),x

(t−τij)
i − x?〉)

≥ π0

n

n∑
i=1

n∑
j=1

(fi(x̄
(t))− fi(x

(t−τij)
i )− L

2 ‖x̄
(t) − x

(t−τij)
i ‖2

+ fi(x
(t−τij)
i )− fi(x?) + µ

2 ‖x
(t−τij)
i − x?‖2)

= nπ0(f(x̄(t))− f(x?)) +
π0

n

n∑
i=1

n∑
j=1

(µ2 ‖x
(t−τij)
i − x?‖2 − L

2 ‖x̄
(t) − x

(t−τij)
i ‖2)

≥ nπ0(f(x̄(t))− f(x?)) +
π0

n

n∑
i=1

n∑
j=1

(µ4 ‖x̄
(t) − x?‖2 − µ+L

2 ‖x̄
(t) − x

(t−τij)
i ‖2)

Lemma 13
≥ nπ0et + nµπ0

4 rt − nLπ0Ξt

where the first inequality and the second inequality uses the L-smoothness and µ-convexity of fi.

Combine both T1, T2 and Proposition III we have

rt+1 ≤rt + γ2n2π2
0(2L2Ξt + 4Let)− 2γnπ0(et + µ

4 rt − LΞt)

+ γ2n(3L2π2
0Ξt + 6Lπ2

0et + 3π2
0 σ̄

2)

=(1− γµnπ0

2 )rt − (2γnπ0 − 4Lγ2n2π2
0 − 6Lγ2nπ2

0)et

+ (2γ2L2n2π2
0 + 2γLnπ0 + 3L2γ2nπ2

0)Ξt + 3γ2nπ2
0 σ̄

2

In addition if γ ≤ 1
10Lnπ0

, then we can simplify the coefficient of et and Ξt

4Lγ2n2π2
0 + 6Lγ2nπ2

0 ≤γnπ0

2γ2L2n2π2
0 + 2γLnπ0 + 3L2γ2nπ2

0 ≤4γLnπ0

Then

rt+1 ≤ (1− γµnπ0

2 )rt − γnπ0et + 4γLnπ0Ξt + 3γ2nπ2
0 σ̄

2.

Lemma 15. For γ ≤ p
10LmC1

we have

1

T + 1

T∑
t=0

Ξt ≤C2
1γ

2m2 24

p

σ̄2

n
+

80Lm2

p2
C2

1γ
2 1

T + 1

T∑
t=0

et

where C1 is defined in Definition G.

Proof. First bound the consensus distance as follows:

nΞt =E ‖Y(t) − Ȳ(t)‖2F ≤ E ‖(Y(t) − Ȳ(t−m))− (Ȳ(t) − Ȳ(t−m))‖2F
≤E ‖Y(t) − Ȳ(t−m)‖2F

where the last inequality we use the simple matrix inequality (6). For t ≥ m unroll to t−m.

nΞt ≤E

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃G(k) − Ȳ(t−m)

∥∥∥∥∥
2

F
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Separate the stochastic part and deterministic part.

nΞt ≤

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃EG(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

+ E

∥∥∥∥∥γ
t−1∑

k=t−m

Wt−1−kW̃(EG(k) −G(k))

∥∥∥∥∥
2

F

≤

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃EG(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

+ γ2m

t−1∑
k=t−m

E
∥∥∥Wt−1−kW̃(EG(k) −G(k))

∥∥∥2

F

Given Ĩ and C1 in defined in Definition G, we know that W̃ = ĨW̃. Then use (7) and Proposition IV

nΞt ≤

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃EG(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m

t−1∑
k=t−m

E
∥∥∥W̃(EG(k) −G(k))

∥∥∥2

F

≤

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃EG(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m

t−1∑
k=t−m

3(L2Ξk + 2Lek + σ̄2)

Separate the first term as

nΞt ≤(1 + α)
∥∥∥WmY(t−m) − Ȳ(t−m)

∥∥∥2

F
+ (1 +

1

α
)

∥∥∥∥∥γ
t−1∑

k=t−m

Wt−1−kW̃EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m

t−1∑
k=t−m

3(L2Ξk + 2Lek + σ̄2)

≤(1 + α)(1− p)2m
∥∥∥Y(t−m) − Ȳ(t−m)

∥∥∥2

F
+ (1 +

1

α
)

∥∥∥∥∥γ
t−1∑

k=t−m

Wt−1−kW̃EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m

t−1∑
k=t−m

3(L2Ξk + 2Lek + σ̄2)

where the first inequality uses (a+ b)2 ≤ (1 + ε)a2 + (1 + 1
ε )b2 and take ε = ( 2−p

2−2p )2m − 1.

1 + 1
ε ≤ 1 + 1−p

mp ≤ 1 + 1
mp ≤

2
p .

Then by applying our key lemma (Lemma 1) we have

nΞt ≤
(

1− p

2

)2m ∥∥∥Y(t−m) − Ȳ(t−m)
∥∥∥2

F
+

2m

p
C2

1γ
2

t−1∑
k=t−m

∥∥∥W̃EG(k)
∥∥∥2

F

+ C2
1γ

2m

t−1∑
k=t−m

3(L2Ξk + 2Lek + σ̄2)
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Next we bound E ‖W̃G(t′)‖2F ,

E ‖W̃EG(k)‖2F =
∑n
i=1 E ‖

1
n

∑n
j=1∇fj(x

(k−τij)
j )‖2

=
∑n
i=1 E ‖

1
n

∑n
j=1(∇fj(x

(k−τij)
j )−∇fj(x̄(k)) +∇fj(x̄(k))−∇fj(x?))‖2

≤ 2
n

∑n
i=1

∑n
j=1(‖∇fj(x

(k−τij)
j )−∇fj(x̄(k))‖2 + ‖∇fj(x̄(k))−∇fj(x?))‖2)

≤ 2
n

∑n
i=1

∑n
j=1(L2‖x(k−τij)

j − x̄(k)‖2 + ‖∇fj(x̄(k))−∇fj(x?))‖2)

Lemma 13
≤ 2L2nΞk + 2

∑n
j=1 ‖∇fj(x̄(k))−∇fj(x?))‖2

Smoothness (5)
≤ 2L2nΞk + 4nLek.

Then

nΞt ≤(1− p

2
)2mnΞt−m +

2m

p
C2

1γ
2

t−1∑
k=t−m

(2L2nΞk + 4nLek) + C2
1γ

2m

t−1∑
k=t−m

3(L2Ξk + 2Lek + σ̄2)

Then

Ξt ≤(1− p

2
)2mΞt−m +

2m

p
C2

1γ
2

t−1∑
k=t−m

(5L2Ξk + 10Lek) + 3C2
1γ

2m2 σ̄
2

n
.

Unroll for t < m. We can apply similar steps

nΞt ≤E

∥∥∥∥∥W(t)Y(0) − γ
t−1∑
k=0

Wt−1−kW̃G(k) − Ȳ(0)

∥∥∥∥∥
2

F

= E

∥∥∥∥∥γ
t−1∑
k=0

Wt−1−kW̃G(k)

∥∥∥∥∥
2

F

≤C2
1γ

2m

t−1∑
k=0

E
∥∥∥W̃G(k)

∥∥∥2

F
≤ 2C2

1γ
2m

t−1∑
k=0

(5L2nΞk + 10nLek + 3σ̄2)

Merge two parts together and sum over t.

1

T + 1

T∑
t=0

Ξt ≤
(

1− p

2

)2m 1

T + 1

T∑
t=m

Ξt−m + 6C2
1γ

2m2 σ̄
2

n

+
2m

p
C2

1γ
2 1

T + 1

(
T∑
t=m

t−1∑
k=t−m

(5L2Ξk + 10Lek) +

m−1∑
t=0

t−1∑
k=t−m

(5L2Ξk + 10Lek)

)

≤
(

1− p

2

)2m 1

T + 1

T∑
t=0

Ξt + 6C2
1γ

2m2 σ̄
2

n
+

2m2

p
C2

1γ
2 1

T + 1

T∑
t=0

(
5L2Ξt + 10Let

)
By taking γ ≤ p

10CLm , then 10L2m2

p C2
1γ

2 ≤ p
4 .

1

T + 1

T∑
t=0

Ξt ≤C2
1γ

2m2 24

p

σ̄2

n
+

80Lm2

p2
C2

1γ
2 1

T + 1

T∑
t=0

et.

Lemma 16 (Identical to [16, Lemma 15]). For any parameters r0 ≥ 0, a ≥ 0, b ≥ 0, c ≥ 0 there
exists constant stepsizes γ ≤ 1

c such that

ΨT :=
r0

γ(T + 1)
+ aγ + bγ2 ≤ 2

(
ar0

T + 1

) 1
2

+ 2b
1
3

(
r0

T + 1

) 2
3

+
cr0

T + 1
.

Theorem V. If γ ≤ p
30LmC1

, then

1
T+1

∑T
t=0

(
f(x̄(t))− f(x?)

)
≤ 8

(
σ̄2r0

n(T+1)

) 1
2

+ 2
(

16Cm
√
Lσ̄r0√

p(T+1)

) 2
3

+ 30Lm
√
nCr0

p(T+1) .

where r0 = ‖x0 − x?‖2 and C = C(W) is defined in Definition G.
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Proof. Reorganize Lemma 14 and average over time

1
T+1

∑T
t=0 et ≤

1
T+1

∑T
t=0

(
rt

γnπ0
− rt+1

γnπ0

)
+ 4L

T+1

∑T
t=0 Ξt + 3γπ0σ̄

2.

Combining with Lemma 15 gives

1
T+1

∑T
t=0 et ≤

1
T+1

r0
γnπ0

+ 4L
(
C2

1γ
2m2 24

p
σ̄2

n + 80Lm2

p2 C2
1γ

2 1
T+1

∑T
t=0 ek

)
+ 3γπ0σ̄

2

Select γ ≤ p
30LmC1

such that 320L2

p2 γ2m2C2
1 ≤ 1

2

1
T+1

∑T
t=0 et ≤

2
T+1

r0
γnπ0

+ 6γπ0σ̄
2 + 96L

p γ2m2C2
1
σ̄2

n .

Applying Lemma 16 gives

1

T + 1

T∑
t=0

et ≤ 40

(
σ̄2r0

n(T + 1)

) 1
2

+ 2

( √
mLσ̄r0√
p(T + 1)

16C1
√
m

nπ0
√
n

) 2
3

+
dr0

nπ0(T + 1)

where d = max{ 30LmC1

p , 10Lnπ0} = 30LmC1

p . As in Lemma 8,

C1 = C‖1π>Ĩ‖ = Cn
√
τmax + 1π0 ≤ Cn

√
nπ0.

We can further simplify it as

1

T + 1

T∑
t=0

et ≤ 40

(
σ̄2r0

n(T + 1)

) 1
2

+ 2

(
16Cm

√
Lσ̄r0√

p(T + 1)

) 2
3

+
30Lm

√
nCr0

p(T + 1)
.

A.5 Proof of Theorem I in the strongly convex case

The proof for strongly convex objective follows similar lines as [35]:

Theorem VI. Let a = µnπ0

2 , b = 2
nπ0

, c = 6π0σ̄
2, A = 400L

p2 m2C2
1 σ̄

2, and let γ = 1
s ≤

1
aT ln max{ ba

2T 2r0
c , 2}, then

1

WT

T∑
t=0

wtet + µrT+1 ≤Õ
(
bsr0 exp

[
−a(T + 1)

s

]
+

c

a(T + 1)
+

A

a2(T + 1)2

)
where wt = (1− µγnπ0

2 )−(t+1).

Proof. From Lemma 14 we know that if γ ≤ 1
10Lnπ0

, then

rt+1 ≤ (1− γµnπ0

2 )rt − γnπ0et + 4γLnπ0Ξt + 3γ2nπ2
0 σ̄

2.

Then

et ≤
1

γnπ0
(1− µγnπ0

2
)rt −

1

γnπ0
rt+1 + 4LΞt + 3γπ0σ̄

2.

Multiply wt and sum over t = 0 to T and divided by WT

1

WT

T∑
t=0

wtet ≤
1

WT

T∑
t=0

(
1− µγnπ0

2

γnπ0
wtrt −

wt
γnπ0

rt+1

)
+

4L

WT

T∑
t=0

wtΞt + 3γπ0σ̄
2.

Set (1− µγnπ0

2 )wt+1 = wt, then

1

WT

T∑
t=0

wtet ≤
1

WT

(
1− µγnπ0

2

γnπ0
w0r0 −

1− µγnπ0

2

γnπ0
wT+1rT+1

)
+

4L

WT

T∑
t=0

wtΞt + 3γπ0σ̄
2.
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Then using Lemma 15 we have

1

WT

T∑
t=0

wtet +
1− µγnπ0

2

γnπ0WT
wT+1rT+1

≤ 1

WT

1− µγnπ0

2

γnπ0
w0r0 + 4L

(
80C2

1Lm
2

p2 γ2 1
WT

∑T
t′=0 wtet′ + 24

p γ
2m2C2

1
σ̄2

n

)
+ 3γπ0σ̄

2

By taking γ ≤ p
30LmC1

we have 320L2m2C2
1γ

2

p2 ≤ 1
2 , then

1

WT

T∑
t=0

wtet +
1− µγnπ0

2

γnπ0WT
2wT+1rT+1 ≤

1

WT

1− µγnπ0

2

γnπ0
2w0r0 + 6γπ0σ̄

2 + 400L
p2 γ2m2C2

1 σ̄
2

Since WT ≥ wT = (1− µγnπ0

2 )−(T+1) and WT ≤ 2wT
µγnπ0

1

WT

T∑
t=0

wtet + µrT+1 ≤
(1− µγnπ0

2 )T+1

γnπ0
2w0r0 + 6γπ0σ̄

2 + 400L
p2 γ2m2C2

1 σ̄
2

≤e
−µγnπ0

2 (T+1)

γnπ0
2w0r0 + 6γπ0σ̄

2 + 400L
p2 γ2m2C2

1 σ̄
2

Let a = µnπ0

2 , b = 2
nπ0

, c = 6π0σ̄
2, A = 400L

p2 m2C2
1 σ̄

2, then

1

WT

T∑
t=0

wtet + µrT+1 ≤
br0

γ
exp[−aγ(T + 1)] + cγ +Aγ2

Tuning stepsize. Let γ = 1
d ≤

1
aT ln max{ ba

2T 2r0
c , 2}, then

1

WT

T∑
t=0

wtet + µrT+1 ≤Õ
(
bsr0 exp[−a(T + 1)

s
] +

c

a(T + 1)
+

A

a2(T + 1)2

)
.

A.6 Proof of Theorem I in the non-convex case

Let x̄(t) :=
(
π>Y(t)

)>
and Ȳ(t) := 1π>Y(t). Let f? be the optimal objective value at critical

points. We can define the following iterates

1. rt := E f(x̄(t))− f? is the expected function suboptimality.
2. et := ‖∇f(x̄(t))‖2
3. Ξt := 1

n‖Ȳ
(t) −Y(t)‖2F is the consensus distance.

where the expectation is taken with respect to ξ(t) ∈ Rn the randomness across all workers at time t.
Note that Lemma 13 still holds.

Proposition VII and Proposition VIII bound the stochastic noise of the gradient.
Proposition VII. Under Assumption B, we have

E‖π>W̃(G(t) − EG(t))‖2 ≤ nπ2
0 σ̄

2. (9)

Proof. Denote E = Eξ. Use Cauchy-Schwartz inequality Equation (4)

E‖π>W̃(G(t) − EG(t))‖2 =E

∥∥∥∥∥∥π0

n

n∑
i=1

n∑
j=1

(∇Fj(x
(t−τij)
j ; ξ

(t−τij)
j )−∇fj(x

(t−τij)
j ))

∥∥∥∥∥∥
2

≤π
2
0

n

n∑
i=1

E

∥∥∥∥∥∥
n∑
j=1

∇Fj(x
(t−τij)
j ; ξ

(t−τij)
j )−∇fj(x

(t−τij)
j )

∥∥∥∥∥∥
2

Now the randomness inside the norm are independent

E‖π>W̃(G(t) − EG(t))‖2 E‖π>W̃(G(t) − EG(t))‖2 ≤ nπ2
0 σ̄

2.
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Proposition VIII. Under Assumption B, we have

E‖W̃(G(t) − EG(t))‖2F ≤ σ̄2. (10)

Next we establish the recursion of rt
Lemma 17 (Descent lemma for non-convex case). Under Assumption A and B. Let γ ≤ 1

8Lnπ0
, then

rt+1 ≤rt −
γnπ0

4
et + 2γL2nπ0Ξt + 2γ2Lnπ2

0 σ̄
2.

Proof. Since f is L-smooth,

E f(x̄(t+1)) =E f(x̄(t) − γπ>W̃G(t))

≤f(x̄(t))− γ 〈∇f(x̄(t)),π>W̃EG(t)〉︸ ︷︷ ︸
:=T1

+γ2L
2 E‖π>W̃G(t)‖2︸ ︷︷ ︸

:=T2

The first-order term T1 has a lower bound

T1 =nπ0〈∇f(x̄(t)), 1
nπ0
π>W̃EG(t)〉

=nπ0

(
‖∇f(x̄(t))‖2 + 〈∇f(x̄(t)), 1

nπ0
π>W̃EG(t) −∇f(x̄(t))〉

)
≥nπ0

(
1
2‖∇f(x̄(t))‖2 − 1

2‖
1
nπ0
π>W̃EG(t) −∇f(x̄(t))‖2

)
=nπ0

(
1
2et −

1
2n4 ‖

∑n
i=1

∑n
j=1(∇fj(x

(t−τij)
j )−∇fj(x̄(t)))‖2

)
≥nπ0

(
1
2et −

L2

2n2

∑n
i=1

∑n
j=1‖x

(t−τij)
j − x̄(t)‖2

)
≥nπ0

(
1
2et −

L2

2 Ξt

)
as a2 − 〈a, b〉 ≥ a2

2 −
b2

2 for a, b ≥ 0.

On the other hand, separate the stochastic part and deterministic part of T2 we have

T2 ≤2E‖π>W̃(G(t) − EG(t))‖2 + 2‖π>W̃EG(t)‖2.
Under Assumption B and Proposition VII, we know the first term

E‖π>W̃(G(t) − EG(t))‖2 ≤ nπ2
0 σ̄

2.

Consider the second term

‖π>W̃EG(t)‖2 =

∥∥∥∥∥∥π0

n

n∑
i=1

n∑
j=1

∇fj(x
(t−τij)
j )

∥∥∥∥∥∥
2

=n2π2
0

∥∥∥∥∥∥ 1

n2

n∑
i=1

n∑
j=1

∇fj(x
(t−τij)
j )−∇f(x̄(t)) +∇f(x̄(t))

∥∥∥∥∥∥
2

≤2n2π2
0

∥∥∥∥∥∥ 1

n2

n∑
i=1

n∑
j=1

(∇fj(x
(t−τij)
j )−∇fj(x̄(t)))

∥∥∥∥∥∥
2

+ 2n2π2
0

∥∥∥∇f(x̄(t))
∥∥∥2

≤2π2
0

n∑
i=1

n∑
j=1

∥∥∥∇fj(x(t−τij)
j )−∇fj(x̄(t))

∥∥∥2

+ 2n2π2
0

∥∥∥∇f(x̄(t))
∥∥∥2

Combine Assumption B we have

‖π>W̃EG(t)‖2 ≤ 2n2π2
0(L2Ξt + et).

Therefore, the T2 can be bounded as follows

T2 ≤ 4n2π2
0( σ̄

2

n + L2Ξt + et). (11)
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Gathering everything together

rt+1 ≤rt − γnπ0

2 (et − L2Ξt) + 2γ2Ln2π2
0( σ̄

2

n + L2Ξt + et)

≤rt − γnπ0

2 (1− 4γLnπ0)et + γL2nπ0(1 + 2γLnπ0)Ξt + 2γ2Lnπ2
0 σ̄

2

Let γ ≤ 1
8Lnπ0

, then

rt+1 ≤rt −
γnπ0

4
et + 2γL2nπ0Ξt + 2γ2Lnπ2

0 σ̄
2.

Next we bound the consensus distance
Lemma 18 (Bounded consensus distance). Under Assumption B,

1

T + 1

T∑
t=0

Ξt ≤
16C2m2

p2
γ2σ̄2 +

16C2m2

p2
γ2 1

T + 1

T∑
t=0

ek .

Proof. First bound the consensus distance by inserting Ȳ(t−m)

nΞt =E ‖Ȳ(t) −Y(t)‖2F ≤ E ‖(Ȳ(t) − Ȳ(t−m))− (Y(t) − Ȳ(t−m))‖2F
≤E ‖Y(t) − Ȳ(t−m)‖2F

where we used ‖A− Ā‖2F =
∑n
i=1 ‖ai − ā‖2 ≤

∑n
i=1 ‖ai‖2 = ‖A‖2F .

For t ≥ m unroll Y(t) until t−m.

nΞt ≤E

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃G(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

Separate stochastic part and deterministic part

nΞt ≤

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃EG(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

+ E

∥∥∥∥∥γ
t−1∑

k=t−m

Wt−1−kW̃(EG(k) −G(k))

∥∥∥∥∥
2

F

then let C2
1 defined in Definition G and use ‖AB‖2F ≤ ‖A‖2F ‖B‖2 and (10)

nΞt ≤

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃EG(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m

t−1∑
k=t−m

E
∥∥∥W̃(EG(k) −G(k))

∥∥∥2

F

≤

∥∥∥∥∥WmY(t−m) − γ
t−1∑

k=t−m

Wt−1−kW̃EG(k) − Ȳ(t−m)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2

Apply Cauchy-Schwartz inequality with α > 0

nΞt ≤(1 + α)
∥∥∥WmY(t−m) − Ȳ(t−m)

∥∥∥2

F
+ (1 + 1

α )

∥∥∥∥∥γ
t−1∑

k=t−m

Wt−1−kW̃EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2

Applying Lemma 1 to the first term

nΞt ≤(1 + α)(1− p)2m‖Y(t−m) − Ȳ(t−m)‖2F + (1 + 1
α )

∥∥∥∥∥γ
t−1∑

k=t−m

Wt−1−kW̃EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2
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Take α = ( 2−p
2−2p )2m − 1 = (1 + p

2−2p )2m − 1 ≥ mp
1−p and use

1 + 1
α ≤ 1 + 1−p

mp ≤ 1 + 1
mp ≤

2
p ,

then use ‖AB‖2F ≤ ‖A‖2F ‖B‖2

nΞt ≤
(

1− p

2

)2m

‖Y(t−m) − Ȳ(t−m)‖2F +
2

p

∥∥∥∥∥γ
t−1∑

k=t−m

Wt−1−kW̃EG(k)

∥∥∥∥∥
2

F

+ C2
1γ

2m2σ̄2

≤
(

1− p

2

)2m

‖Y(t−m) − Ȳ(t−m)‖2F +
2C2

1m

p
γ2

t−1∑
k=t−m

∥∥∥W̃EG(k)
∥∥∥2

F
+ C2

1γ
2m2σ̄2.

where the second term can be expanded by

‖W̃EG(k)‖2F =

n∑
i=1

∥∥∥∥∥∥ 1

n

n∑
j=1

∇fj(x
(k−τij)
j )

∥∥∥∥∥∥
2

=

n∑
i=1

∥∥∥∥∥∥ 1

n

n∑
j=1

∇fj(x
(k−τij)
j )−∇f(x̄(k)) +∇f(x̄(k))

∥∥∥∥∥∥
2

≤2

n∑
i=1

∥∥∥∥∥∥ 1

n

n∑
j=1

(∇fj(x
(k−τij)
j )−∇fj(x̄(k)))

∥∥∥∥∥∥
2

+ 2n
∥∥∥∇f(x̄(k))

∥∥∥2

≤ 2

n

n∑
i=1

n∑
j=1

∥∥∥∇fj(x(k−τij)
j )−∇fj(x̄(k))

∥∥∥2

+ 2n
∥∥∥∇f(x̄(k))

∥∥∥2

≤2nL2Ξk + 2nek

Combine and reduce the n on both sides

Ξt ≤
(

1− p

2

)2m

Ξt−m + 2C2
1m

2γ2 σ̄
2

n
+

4C2
1m

p
γ2

t−1∑
k=t−m

(L2Ξk + ek).

Unroll for t < m. For t < m, we can apply similar steps

nΞt ≤E

∥∥∥∥∥W(t)Y(0) − γ
t−1∑
k=0

Wt−1−kW̃G(k) − Ȳ(0)

∥∥∥∥∥
2

F

= E

∥∥∥∥∥γ
t−1∑
k=0

Wt−1−kW̃G(k)

∥∥∥∥∥
2

F

≤C2
1γ

2m

t−1∑
k=0

E
∥∥∥W̃G(k)

∥∥∥2

F
≤ 2C2

1mγ
2
t−1∑
k=0

(σ̄2 + nL2Ξk + nek).

Finally, sum over t

1

T + 1

T∑
t=0

Ξt ≤
(

1− p

2

)2m 1

T + 1

T∑
t=m

Ξt−m + 2C2
1m

2γ2 σ̄
2

n

+
4C2

1m

p
γ2 1

T + 1

(
T∑
t=m

t−1∑
k=t−m

(L2Ξk + ek) +

m−1∑
t=0

t−1∑
k=0

(L2Ξk + ek)

)

≤
(

1− p

2

)2m 1

T + 1

T∑
t=0

Ξt + 2C2
1m

2γ2 σ̄
2

n
+

4C2
1m

2

p

γ2

T + 1

T∑
t=0

(L2Ξk + ek).

by taking γ ≤ p
4CLm we have 4C2

1m
2

p γ2L2 ≤ p
4 , then rearrange the all of the Ξ terms

1

T + 1

T∑
t=0

Ξt ≤
16C2

1m
2

p

σ̄2

n
γ2 +

16C2
1m

2

p2
γ2 1

T + 1

T∑
t=0

ek
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We can use the lemmas for recursion and the descent in the consensus distance to conclude the
following theorem.
Theorem IX. Under Assumption A and Assumption B. For γ ≤ p

16C1Lm

1

T + 1

T∑
t=0

‖∇f(x̄(t))‖2 ≤16

(
2Lσ̄2r0

n(T + 1)

) 1
2

+ 2

(
16CLmσ̄
√
p

8r0

T + 1

) 2
3

+
16C1Lm

p

r0

T + 1

where C = C(W) is defined in Definition G and r0 = f(x(0))− f?. Alternatively, for any target
accuracy ε, 1

T+1

∑T
t=0 ‖∇f(x̄(t))‖2 ≤ ε after

O
(
σ̄2

nε2
+

Cmσ̄
√
pε3/2

+
C1m

pε

)
Lr0

iterations.
Remark 19. For gossip averaging [16], the rate with ζ2 = 0 is

O
(
σ̄2

nε2
+

√
mσ̄

√
pε3/2

+
m

pε

)
Lr0.

Proof. From Lemma 17 we know that for γ ≤ 1
8Lnπ0

rt+1 ≤rt −
γnπ0

4
et + 2γL2nπ0Ξt + 2γ2Lnπ2

0 σ̄
2.

Rearrange the terms and average over t

1

T + 1

T∑
t=0

et ≤
1

T + 1

T∑
t=0

(
4rt
γnπ0

− 4rt+1

γnπ0
) +

8L2

T + 1

T∑
t=0

Ξt + 8Lπ0γσ̄
2

≤ 1

T + 1

4r0

γnπ0
+

8L2

T + 1

T∑
t=0

Ξt + 8Lπ0γσ̄
2

On the other hand, from Lemma 18 for γ ≤ p
4C1Lm

we have

1

T + 1

T∑
t=0

Ξt ≤
16C2

1m
2

p

σ̄2

n
γ2 +

16C2
1m

2

p2
γ2 1

T + 1

T∑
t=0

ek.

Then

1

T + 1

T∑
t=0

et ≤
1

T + 1

4r0

γnπ0
+ 8L2 16C2

1m
2

p2
γ2

(
pσ̄2

n
+

1

T + 1

T∑
t=0

ek

)
+ 8Lπ0γσ̄

2

By taking γ ≤ p
16C1Lm

such that 8L2 16C2
1m

2

p2 γ2 ≤ 1
2 , then

1

T + 1

T∑
t=0

et ≤
1

T + 1

8r0

γnπ0
+ 16Lπ0γσ̄

2 +
162L2C2

1m
2

np
γ2σ̄2

Then applying Lemma 16 we have

1

T + 1

T∑
t=0

et ≤32

(
Lσ̄2r0

n(T + 1)

) 1
2

+ 2

(
16C1Lmσ̄√

np

8r0

nπ0(T + 1)

) 2
3

+
dr0

T + 1

where d = max{ 16C1Lm
p , 8Lnπ0} = 16C1Lm

p . As in Lemma 8,

C1 = C‖1π>Ĩ‖ = Cn
√
τmax + 1π0 ≤ Cn

√
nπ0.

We can further simplify it as

1

T + 1

T∑
t=0

et ≤32

(
Lσ̄2r0

n(T + 1)

) 1
2

+ 2

(
16CLmσ̄
√
p

8r0

T + 1

) 2
3

+
dr0

T + 1
.
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Table 6: Default experimental settings for Cifar-10/VGG-11

Dataset Cifar-10 [18]
Data augmentation random horizontal flip and random 32× 32 cropping
Architecture VGG-11 [17]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology SGP: time-varying exponential, RelaySGD: double binary trees, baselines: best of ring or double binary trees
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from [20]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate Tuned c.f. subsection C.1
LR decay /10 at epoch 150 and 180
LR warmup Step-wise linearly within 5 epochs, starting from 0
# Epochs 200
Weight decay 10−4

Normalization scheme no normalization layer

Repetitions 3, with varying seeds
Reported metric Worst result of any worker of the worker’s mean test accuracy over the last 5 epochs

B Detailed experimental setup

B.1 Cifar-10

Table 6

B.2 ImageNet

Table 7

Table 7: Default experimental settings for ImageNet

Dataset ImageNet [5]
Data augmentation random resized crop (224× 224), random horizontal flip
Architecture ResNet-20-EvoNorm [21, 20]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology SGP: time-varying exponential, RelaySGD: double binary trees, baselines: best of ring or double binary trees
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from [20]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate based on centralized training (scaled to 0.1× 32∗16

256 )
LR decay /10 at epoch 30, 60, 80
LR warmup Step-wise linearly within 5 epochs, starting from 0.1
# Epochs 90
Weight decay 10−4

Normalization layer EvoNorm [21]

Repetitions Just one
Reported metric Mean of all worker’s test accuracies over the last 5 epochs

B.3 BERT finetuning

Table 8

B.4 Random quadratics

We generate quadratics 1
n

∑n
i=1 fi(x) of x ∈ Rd where

fi(x) = ‖Aix + bi‖22.

Here the local Hessian Ai ∈ Rd×d control the shape of worker i’s local objective functions and the
offset bi ∈ Rd allows for shifting the worker’s optimum. The generation procedure is as follows:
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Table 8: Default experimental settings for BERT finetuning

Dataset AG News [49]
Data augmentation none
Architecture DistilBERT [34]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology restricted to a ring (chain for RelaySGD)
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from [20]

Batch size 32 patches per worker
Adam β1 0.9
Adam β2 0.999
Adam ε 10−8

Learning rate Tuned c.f. subsection C.3
LR decay constant learning rate
LR warmup no warmup
# Epochs 5
Weight decay 0
Normalization layer LayerNorm [3]

Repetitions 3, with varying seeds
Reported metric Mean of all worker’s test accuracies over the last 5 epochs

1. Sample Ai ∈ Rd×d from an i.i.d. element-wise standard normal distribution, independently
for each worker.

2. Control the smoothness L and strong-convexity constant µ. Decompose Ai = UiSiV
>
i

using Singular Value Decomposition, and replace Ai with Ai ← UiS̃iV
>
i , where S̃i ∈

Rd×d is a diagonal matrix with diagonal entries [µ, d−2
d−1µ+ 1

d−1L, . . . , L].

3. Control the heterogeneity ζ2 by shifting worker’s optima into random directions.
(a) Sample random directions di ∈ Rd from an i.i.d. element-wise standard normal

distributions, independently for each worker.
(b) Instantiate a scalar s← 1 and optimize it using binary search:
(c) Move local optima by sdi by setting bi ← Aisdi.
(d) Move all optima bi ← bi −Aix

? such that the global optimum x? remains at zero.
(e) Evaluate ζ2 = 1

n

∑n
i=1‖∇fi(x?)‖22 and adjust the scale factor s until ζ2 is as desired.

Repeat from step (c).
4. Control the initial distance to the optimum r0. Sample a random vector for the optimum

x? from an i.i.d. element-wise normal distribution and scale it to have norm r0. Shift all
worker’s optima in this direction by updating bi ← bi + Aix

?.

C Hyper-parameters and tuning details

C.1 Cifar-10

For our image classification experiments on Cifar-10, we have independently tuned learning rates
for each algorithm, at each data heterogeneity level α, and separately for SGD with and without
momentum. We followed the following procedure:

1. We found an appropriate learning rate for centralized (all-reduce) training (by using the
procedure below)

2. Start the search from this learning rate. For RelaySGD, we apply a correction computed as
in subsection D.1.

3. Grid-search the learning rate by multiplying and dividing by powers of two. Try larger and
smaller learning rates, until the best result found so far is sandwiched between two learning
rates that gave worse results.

4. Repeat the experiment with 3 random seeds.
5. If any of those replicas diverged, reduce the learning rate by a factor two until it does.

For the experiments in Table 1, we used the learning rates listed in Table 9.
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Table 9: Learning rates used for Cifar-10/ VGG-11. Numbers between parentheses indicate the
number of converged replications with this learning rate.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(most homogeneous) (most heterogeneous)

All-reduce fully connected 0.100 (3) 0.100 (3) 0.100 (3)
+momentum 0.100 (3) 0.100 (3) 0.100 (3)

RelaySGD binary trees 1.200 (3) 0.600 (3) 0.300 (3)
+local momentum 0.600 (3) 0.300 (3) 0.150 (3)

DP-SGD [19] ring 0.400 (3) 0.100 (3) 0.200 (3)
+quasi-global mom. [20] 0.100 (3) 0.025 (3) 0.050 (3)

D2 [36] ring 0.200 (3) 0.200 (3) 0.100 (3)
+local momentum 0.050 (3) 0.050 (3) 0.013 (3)

Stochastic gradient push [2] time-varying exponential [2] 0.400 (3) 0.200 (3) 0.200 (3)
+local momentum 0.100 (3) 0.100 (3) 0.025 (3)

C.2 ImageNet

Due to the high resource requirements, we did not tune the learning rate for our ImageNet experiments.
We identified a suitable learning rate based on prior work, and used this for all experiments. For
RelaySGD, we used the analytically computed learning rate correction from subsection D.1.

C.3 BERT finetuning

For DistilBERT fine-tuning experiments on AG News, we have independently tuned learning rate for
each algorithm. We search the learning rate in the grid of {1e− 5, 3e− 5, 5e− 5, 7e− 5, 9e− 5}
and we extend the grid to ensure that the best hyper-parameter lies in the middle of our search grids,
otherwise we extend our search grid.

For the experiments in Table 4, we used the learning rates listed in Table 10.

Table 10: Tuned learning rates used for AG News / DistilBERT (Table 4)

Algorithm Topology Learning rate

Centralized Adam fully-connected 3e-5
Relay-Adam chain 9e-4
DP-SGD Adam ring 1e-6
Quasi-global Adam [20] ring 1e-6

C.4 Random quadratics

For Figures 2 and 3, we tuned the learning rate for each compared method to reach a desired quality
level as quickly as possible, using binary search. We made a distinction between methods that are
expected to converge linearly, and methods that are expected to reach a plateau. For experiments with
stochastic noise, we tuned a learning rate without noise first, and then lowered the learning rate if
needed to reach a desirable plateau. Please see the supplied code for implementation details.

D Algorithmic details

D.1 Learning-rate correction for RelaySGD

In DP-SGD as well as all other algorithms we compared to, a gradient-based update u(t)
i from worker

i at time t will eventually, as t → ∞ distribute uniformly with weights 1
n over all workers. In

RelaySGD, the update also distributes uniformly (typically much quicker), but it will converge to a
weight α ≤ 1

n . The constant α is fixed throughout training and depends only on the network topology
used. To correct for this loss in energy, you can scale the learning rate by a factor 1

αn .

Experimentally, we pre-compute α for each architecture by initialing a scalar model for each worker
to zero, updating the models to 1, and running RelaySGD until convergence with no further model
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updates. The worker will converge to the value α. The correction factors that result from this
procedure are illustrated in Figure 6.
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Figure 6: This network-topology-dependent correction factor is computed as follows: Each
worker initializes a scalar model to 0 and sends a single fixed value 1 as gradient update through the
RelaySGD algorithm. For DP-SGD and all-reduce, workers would converge to 1, but for RelaySGD,
we lose some of this energy. If the workers converge to a value α, we will scale the learning rate with
1/α for RelaySGD compared to all-reduce.

In our deep learning experiments, we find that for each learning rate were centralized SGD converges,
RelaySGD with the corrected learning rate converges too. Note that this learning rate correction is
only useful if you already have a tuned learning rate from centralized experiments, or experiments
with algorithms such as DP-SGD. If you start from scratch, tuning the learning rate for RelaySGD is
no different form tuning the learning rate for any of the other algorithms.

D.2 RelaySGD with momentum

RelaySGD follows Algorithm 1, but replaces the local update in line 3 with a local momentum. For
Nesterov momentum with momentum-parameter α, this is:

m
(t)
i = αm

(t−1)
i +∇fi(x(t)

i ) (initialize m0
i = 0)

x
(t+1/2)
i = x

(t)
i − γ

(
∇fi(x(t)

i ) + αm
(t)
i

)
.

D.3 RelaySGD with Adam

Modifiying RelaySGD (Algorithm 1) to use Adam is analogous to RelaySGD with momentum
(subsection D.2). All Adam state is updated locally. We use the standard Adam implementation of
PyTorch 1.18.

D.4 D2 with momentum

We made slight modifications to the D2 algorithm from Tang et al. [36] to allow time-varying
learning rates and local momentum. The version we use is listed as Algorithm 2. Note that D2

requires the smallest eigenvalue of the gossip matrix W to be ≥ −1/3. This property is satisfied
for Metropolis-Hasting matrices used on rings and double binary trees, but it was not in our Social
Network Graph experiment (Figure 3). For this reason, we used the gossip matrix (W + I)/2, from
the otherwise-equivalent Exact Diffusion algorithm [45] on the social network graph.

D.5 Gradient Tracking

Algorithm 3 lists our implementation of Gradient Tracking from Lorenzo and Scutari [22].
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Algorithm 2 D2 [36] with momentum

Input: ∀ i, x(0)
i = x(0), learning rate γ, momentum α, gossip matrix W ∈ Rn×n, c(0)

i = 0 ∈ Rd.
1: for t = 0, 1, . . . do
2: for node i in parallel
3: Update the local momentum buffer m(t)

i = αm
(t−1)
i +∇fi(x(t)

i ).
4: Compute a local update u

(t)
i = −γ(∇fi(x(t)

i ) + αm
(t)
i ).

5: Update the local model x(t+1/2)
i = x

(t)
i + u

(t)
i + c

(t)
i .

6: Average with neighbors: x(t+1)
i =

∑
j∈Ni Wijx

(t+1/2)
j .

7: Update the local correction c
(t+1)
i = x

(t+1)
i − x

(t)
i − u

(t)
i .

8: end for
9: end for

Algorithm 3 Gradient Tracking [22]

Input: ∀ i, x(0)
i = x(0), learning rate γ, gossip matrix W ∈ Rn×n, c(0)

i = 0 ∈ Rd.
1: for t = 0, 1, . . . do
2: for node i in parallel
3: Compute a local update u

(t)
i = −γ∇fi(x(t)

i ).
4: Update the local model x(t+1/2)

i = x
(t)
i + u

(t)
i + c

(t)
i .

5: Average with neighbors: x(t+1)
i =

∑
j∈Ni Wijx

(t+1/2)
j .

6: Update the correction and average: c(t+1)
i =

∑
j∈Ni Wij

(
c

(t)
i − u

(t)
i

)
.

7: end for
8: end for

D.6 Stochastic Gradient Push with the time-varying exponential topology

Stochastic Gradient Push with the time-varying exponential topology from [2] demonstrates that
decentralized learning algorithms can reduce communication in a data center setting where each node
could talk to each other node. Algorithm 4 lists our implementation of this algorithm.

Algorithm 4 Stochastic Gradient Push with time-varying exponential topology [2]

Input: ∀ i, x(0)
i = x(0), learning rate γ, n = 2k workers, t′ = 0.

1: for t = 0, 1, . . . do
2: for node i in parallel
3: x

(t+1/2)
i = x

(t)
i + u

(t)
i −γ∇fi(x

(t)
i ). (or momentum/Adam, like RelaySGD)

4: for 2 communication steps to equalize bandwidth with RelaySGD do
5: Compute an offset o = 2t

′ mod k.
6: Send x

(t+1/2)
i to worker i− o.

7: Receive and overwrite x
(t+1/2)
i ← 1

2

(
x

(t+1/2)
i + x

(t+1/2)
i+o

)
.

8: t′ ← t′ + 1.
9: end for

10: Set x(t+1)
i = x

(t+1/2)
i .

11: end for
12: end for

E Additional experiments on RelaySGD

E.1 Rings vs double binary trees on Cifar-10

In our experiments that target data-center inspired scenarios where the network topology is arbitrarily
selected by the user to save bandwidth, RelaySGD uses double binary trees to communicate. They
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use the same memory and bandwidth as rings (2 models sent/received per iteration) but they delays
only scale with log n, enabling RelaySGD, in theory, to run with very large numbers of workers n.
Table 11 shows that in our Cifar-10 experiments with 16 there are minor improvements from using
double binary trees over rings. Our baselines DP-SGD and D2, however, perform significantly better
on rings than on trees, so we use those results in the main paper.

Table 11: Comparing the performance of the algorithms in Table 1 on rings and double binary trees
in the high-heterogeneity setting α = 0.01. In both topologies, workers send and receive two full
models per update step. With 16 workers, RelaySGD with momentum seems to benefit from double
binary trees, RelaySGD has more consistently good results on a chain. We still opt for double binary
trees based on their promise to scale to many workers. Other methods do not benefit from double
binary trees over rings.

Algorithm Ring (Chain for RelaySGD) Double binary trees

RelaySGD 86.5% 84.6%
+local momentum 88.4% 89.1%

DP-SGD [19] 53.9% 36.0%
+quasi-global mom. [20] 63.3% 57.5%

D2 [36] 38.2% did not converge
+local momentum 61.0% did not converge

E.2 Scaling the number of workers on Cifar-10

In this experiment (Table 12), use momentum-SGD on 16, 32 and 64 workers compare the scaling
of RelaySGD to SGP [2]. We fix the parameter α that determines the level of data heterogeneity to
α = 0.01. Note that this level of α could lead to more challenging heterogeneity when there are many
workers (and hence many smaller local subsets of the data), compared to when there are few workers.

Table 12: Scaling the number of workers in heterogeneous Cifar-10. The heterogeneity level
α = 0.01 is kept constant, although it does change its meaning when the number of workers changes.
RelaySGD scales at least well as Stochastic Gradient Push [2] (with equal communication budget).
It is surprising that RelaySGD with 64 workers performs significantly better on a chain topology
than on the double binary trees. This behavior does not match what our observations on quadratic
toy-problems.

Algorithm Topology 16 workers 32 workers 64 workers

All-reduce (baseline) fully connected 89.5% 88.9% 87.2%

RelaySGD binary trees 89.3% 86.1% 63.7%
chain 88.4% 86.6% 83.1%

Stochastic gradient push [2] time-varying exponential [2] 87.0% 68.9% 62.4%

Table 13: Tuned learning rates for Table 12. We tuned the learning rate for each setting on a
multiplicative grid with spacing

√
2, and then repeated each experiment 3 times. If both repetitions

diverged, we would change to a smaller learning rate in the grid. Numbers in parentheses are the
‘effective’ learning rates corrected according to subsection D.1.

Algorithm Topology 16 workers 32 workers 64 workers

All-reduce (baseline) fully connected 0.1 (0.100) 0.05 (0.050) 0.05 (0.050)

RelaySGD binary trees 0.282 (0.066) 0.2 (0.035) 0.2 (0.027)
chain 0.2 (0.047) 0.4 (0.070) 0.8 (0.108)

Stochastic gradient push [2] time-varying exp. 0.025 (0.025) 0.025 (0.025) 0.0125 (0.013)

E.3 Independence of heterogeneity

The benefits of RelaySGD over some other methods shows most when workers have heterogeneous
training objectives. Figure 7 compares several algorithms with varying levels of data heterogeneity
on synthetic quadratics on a ring topology with 32 workers. Like D2, RelaySGD converges linearly,
and does not require more steps when the data becomes more heterogeneous. Note that, even though
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RelaySGD operates on a chain network instead of a ring, it is as fast as D2. On other topologies,
such as a star topology, or on trees, RelaySGD can even be faster than D2 (see Appendix E.4), while
maintaining the same independence of heterogeneity.
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Figure 7: Random quadratics on ring networks of size 32 with varying data heterogeneity ζ2 and
all other theoretical quantities fixed. To simulate stochastic noise, we add random normal noise to
each gradient update. For each method, the learning rate is tuned to reach suboptimality ≤ 10−6 the
fastest. RelaySGD operates on a chain network instead of a ring. Like D2, it does not require more
steps when the worker’s objectives are more heterogeneous.

E.4 Star topology

On star-topologies, the set of neighbors of worker 0 is {1, 2, . . . , n} and the set of neighbors for every
other worker is just {0}. While D2 and RelaySGD are equally fast in the synthetic experiments on
ring topologies in subsection E.3, RelaySGD is significantly faster on star topologies as illustrates by
Figure 8.
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Figure 8: Random quadratics on star networks of size 32 with varying data heterogeneity ζ2 and all
other theoretical quantities fixed. For each method, the learning rate is tuned to reach suboptimality
≤ 10−6 the fastest. Like D2, RelaySGD does not require more steps when the worker’s objectives
are more heterogeneous. Note that for ζ2 = 0 (left figure), our tuning procedure found a learning rate
where Gradient Tracking does converge to <≤ 10−6, but does not converge linearly. It would with a
lower learning rate.

F RelaySum for distributed mean estimation

We conceptually separate the optimization algorithm RelaySGD from the communication mechanism
RelaySum that uniformly distributes updates across a peer-to-peer network. We made this choice
because we envision other applications of the RelaySum mechanism outside of optimization for
machine learning. To illustrate this point, this section introduces RelaySum for Distributed Mean
Estimation (Algorithm 5).

In distributed mean estimation, workers are connected in a network just as in our optimization setup,
but instead of models gradients, they receive samples d̂(t) ∼ D of the distribution D at timestep t.
The workers estimate the mean d̄ the mean of D, and we measure their average squared error to the
true mean.
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Algorithm 5 RelaySum for Distributed Mean Estimation

Input: ∀ i, x(0)
i = 0,y

(0)
i = 0, s

(0)
i = 0; ∀ i, j,m(−1)

i→j = 0, tree network
1: for t = 0, 1, . . . do
2: for node i in parallel
3: for each neighbor j ∈ Ni do
4: Get a sample d̂

(t)
i ∼ D.

5: Send m
(t)
i→j = d̂

(t)
i +

∑
k∈Ni\jm

(t−1)
k→i .

6: Send c(t)i→j = 1 +
∑
k∈Ni\j c

(t−1)
k→i .

7: Receive m
(t)
j→i and c(t)j→i from node j.

8: end for
9: Update the sum of samples y(t+1)

i = y
(t)
i + d̂

(t)
i +

∑
j∈Ni m

(t)
j→i.

10: Update the sum of counts s(t+1)
i = s

(t)
i + 1 +

∑
j∈Ni c

(t)
j→i.

11: Output average estimate x
(t)
i = y

(t)
i /s

(t)
i

12: end for
13: end for
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Figure 9: RelaySum for Distributed Mean Estimation compured to a gossip-based baseline, on a
ring topology (chain for RelaySGD). Workers receive samples from a normal distribution N (1, 1)
with mean 1. RelaySum, using Algorithm 5 achieves a variance reduction of O

(
1
nT

)
.

In algorithm 5, the output estimates x(t)
i of a worker i is a uniform average of all samples that can

reach a worker i at that timestep. This algorithm enjoys variance reduction of O
(

1
nT

)
, a desirable

property that is in general not shared by gossip-averaging-based algorithms on arbitrary graphs.

In Figure 9, we compare this algorithm to a simple gossip-based baseline.

G Alternative optimizer based on RelaySum

Apart from RelaySGD presented in the main paper, there are other ways to build optimization
algorithms based on the RelaySum communication mechanism. In this section, we describe Re-
laySGD/Grad (Algorithm 6), an alternative to RelaySGD that does uses the RelaySum mechanism on
gradient updates rather than on models.

RelaySGD/Grad distributes each update uniformly over all workers in a finite number of steps. This
means that worker’s models differ by only a finite number of O(τmaxmaxn) that are scaled as 1

n .
With this property, it achieves tighter consensus than typical gossip averaging, and it also works well
in deep learning. Contrary to RelaySGD, however, this algorithm is not fully independent of data
heterogeneity, due to the delay in the updates. When the data heterogeneity ζ2 > 0, RelaySGD/Grad
does not converge linearly, but its suboptimality saturates at a level that depends on ζ2.

The sections below study this alternative algorithm in detail, both theoretically and experimentally.
The key differences between RelaySGD and RelaySGD/Grad are:
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RelaySGD RelaySGD/Grad

Provably independent of data heterogeneity ζ2 yes no
Distributes updates exactly uniform in finite steps no yes
Loses energy of gradient updates (subsection D.1) yes no
Works experimentally with momentum / Adam yes no
Robust to lost messages + can support workers joining/leaving yes no

Algorithm 6 RelaySGD/Grad

Input: ∀ i, x(0)
i = x(0); ∀ i, j,m(−1)

i→j = 0, learning rate γ, tree network
1: for t = 0, 1, . . . do
2: for node i in parallel
3: u

(t)
i = −γ∇fi(x(t)

i , ξ
(t)
i )

4: for each neighbor j ∈ Ni do
5: Send m

(t)
i→j = u

(t)
i +

∑
k∈Ni\jm

(t−1)
k→i .

6: Receive m
(t)
j→i from node j.

7: end for
8: x

(t+1)
i = x

(t)
i + 1

n

(
u

(t)
i +

∑
j∈Ni m

(t)
j→i

)
9: end for

10: end for

G.1 Theoretical analysis of RelaySGD/Grad

In this section we provide the theoretical analysis for RelaySGD/Grad. As the proof and analysis is
very similar to [16], we only provide the case for the convex objective.

G.1.1 Proof of RelaySGD/Grad for the convex case

Let x? be the minimizer of f and define the following iterates

• rt := E ‖x̄(t) − x?‖2,

• et := f(x̄(t))− f(x?),

• Ξt := 1
n

∑n
i=1 ‖x

(t)
i − x̄(t)‖2.

Proposition X. Let function Fi(x, ξ), i ∈ [n] be L-smooth (Assumption A) with bounded noise at
the optimum (Assumption H). Then for any xi ∈ Rd,

Eξt1,...,ξtn

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(x(t)
i )−∇Fi(x(t)

i , ξ
(t)
i ))

∥∥∥∥∥
2

≤ 3
n (L2Ξt + 2Let + σ̄2)
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Proof. In this proof we ignore the superscript t as it does not raise embiguity.

Eξ1,...,ξn

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(xi)−∇Fi(xi, ξi))

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

Eξi ‖∇fi(xi)−∇Fi(xi, ξi)‖2

=
1

n2

n∑
i=1

Eξi ‖∇fi(xi)−∇Fi(xi, ξi)±∇Fi(x̄, ξi)±∇fi(x̄)±∇Fi(x?, ξi)±∇fi(x?)‖2

≤ 3

n2

n∑
i=1

Eξi
(
‖∇fi(xi)−∇fi(x̄) +∇Fi(x̄, ξi)−∇Fi(xi, ξi)‖2

+ ‖∇fi(x̄)−∇fi(x?) +∇Fi(x?, ξi)−∇Fi(x̄, ξi)‖2 + ‖∇fi(x?)−∇Fi(x?,xi)‖2)

≤ 3

n2

n∑
i=1

Eξi(‖∇Fi(xi, ξi)−∇Fi(x̄, ξi)‖2 + ‖∇Fi(x̄, ξi)−∇Fi(x?, ξi)‖2 + ‖∇Fi(x?,xi)−∇fi(x?)‖2)

≤ 3

n2

n∑
i=1

(L2‖xi − x̄‖2 + 2L(fi(x̄)− fi(x?)) + σ2
i )

Lemma 20. (Descent lemma for convex objective.) If γ ≤ 1
10L , then

rt+1 ≤ (1− γµ
2 )rt − γet + 3γLΞt + 3

nγ
2σ̄2.

Proof. Throughout this proof we use E = Eξt1,...,ξtn . Expand iterate rt+1 = E ‖x̄(t+1) − x?‖2

E ‖x̄(t+1) − x?‖2

=E ‖x̄(t) − γ
n

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i )± γ

n

∑n
i=1∇fi(x

(t)
i )− x?‖2

=‖x̄(t) − x? − γ
n

∑n
i=1∇fi(x

(t)
i )‖2 + E ‖ γn

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i )− γ

n

∑n
i=1∇fi(x

(t)
i )‖2

+ 2E〈x̄(t) − x? − γ
n

∑n
i=1∇fi(x

(t)
i ), γn

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i )− γ

n

∑n
i=1∇fi(x

(t)
i )〉

=‖x̄(t) − x? − γ
n

∑n
i=1∇fi(x

(t)
i )‖2 + E ‖ γn

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i )− γ

n

∑n
i=1∇fi(x

(t)
i )‖2

The second term is bounded by Proposition X. Consider the first term

‖x̄(t) − x? − γ
n

∑n
i=1∇fi(x

(t)
i )‖2

≤‖x̄(t) − x?‖2 + γ2 ‖ 1
n

∑n
i=1∇fi(x

(t)
i )‖2︸ ︷︷ ︸

=:T1

−2γ 〈x̄t − x?, 1
n

∑n
i=1∇fi(x

(t)
i )〉︸ ︷︷ ︸

=:T2

.

First consider T1,
T1 = ‖ 1

n

∑n
i=1(∇fi(x(t)

i )−∇fi(x̄(t)) +∇fi(x̄(t))−∇fi(x?))‖2

≤ 2L2

n

∑n
i=1 ‖x

(t)
i − x̄(t)‖2 + 2

n

∑n
i=1 ‖∇fi(x̄(t))−∇fi(x?)‖2

(5)
≤ 2L2

n

∑n
i=1 ‖x

(t)
i − x̄(t)‖2 + 4L

n

∑n
i=1(fi(x̄

(t))− fi(x?)− 〈x̄(t) − x?,∇fi(x?)〉)

= 2L2

n

∑n
i=1 ‖x

(t)
i − x̄(t)‖2 + 4L(f(x̄(t))− f(x?))

= 2L2Ξt + 4Let.

Consider T2,
T2 = 1

n

∑n
i=1(〈x̄(t) − x

(t)
i ,∇fi(x(t)

i )〉+ 〈x(t)
i − x?,∇fi(x(t)

i )〉)

≥ 1
n

∑n
i=1

(
fi(x̄

(t))− fi(x(t)
i )− L

2 ‖x̄
(t) − x

(t)
i ‖2 + 〈x(t)

i − x?,∇fi(x(t)
i )〉

)
≥ 1

n

∑n
i=1

(
fi(x̄

(t))− fi(x(t)
i )− L

2 ‖x̄
(t) − x

(t)
i ‖2 + fi(x

(t)
i )− fi(x?) + µ

2 ‖x
(t)
i − x?‖2

)
= f(x̄(t))− f(x?) + 1

n

∑n
i=1

(
µ
2 ‖x

(t)
i − x?‖2 − L

2 ‖x̄
(t) − x

(t)
i ‖2

)
≥ f(x̄(t))− f(x?) + 1

n

∑n
i=1

(
µ
4 ‖x̄

(t) − x?‖2 − µ+L
2 ‖x̄

(t) − x
(t)
i ‖2

)
≥ et + µ

4 rt − LΞt
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where the first inequality and the second inequality uses the L-smoothness and µ-convexity of fi.

Combine both T1, T2 and Proposition X we have

rt+1 ≤ rt + γ2(2L2Ξt + 4Let)− 2γ(et + µ
4 rt − LΞt) + 3

nγ
2(L2Ξt + 2Let + σ̄2)

= (1− γµ
2 )rt − 2γ(1− 5Lγ)et + γL(5γL+ 2)Ξt + 3

nγ
2σ̄2.

In addition if γ ≤ 1
10L , then

rt+1 ≤ (1− γµ
2 )rt − γet + 3γLΞt + 3

nγ
2σ̄2.

Lemma 21. Bound the consensus distance as follows

Ξt ≤ 3γ2τmax

∑t−1
t′=[t−τmax]+

(
2L2Ξt′ + 4Let′ + (σ̄2 + ζ̄2)

)
.

Furthermore, multiply with a non-negative sequence {wt}t≥0 and average over time gives

1
WT

∑T
t=0 wtΞt ≤

1
6LWT

∑T
t=0 wtet + 6γ2τmax

2(σ̄2 + ζ̄2)

where WT :=
∑T
t=0 wt and γ ≤ 1

10Lτmax
.

Proof. Throughout this proof we use E = Eξt1,...,ξtn . Denote [x]+ := max{x, 0}. For all i ∈ [n],

E‖eti‖2 =E‖ γn
∑n
j=1

∑t−1
t′=[t−τmaxij ]

+ ∇Fj(x(t′)
j , ξ

(t′)
j )±∇fj(x(t′)

j )‖2

≤γ
2

n

∑n
j=1 E‖

∑t−1
t′=[t−τmaxij ]

+ ∇Fj(x(t′)
j , ξ

(t′)
j )±∇fj(x(t′)

j )‖2

≤γ
2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+ E‖∇Fj(x(t′)

j , ξ
(t′)
j )±∇fj(x(t′)

j )‖2

=γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+ E‖∇Fj(x(t′)

j , ξ
(t′)
j )−∇fj(x(t′)

j )‖2

+ γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+‖∇fj(x

(t′)
j )‖2︸ ︷︷ ︸

=:T3

We can apply Proposition X to the first term

γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+ E‖∇Fj(x(t′)

j , ξ
(t′)
j )−∇fj(x(t′)

j )‖2 ≤ 3γ2τmax

∑t−1
t′=[t−τmax]+(L2Ξt′ + 2Let′ + σ̄2).

The second term T3 can be bounded by adding 0 = ±∇fj(x̄(t′))±∇fj(x?) inside the norm

T3 ≤ γ2τmax

n

∑n
j=1

∑t−1
t′=[t−τmax]+‖∇fj(x

(t′)
j )±∇fj(x̄(t′))±∇fj(x?)‖2

≤ 3γ2τmax

n

∑n
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(
L2‖x(t′)
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)
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(
L2Ξt′ + 1

n

∑n
j=1‖∇fj(x̄(t′))−∇fj(x?)‖2 + ζ̄2

)
(5)
≤ 3γ2τmax

∑t−1
t′=[t−τmax]+

(
L2Ξt′ + 2L(f(x̄(t′))− f(x?)) + ζ̄2

)
Therefore

E‖eti‖2 ≤3γ2τmax

∑t−1
t′=[t−τmax]+(2L2Ξt′ + 4Let′ + (σ̄2 + ζ̄2)).

Average over i on both sides and note the right hand side does not depend on index i,

Ξt = 1
n

∑n
i=1 ‖eti‖2 ≤ 3γ2τmax

∑t−1
t′=[t−τmax]+

(
2L2Ξt′ + 4Let′ + σ̄2

)
.

Multiply both sides by wt and sum over t gives

1
WT

∑T
t=0 wtΞt ≤

3γ2τmax
2

WT

∑T
t=0 wt

(
2L2Ξt + 4Let + σ̄2

)
= 6γ2L2τmax

2

WT

∑T
t=0 wtΞt + 12γ2Lτmax

2

WT

∑T
t=0 wtet + 3γ2τmax(σ̄2 + ζ̄2)
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where WT :=
∑T
t=0 wt. Rearrage the terms and let γ ≤ 1

10Lτmax
give

1
WT

∑T
t=0 wtΞt ≤

1

1− 6γ2L2τmax
2

(
12γ2Lτmax

2

WT

∑T
t=0 wtet + 3γ2τmax

2

n (σ̄2 + ζ̄2)
)

≤ 1
6LWT

∑T
t=0 wtet + 6γ2τmax

2(σ̄2 + ζ̄2)

Theorem XI. For convex objective, we have

1

T + 1

T∑
t=0

(
f(x̄(t))− f(x?)

)
≤ 4

(
3σ̄2r0

n(T + 1)

) 1
2

+ 4

(
6τmax

√
L(σ̄2 + ζ̄2)r0

T + 1

) 2
3

+
10L(τmax + 1)r0

T + 1
.

where r0 = ‖x0 − x?‖2.

Remark 22. For target accuracy ε > 0, then 1
T+1

∑T
t=0

(
f(x̄(t))− f(x?)

)
< ε after

O

(
σ̄2r0

nε2
+
τmax

√
L(σ̄2 + ζ̄2)r0

ε3/2
+

10L(τmax + 1)r0

ε

)
iterations. This result is similar to [16, Theorem 2] except that here we replace spectral gap p with
the inverse of maximum delay 1

τmax
.

Proof. Consider Lemma 20 and multiply both sides with wt
γ and average over time

1
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n

where the second inequality comes from Lemma 21. Then
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We can further consider

3L
WT

∑T
t=0 wtΞt = 1

2WT

∑T
t=0 wtet + 18τmax

2L(σ̄2 + ζ̄2)γ2

≤ 1
WT

∑T
t=0(wtγ rt −

wt
γ rt+1 + 3σ̄2

n γ + 36τmax
2L(σ̄2 + ζ̄2)γ2) =: ΨT .

Taking {wt = 1}t≥0, then
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Apply Lemma 16 we have
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where d = max{10L, 10Lτmax} ≤ 10L(τmax + 1) and at the same time
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Table 14: Comparing RelaySGD/Grad with RelaySGD on Cifar-10 [17] with the VGG-11 architec-
ture. We vary the data heterogeneity α [20] between 16 workers. For low-heterogeneity cases and
without momentum, RelaySGD/Grad sometimes performs better than RelaySGD.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(most homogeneous) (most heterogeneous)

All-reduce (baseline) fully connected 87.0% 87.0% 87.0%
+momentum 90.2% 90.2% 90.2%

RelaySGD chain 87.3% 87.2% 86.5%
+local momentum 89.5% 89.2% 88.4%

RelaySGD/Grad chain 88.8% 88.5% 83.5%
+local momentum 86.9% 87.8% 68.6%
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Figure 10: Comparing RelaySGD/Grad against RelaySGD on random quadratics with varying levels
of heterogeneity ζ2, without stochastic noise, on a ring/chain of 32 nodes. Learning rates are tuned to
reach suboptimality ≤ 10−6 as quickly as possible. In contrast to RelaySGD, RelaySGD/Grad with a
fixed learning rate does not converge linearly. Compared to DP-SGD (Gossip), RelaySGD/Grad is
still less sensitive to data heterogeneity.

G.2 Empirical analysis of RelaySGD/Grad

In Table 14, we compare RelaySGD/Grad to RelaySGD on deep-learning based image classification
on Cifar-10 with VGG-11. Without momentum, and with low levels of heterogeneity, RelaySGD/Grad
sometimes outperforms RelaySGD.

Figure 10 illustrates a key difference between RelaySGD/Grad and RelaySGD. While RelaySGD
behaves independently of heterogeneity, and converges linearly with a fixed step size, RelaySGD/Grad
reaches a plateau based on the learning rate and level of heterogeneity.
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