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Abstract
Partially View-aligned Clustering (PVC) presents a challenge as
it requires a comprehensive exploration of complementary and
consistent information in the presence of partial alignment of view
data. Existing PVC methods typically learn view correspondence
based on latent features that are expected to contain common se-
mantic information. However, latent features obtained from hetero-
geneous spaces, along with the enforcement of alignment into the
same feature dimension, can introduce cross-view discrepancies.
In particular, partially view-aligned data lacks sufficient shared
correspondences for the critical common semantic feature learn-
ing, resulting in inaccuracies in establishing meaningful correspon-
dences between latent features across different views. While fea-
ture representations may differ across views, instance relationships
within each view could potentially encode consistent common se-
mantics across views. Motivated by this, our aim is to learn view
correspondence based on graph distribution metrics that capture
semantic view-invariant instance relationships. To achieve this,
we utilize similarity graphs to depict instance relationships and
learn view correspondence by aligning semantic similarity graphs
through optimal transport with graph distribution. This facilitates
the precise learning of view alignments, even in the presence of
heterogeneous view-specific feature distortions. Furthermore, lever-
aging well-established cross-view correspondence, we introduce
a cross-view contrastive learning to learn semantic features by
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exploiting consistency information. The resulting meaningful se-
mantic features effectively isolate shared latent patterns, avoiding
the inclusion of irrelevant private information. We conduct ex-
tensive experiments on several real datasets, demonstrating the
effectiveness of our proposed method for the PVC task.
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• Theory of computation → Unsupervised learning and clus-
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1 Introduction
In multimedia applications, datasets frequently incorporate diverse
feature representations, including images, text, and videos for each
sample. These various representations are collectively known as
multi-view data. Multi-View Clustering (MVC) is aimed at improv-
ing performance by leveraging the inherent consistency and com-
plementary attributes within multi-view data [9, 21, 28, 34, 55].
While various approaches have empirically demonstrated success
in addressing the MVC task with different strategies [4, 13, 25, 35,
39, 40, 43, 45], the effectiveness of existing MVC methods relies
on the idealized assumption that every view is perfectly aligned.
In reality, this assumption can be easily violated during imperfect
data collection, where only a portion of samples exhibit alignment
across views. This leads to the problem of partially view-aligned
clustering (PVC), as shown in Fig. 1. There is a critical need for
models that can precisely learn view correspondences, such that

https://doi.org/10.1145/3664647.3681048
https://doi.org/10.1145/3664647.3681048


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Xibiao Wang et al.

consistent and complementary information can be exploited within
partially aligned multi-view data.

Recently, several methods have been proposed to tackle the chal-
lenges of PVC [8, 12, 38, 50]. For example, Huang et al. introduced a
differentiable surrogate of the Hungarian algorithm within a deep
learning framework to establish correspondences for view align-
ment between two views [8]. In addition, Yang et al. developed
a view alignment representation learning model that learns view
correspondences employing a noise-robust contrastive loss [48].
While existing PVC methods have achieved remarkable success,
they primarily rely on the Euclidean distances between latent fea-
ture representations in pairs of views to establish view correspon-
dences. However, these approaches assume that the learned latent
features should encode consistent common semantics across views.
In practice, latent features are often learned from different hetero-
geneous feature spaces, introducing the possibility of inconsistent
view-private information. Forcing multiple views into the same
feature space dimension can exacerbate cross-view discrepancies.
Furthermore, when only a subset of samples exhibits across-view
alignment, there may be insufficient shared information for the
critical common semantic feature learning required for accurate
correspondence. Consequently, directly measuring view differences
and correspondences from inconsistent latent spaces can intro-
duce discrepancies, hindering the accurate inference of cross-view
sample correspondences based solely on latent representations.

While feature representations may exhibit divergence across
views, the instance relationships within each view often main-
tain consistency and are considered to encode more reliable view-
invariant information. Consequently, effectively capturing such se-
mantic view-invariant instance relationships can provide a promis-
ing approach for learning view correspondence. Inspired by this
insight, we introduce graph distribution-matched contrastive learn-
ing for partially view-aligned clustering. This method aims to learn
view correspondence utilizing graph distribution metrics that ac-
curately capture semantic view-invariant instance relationships.
Moreover, it leverages well-learned view-alignment to exploit con-
sistency and complementary information, thereby effectively learn-
ing meaningful semantic features. Specifically, as depicted in Fig. 1,
our method estimates similarity graphs on latent features to cap-
ture instance relationships for each view. Notably, different views
tend to produce similar graphs even when they are derived from
view-specific latent features. Leveraging these semantic-invariant
structural information across views, we employ optimal transport
with graph distribution to precisely establish view alignment by
matching these structural graph similarities. To further enhance
clustering performance, it is crucial to leverage consistent infor-
mation across views by exploiting learned correspondences. As
discussed previously, latent spaces may contain irrelevant view-
specific signals, and directly applying consistency learning to these
latent spaces may result in the dominance of such signals over
meaningful semantics. To address this challenge, we propose a fea-
ture extraction strategy that focuses on learning semantic features
associated with similarity graphs for each view. Additionally, we
introduce a contrastive cross-view feature learning approach in con-
junction with semantic feature learning to guide the exploitation of
consistency based on the learned alignment. This contrastive cross-
view feature learning approach effectively isolates shared latent
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Figure 1: This example illustrates the partially view-aligned
problem and our proposed solution. Different shapes rep-
resent instances from different views. Solid lines indicate a
small portion of given view correspondence between samples.
However, most correspondence relationships (dashed lines)
are missing, reflecting partial alignment. Our method learns
the view-alignment matrix to capture complete correspon-
dence. We achieve this by measuring differences between
learned graphs from the two views via correspondence learn-
ing.

patterns and mitigates the capture of irrelevant private information,
by leveraging the view-alignment learning. As a result, the learned
meaningful semantic features optimally harness multi-view con-
sistency, leading to improved multi-view clustering performance.

The main contributions of this work could be summarized as
follows:• Diverging significantly from the conventional reliance on la-

tent feature spaces with Euclidean distances, we introduce a
novel perspective by leveraging similarity graphs to capture
semantic-invariant structural information across views and
propose a graph distribution-matched approach, precisely
establishing view alignment through effectively matching
of these structural graph similarities.

• To leverage the well-established cross-view correspondence,
we introduce a cross-view contrastive loss along with learn-
ing semantic features to exploit consistency information.
The acquired meaningful semantic features effectively iso-
late shared latent patterns, avoiding the capture of irrelevant
private information.

• A comprehensive model analysis study illustrates the de-
tailed effectiveness of our approach. The results confirm that
the proposed approach effectively addresses the challenge of
learning precise view correspondences in partially aligned
multi-view data.

2 Related Work
Multi-view clustering (MVC) aims to leverage the consistency and
complementarity information present in diverse views, leading to
the development of various methodologies based on different as-
sumptions [6, 19, 27, 32, 48]. For instance, Li et al. proposed the
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Figure 2: The architecture depicts our model processing partially view-aligned multi-view data {X𝑣}𝑚
𝑣=1. Each view passes

through view-specific autoencoders to learn latent features {Z𝑣}𝑚
𝑣=1, regularized by a contrastive loss L𝑐𝑙 over known sample

correspondences. Leveraging the cross-view alignment matrix P from our matching module, we generate semantic features
{Z̃𝑣}𝑚

𝑣=1 (via F ) anchored by an aligned contrastive loss L𝑎𝑐𝑐 . This extracts meaningful signals to improve representation
learning. The alignment module matches structural similarity graphs and thus learn precise view correspondences based on
distribution distance metrics invariant to view semantics.

Deep Adversarial MVC method, employing adversarial training to
enhance the understanding of intrinsic structures withinmulti-view
data [13]. Meanwhile, Yang et al. developed a collaborative MVC
approach, employing inter-view collaborative learning to harness
complementary information across multiple clustering tasks [49].
Yan et al. introduced a global and cross-view feature aggregation
method, known as GCFagg [46], for learning global similarity rela-
tionships among samples. This method utilizes contrastive learning
to align view-specific representations with a consensus representa-
tion.

While these approaches have shown promise in multi-view clus-
tering, they often rely on assumptions of complete and perfectly
aligned views. In real-world scenarios, these assumptions may be
violated, leading to challenges in Incomplete Multi-View Cluster-
ing (IMVC) and Partially View-Aligned Clustering (PVC). IMVC
assumes the potential absence of some instances in certain views
within the dataset, and IMVC methods aim to address the challenge
of missing views [15, 16, 18, 36, 42]. For example, Xu et al. employed
generative adversarial networks (GANs) to recover missing data
[44], and Liu et al. proposed a graph completion approach for infer-
ring similarity graphs for missing views [17]. Additionally, Tang
et al. introduced a unified framework with theoretical guarantees,
aiming to simultaneously extract semantically consistent imputa-
tions and minimize the risk of clustering performance degradation
caused by semantically inconsistent imputations [30].

In addition to MVC and IMVC, PVC focuses on establishing
cross-view correspondences, with several approaches emerging to
tackle this problem [8, 12, 38, 52, 54]. For instance, Huang et al.
introduced a differentiable surrogate of the Hungarian algorithm
within a deep learning framework to establish correspondences for

view alignment [8], and Yang et al. developed a view alignment rep-
resentation learning model that learns view correspondences using
a noise-robust contrastive loss [48]. Moreover, Yang et al. proposed
a novel contrastive learning method, termed robust Multi-View
Clustering with Incomplete Information (SURE), which addresses
both IMVC and PVC challenges under a unified framework [47].

In contrast to existing PVC methods that rely on Euclidean dis-
tances between feature representations, this work introduces an
optimal transport-based graph matching approach to address the
challenges inherent in PVC. Optimal transport, a foundational tool
for quantifying similarity between distributions. It has been success-
fully applied in a variety of domains, demonstrating its versatility
and effectiveness, including feature aggregation [22], object detec-
tion [5], and domain adaptation [11, 23]. By determining the most
efficient redistribution of mass, optimal transport facilitates the
assessment of distribution alignment. By integrating optimal trans-
port into measuring view graph similarities for graph matching, the
proposed approach constructs cross-view correspondences from a
graph matching perspective, offering a novel viewpoint in the PVC
domain.

3 Methodology
3.1 Problem Formulation
Consider a partially view-aligned dataset denoted as {X𝑣}𝑚

𝑣=1, con-
sisting of 𝑛 instances across𝑚 views. The dataset can be divided
into two distinct subsets: aligned data and unaligned data. Subse-
quently, an index set Ω is introduced to represent the sample indices
of the aligned data. The primary objective is to align the unaligned
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data by leveraging the information from the aligned subset and im-
prove the clustering performance by exploiting the complementary
and consistency information with the well-established cross-view
correspondence.

Autoencoder networks serve as foundational tools for trans-
forming raw input features into latent representations, thereby
facilitating unsupervised clustering. To initiate this process, we em-
ploy view-specific autoencoders to obtain latent feature represen-
tations for each view. Specifically, for each view, given the original
data X𝑣 , we utilize an encoder network E𝑣 to learn latent features:
Z𝑣 = E𝑣 (X𝑣). Subsequently, a decoder network D𝑣 is applied to
reconstruct data based on these latent features: X̂𝑣 = D𝑣 (Z𝑣). Here,
X̂𝑣 represents the reconstruction of X𝑣 for the 𝑣-th view. To pre-
serve view-specific information within the latent representations
during the reconstruction process, a reconstruction loss is intro-
duced to measure the disparity between the original data and their
corresponding reconstructions, and it can be expressed as:

L𝑟 =

𝑚∑︁
𝑣=1



X𝑣 − X̂𝑣

2
𝐹
. (1)

Motivation. MVC is capable of leveraging the inherent consis-
tency and complementary information present in various views.
However, in the context of PVC, only a subset of the data exhibits
alignment across views. Therefore, a crucial step in the PVC task is
to establish correspondence between pairs of views. For instance,
when considering two views, the essence of clustering partially
view-aligned data is to find a correspondence, often represented as
a permutation matrix P ∈ R𝑛×𝑛 , such that:

Z1 ∼ PZ2 . (2)

It describes the relationship between the latent representations
in the two views. Fig. 2 illustrates the structure of the proposed
method, which comprises two primary modules. The first module is
focused on acquiring contrastive cross-view representation learning
through the utilization of predicted correspondences P, while the
second module is dedicated to estimating view correspondences
via optimal transport-based graph matching. These two modules
can reinforce each other in the proposed model.

3.2 Contrastive Cross-View Feature Learning
We introduce a contrastive cross-view representation learning mod-
ule to harness consistency and complementary information across
views. Specifically, to leverage the consistency of feature informa-
tion relying on the known correspondences of a subset of samples,
we first adopt a contrastive learning approach aimed at maximizing
mutual information across different views [14]. The formulation of
this contrastive learning loss is as follows:

L𝑐𝑙 = −
∑︁
𝑖∈Ω

(𝐼 (Z1Ω,Z
2
Ω) + 𝛼 (𝐻 (Z1Ω) + 𝐻 (Z2Ω))), (3)

where ZΩ represents the subset of view-specific features derived
from the known correspondences part of the samples. 𝐼 denotes
mutual information,𝐻 signifies information entropy, and the param-
eter 𝛼 serves as an entropy regularization term. The term 𝐼 (Z1Ω,Z

2
Ω)

encourages Z1Ω and Z2Ω to acquire greater view-consistent informa-
tion, while 𝐻 (Z1Ω) and 𝐻 (Z2Ω) are employed to prevent the trivial

Figure 3: Illustration of the proposed cross-view feature learn-
ing strategy. The latent feature representations for each view
are obtained and constrained through contrastive learning
applied to known correspondence. Additionally, both the
semantic features and latent features are constrained by the
aligned cross-view contrastive learning loss.

scenario in which all samples exhibit uniform consistency. How-
ever, relying solely on contrastive learning with known aligned
samples limits the ability to harness multi-view consistency in un-
aligned data. Moreover, strictly contrasting features may lead to
the dominance of irrelevant view-private noises, which can dis-
tort the extraction of semantic consistency and overlook available
complementary information.

To address this challenge, we aim to learn semantic features for
each view to aid in discovering consistency information. However,
without any label information, directly learning semantically
meaningful features is challenging. As discussed, similarity
graphs convey view-invariant semantic structures of instance
relationships. Here, we introduce a feature extraction strategy to
generate semantic features that leverages the learning of similarity
graphs by connecting it with view alignment, as detailed in Sec-
tion 3.3. Subsequently, we propose a cross-view contrastive loss to
guide the exploitation of consistency based on the learned semantic
features and view-alignment. Specifically, we employ modules F 𝑣

on the latent representations of each view Z𝑣 for semantic feature
learning:

Z̃1 = F 1 (Z1), (4)

Z̃2 = F 2 (Z2) . (5)
The generated semantic feature Z̃1 is expected to exhibit consis-

tency with Z2, and vice versa for Z̃2. Consequently, these generated
semantic features can also serve as view-consistent information
guiding feature learning. To align with the nature of our partially
view-aligned dataset, we leverage the alignment matrix P to as-
sist in learning the semantic and latent features with an aligned
cross-view contrastive loss:

L𝑎𝑐𝑐 =




Z̃1 − PZ2



2
𝐹
+




PZ̃2 − Z1



2
𝐹
. (6)

As illustrated in Fig. 3, this cross-view contrastive loss facilitates
the learning of both latent features and semantic features based on
the learned alignment matrix P. This module allows for referencing
both latent features and semantic features, exploiting consistency
information to enhance the learning process.
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3.3 Cross-View Graph Alignment
The primary challenge in our proposed method lies in extracting
view alignment information, specifically computing the permuta-
tion matrix P, and integrating it with the learning of semantic fea-
tures to guide cross-view contrastive learning. Existing approaches
[8, 48] calculate the view-alignment P based on Euclidean distances
between latent features across views, which may incorporate mean-
ingless view-private information, leading to erroneous view corre-
spondences during the learning process. Here, ourmethod leverages
similarity graphs to capture view-invariant semantic structures of
instance relationships from a graph alignment perspective. How-
ever, directly applying the Euclidean distance between similarity
graphs for view-alignment is not feasible, as it presents challenges
in exploring the global structure among the graphs [26]. Instead, the
Gromov-Wasserstein distance of graph structures and the Wasser-
stein distance of graph signals offer effective measures for quanti-
fying the dissimilarity between two graphs. Inspired by [26], we
consider employing the Wasserstein distance on the distributions
derived from similarity graphs based on semantic features. Specifi-
cally, the relation graphs with the learned semantic feature for each
view can be first estimated as:

S𝑣𝑖 𝑗 =

〈
Z̃𝑣
𝑖
, Z̃𝑣

𝑗

〉


Z̃𝑣
𝑖





2




Z̃𝑣
𝑗





2

, (7)

where ⟨·, ·⟩ represents the inner product of two vector. Subsequently,
we define the graph distribution as a normal distribution with a
mean of 0 and a covariance matrix of L†, leveraging the similarity
graph S and its Laplacian L = D − S:

𝜇 = N(0,Σ), (8)

where Σ = L† is the covariance matrix of this distribution and †
denotes the pseudoinverse operator. Furthermore, the graph distri-
bution with the alignment matrix P can be further defined as:

𝜇P = N(0, PΣP⊤). (9)

Let 𝜇S
1
and 𝜇S

2

P denote the distributions of graphs on view 1 and
alignment graphs on view 2, respectively. The Wasserstein distance
W22 (𝜇S1 , 𝜇S2P ) between these distributions quantifies the dissimilar-
ity between two graphs, and optimizing this distance can facilitate
the alignment process P. In term of these definitions, we develop a
variant of the graph matching formulation [26] to design the graph
alignment module, aiming to find a permutation that minimizes
the 𝐿2-Wasserstein distance between the distributions of the graph
and the alignment graph, and have the following formulation of:

L𝑎𝑙𝑔 = 𝑡𝑟 (Σ1) + 𝑡𝑟 (Σ2) + 𝑡𝑟

(√︂
Σ

1
2
1 PΣ

1
2
2 P⊤Σ

1
2
1

)
, (10)

where P =
{
P ∈ R𝑛×𝑛 | P ∈ [0, 1]; PΩ = 1; 1⊤P = 1; P1 = 1; P⊤P = I

}
and PΩ = 1 denotes the known correspondences, which are as-
signed as 1 in this alignment matrix. This optimization problem
can be solved using stochastic gradient descent [26].

How Does Our Model Exploit Consistency Information with
Partially Alignment? The optimal P facilitates the exploration
of assignments aimed at matching two partially aligned views by

assessing the similarity between graphs and enforcing shared struc-
tural characteristics (graph distribution) between the views. In ad-
dition, this alignment matrix serves as a guide for contrastive cross-
view feature learning to learn the semantic features by addressing
the challenge of partially aligned views. In turn, the learned seman-
tic features that are associated with the graph structure help to
accurately estimate reliable graph distributions, further enhancing
the learning process of the view alignment matrix. By combin-
ing structural graph alignment and semantic feature learning, this
collaborative learning strategy improves overall clustering perfor-
mance, capturing the intrinsic relationships among diverse data
representations.

3.4 Optimization
We employ an alternating optimization approach to iteratively
update the parameters of the autoencoder and the alignment matrix
P. The training process can be outlined as the following steps:

• We adopt a pretraining strategy to initially optimize the en-
tire network using data with known view correspondence.
In the pretraining stage, the reconstruction loss L𝑟 and con-
trastive lossL𝑐𝑙 are utilized to train the encoder and decoder,
mapping the input data to appropriate latent space.

• In the subsequent epochs, unaligned data is included to per-
form representation learning and alignment in an iterative
order. Specifically, the contrastive representation module
is employed to learn the latent features and the semantic
features. The view alignment module is trained on the sim-
ilarity graphs with L𝑎𝑙𝑔 to obtain the alignment matrix P.
These two modules are referenced and learned in a cyclical
manner.

• Finally, a common representation is obtained by concate-
nating the view-specific semantic features, followed by the
application of the K-means clustering algorithm to derive
the final clustering results.

An overview of the optimization algorithm for the proposedmethod
can be found in the supplementary file.

4 Experiments
In this section, we conduct experiments on several widely-used
multi-view datasets to validate the effectiveness of our method. We
compare its performance with several state-of-the-art methods and
provide a comprehensive analysis of the model.

4.1 Experimental Settings
Datasets: six widely-used multi-view datasets are adopted to eval-
uate the effectiveness of our model, including HandWritten [41],
Scene-15 [8], BDGP [3], Caltech101-7 [52], Caltech101-20 [52],
Reuters-dim10 [48].A brief summary of the information for these
datasets is provided in Table 1.
Competing methods: in this experimental study, we compare our
method with 12 standard multi-view clustering methods, includ-
ing: CCA [31], KCCA [2], DCCA [1], DCCAE[37], MvC-DMF [53],
SwMC[24], GMC [33], AE2-NETs [51], LMVSC [10], SMVSC [29],
OPMV [20], FastMICE [7] and 4 partially view-aligned multi-view
clustering methods: MVC-UM [50], PVC [8], MvCLN [48], SURE
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Table 1: Statistics of the datasets.

Dataset Samples Classes Features

HandWritten 2,000 10 {240,216}
Scene-15 4,485 15 {50,59}
BDGP 2,500 5 {1,750,79}

Caltech101-7 1,474 7 {1,984,512}
Caltech101-20 2,386 20 {1,984,512}
Reuters-dim10 9,379 6 {10,10}

[47]. For all competing approaches, we report their experimen-
tal results from related papers or use the published source code
and conduct experiments following the optimal parameter settings
provided by the authors.
Construction of partially aligned data: to assess the perfor-
mance in handling partially view-aligned data, we first generate
such data from multi-view data. Specifically, to create 𝛾 partially
aligned multi-view data, we select 𝛾 of samples from all views as
fixed known correspondences. The remaining samples are randomly
shuffled to generate the unaligned parts of this data.
Evaluation metrics: to evaluate the clustering performance, we
adopt three widely used metrics: Accuracy (ACC), Normalized Mu-
tual Information (NMI), and Adjusted Rand Index (ARI). Higher
values of ACC, NMI, and ARI indicate better clustering performance.

4.2 Comparative Analysis
We evaluate our method by comparing with other competing ap-
proaches in two settings: partially aligned multi-view data where
the alignment ratio is 50% and fully aligned multi-view data. No-
tably, methods such as PVC, MVC-UM, MvCLN, and SURE are
specifically designed to handle partially aligned multi-view data.
For other standard MVC approaches, to address the unaligned data,
we employ PCA for dimensionality reduction, followed by the uti-
lization of the Hungarian algorithm to establish the mapping rela-
tionship among samples. This transformation effectively converts
the partially alignedmulti-view data into the context of fully aligned
multi-view clustering. Tables 2 and 3 present the clustering perfor-
mance comparison on these benchmark datasets under partially
and fully aligned multi-view settings, respectively. Based on these
results, we have the following observations:

• Compared with most traditional MVC methods, which are
unable to handle partially-aligned view data, PVC, MVC-UM,
MvCLN, SURE and our method consistently demonstrate su-
perior clustering results on that, outperforming other meth-
ods. This advantage can be attributed to the fact that these
models initially consider the partially view-aligned problem.
In contrast to using the Hungarian algorithm to construct
mapping relationships, these methods are able to learn accu-
rate view alignment, addressing the challenge of partially-
aligned view data.

• Obviously, compared with other PVC methods, our method
achieves the best results on most datasets. These findings
demonstrate the effectiveness of our method in feature learn-
ing and its accuracy in constructing cross-view mapping
relationships.

• Furthermore, our method achieves better and more com-
petitive performance even when compared with traditional
MVC methods at a fully aligned setting (without missing
view correspondences). Especially, the results of our method
on partially-aligned view data significantly surpass that of
standard MVC methods on Caltech101-7 with fully aligned
data. The results consistently demonstrate that our method
achieves comparable and, in many cases, superior perfor-
mance in this scenario. These findings provide additional
validation for the effectiveness of the proposed feature learn-
ing framework.

4.3 Model Analysis
In this section, we conduct a comprehensive analysis of our method
from various perspectives, encompassing ablation studies, an exam-
ination of the impact of different alignment ratios, and validation
of the view alignment module.

4.3.1 Ablation Studies. We conduct an ablation study to assess the
effectiveness of key components in our method: the cross-view con-
trastive learning and the view alignment learning. The impact of the
loss functions L𝑎𝑐𝑐 and L𝑐𝑙 of the cross-view contrastive learning
is comparatively evaluated on the Caltech101-7, Caltech101-20, and
BDGP datasets. Additionally, we evaluate the view alignment mod-
ule, L𝑎𝑙𝑔 , by comparing it with the Hungarian algorithm (wherein
the alignment matrix P is learned without the view alignment
module). As illustrated in Table 4, we observe that the clustering
performance improves with the inclusion of each model compo-
nent. This consistent improvement validates that each component
contributes significantly to enhancing clustering outcomes.

4.3.2 Does the model exhibit robustness to different view-
alignment ratios? We conduct experiments to assess the robust-
ness of our method under different data alignment ratios. Specifi-
cally, we vary the alignment ratio (𝛾 ) from 20% to 100% with a gap
of 20% on the Caltech101-20 and Reuters data. These results are
depicted in Fig. 4. From them, we observe that: the more available
alignment data, the better the performance of all PVC methods
become, and the proposed method shows a significant increase.
Especially, when the alignment ratio is 80%, our results are already
close to the results of fully aligned data. Our method consistently
outperforms other competing methods across different alignment
ratios of the data. Even with a low alignment ratio, our method
achieves satisfactory results, verifying the robustness of the pro-
posed method.

4.3.3 Is cross-view contrastive learning helpful? The effec-
tiveness of cross-view feature learning can be assessed through
the quality of learned semantic features, which directly influences
clustering ability. In Figure 5, we visualize the learned semantic fea-
tures of the proposed method and competing PVC methods (PVC,
MvCLN, and SURE). The results demonstrate that our method suc-
cessfully captures accurate cluster structures, forming more com-
pact clusters compared to the competing methods. This observation
indicates that our method produces discriminative semantic feature
representations, enhancing its performance in the clustering task.
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Table 2: Comparison of clustering performance with a partially aligned setting on six benchmark datasets, with the best results
highlighted in red and the second-best results in blue.

Methods HandWritten Scene-15 BDGP Caltech101-7 Caltech101-20 Reuters
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

CCA 55.90 46.48 36.91 32.73 32.24 18.80 63.00 34.28 31.89 32.50 15.61 6.53 22.13 29.34 10.35 43.44 19.10 12.36
KCCA 38.85 29.53 19.05 33.09 31.43 16.35 47.32 21.26 17.56 26.87 9.34 3.59 16.01 17.47 4.52 29.40 5.31 3.80
DCCA 36.10 40.69 25.75 34.27 36.55 18.83 56.60 25.88 22.60 30.46 10.39 5.67 21.50 25.39 8.90 33.10 7.36 4.96
DCCAE 43.55 48.13 34.18 33.62 36.56 18.54 59.20 28.29 25.57 47.42 32.22 20.91 31.56 40.38 17.47 31.50 7.00 5.06

MvC-DMF 51.37 41.99 30.32 28.49 24.31 11.22 50.30 52.31 29.91 38.21 6.54 5.23 30.13 22.02 8.61 24.75 3.02 1.42
SwMC 21.50 14.78 7.86 31.03 30.39 12.94 36.75 8.64 7.23 46.12 9.31 2.08 33.82 1.16 0.39 27.41 0.04 -0.01
GMC 43.50 51.29 30.50 11.08 4.51 0.10 49.92 28.40 23.55 53.73 17.61 8.64 39.10 20.51 7.86 26.98 4.50 0.46

AE2-NETs 69.10 66.45 56.08 28.56 26.58 12.96 39.16 17.77 6.15 55.97 38.80 34.91 42.46 46.96 33.15 33.31 3.71 2.49
LMVCS 47.40 45.08 30.92 27.76 19.03 10.89 44.72 25.21 19.23 61.26 24.25 22.18 25.44 22.85 5.13 37.02 9.16 10.17
SMVSC 50.85 47.57 35.29 22.92 13.96 15.47 50.20 28.34 23.36 47.62 18.72 15.01 35.16 27.78 21.94 38.13 11.40 25.42
OPMV 43.10 47.56 28.99 29.90 27.15 12.55 46.48 19.71 9.17 34.19 17.59 12.08 22.67 30.09 11.96 37.48 10.62 7.77

FastMICE 48.93 58.34 37.51 30.00 25.29 13.20 53.49 30.19 25.75 41.47 27.55 22.14 25.50 29.61 12.22 36.16 14.90 11.20

PVC 76.45 74.47 66.22 37.88 39.12 20.63 89.24 73.56 74.93 50.14 53.54 38.38 48.95 64.19 38.34 35.34 16.12 11.55
MVC-UM 71.45 69.16 60.47 25.70 27.70 11.54 46.68 21.88 8.81 55.50 45.32 37.38 43.25 60.14 32.30 36.87 13.96 15.16
MvCLN 64.55 62.29 49.32 38.53 39.90 24.26 73.04 46.15 44.28 45.52 50.34 36.87 46.19 56.69 41.43 50.63 32.69 26.77
SURE 77.31 72.42 63.01 38.67 40.00 22.53 79.29 57.95 55.87 41.00 45.98 26.79 53.44 59.30 41.90 51.01 32.11 25.76
Ours 83.16 79.24 73.01 41.63 42.05 22.57 90.74 77.40 78.84 92.33 83.32 94.69 76.02 71.18 89.27 54.66 35.93 29.90

Table 3: Comparison of clustering performance with a fully aligned setting on six benchmark datasets, with the best results
highlighted in red and the second-best results in blue.

Methods HandWritten Scene-15 BDGP Caltech101-7 Caltech101-20 Reuters
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

CCA 71.10 70.15 60.85 36.37 36.91 19.82 81.52 62.53 61.45 58.14 62.53 48.80 47.07 59.56 38.82 44.01 21.96 15.20
KCCA 38.40 28.75 17.15 37.93 37.42 21.38 89.44 80.49 76.24 49.80 36.94 50.31 43.71 59.39 35.68 52.23 22.17 19.20
DCCA 71.75 68.03 59.54 36.61 39.20 21.03 96.72 91.58 91.56 47.69 54.23 37.13 41.70 61.07 34.76 52.30 34.02 24.57
DCCAE 34.15 35.00 20.34 34.58 39.01 19.65 93.12 90.37 85.73 52.29 57.19 45.80 41.32 56.03 30.44 43.81 34.73 19.08

MvC-DMF 70.04 68.18 58.09 30.99 31.35 15.68 35.26 11.47 4.98 41.56 18.44 5.23 50.13 50.90 31.92 24.85 3.05 1.88
SwMC 25.25 21.39 10.02 33.89 32.98 11.78 28.32 9.90 3.59 59.16 16.31 27.59 35.88 16.56 10.11 27.45 0.09 -0.01
GMC 67.25 80.62 65.78 24.97 29.56 4.03 61.24 45.84 36.23 78.83 64.88 58.48 50.67 49.43 17.25 30.88 8.95 0.57

AE2-NETs 79.40 76.27 70.13 37.17 40.47 22.24 57.52 45.83 16.83 61.26 45.75 42.58 40.32 53.20 31.57 41.13 8.24 7.57
LMVCS 69.45 70.22 58.22 35.12 35.58 18.92 44.72 25.21 19.23 66.28 51.65 42.84 45.43 64.76 37.64 45.93 17.68 17.19
SMVSC 70.05 64.19 52.49 36.76 35.33 25.98 61.48 45.52 36.58 68.86 61.52 52.73 62.28 58.46 57.06 42.52 18.91 33.18
OPMV 66.80 68.07 56.24 37.26 40.40 21.55 64.32 47.09 24.47 49.59 53.06 41.58 46.02 60.00 35.80 45.68 21.75 15.10

FastMICE 79.99 80.21 73.40 42.64 41.32 24.51 74.18 61.18 57.70 57.66 53.78 45.98 47.02 60.21 38.46 39.23 20.48 14.94

PVC 62.70 60.97 45.56 32.31 34.24 15.88 96.28 91.22 91.08 52.44 61.64 45.77 50.13 67.55 39.74 38.54 18.92 12.37
MVC-UM 84.25 73.65 68.60 35.45 37.02 19.56 60.92 48.33 19.20 56.17 58.84 35.17 43.50 61.26 33.05 36.90 13.58 14.74
MvCLN 81.23 73.55 66.17 42.46 40.05 23.67 77.59 55.68 53.65 45.64 47.72 30.86 40.93 54.64 32.84 57.72 33.89 28.97
SURE 73.76 71.98 62.77 41.59 39.46 22.83 93.39 85.37 85.02 42.74 45.08 29.00 48.98 58.56 38.65 56.89 32.74 28.82
Ours 87.65 80.00 75.71 41.49 42.98 23.64 98.04 94.07 95.19 87.45 78.50 92.42 82.10 78.29 93.38 57.51 37.78 32.89

Table 4: Clustering results of different loss combinations.
Among them, when L𝑎𝑙𝑔 is not added, we use the Hungarian
algorithm for alignment.

L𝑎𝑙𝑔 L𝑎𝑐𝑐 L𝑐𝑙
Caltech101-7 Caltech101-20 BDGP

ACC NMI ARI ACC NMI ARI ACC NMI ARI

✓ 61.18 18.29 16.57 59.33 48.80 43.53 38.51 15.10 10.50
✓ ✓ 73.49 59.12 69.49 63.44 56.60 56.55 44.72 29.14 17.04
✓ ✓ 89.96 82.85 94.08 73.89 70.34 89.03 87.49 69.10 71.99
✓ ✓ ✓ 92.33 83.32 94.69 76.01 71.18 89.27 90.74 77.40 78.84

61.19 18.50 18.40 50.20 38.04 26.26 38.25 9.48 8.90
✓ 70.42 56.13 66.37 59.87 52.91 46.33 43.62 20.32 7.38

✓ 79.81 71.10 73.88 67.98 61.57 76.90 62.39 29.85 30.13
✓ ✓ 88.97 78.35 89.80 68.63 61.79 77.59 89.75 75.21 76.74

4.3.4 Can graph alignment accurately capture view corre-
spondence? The key of our proposed method lies in its capacity to
learn correspondences for view-alignment. To further validate the
effectiveness of the alignment module, we assess the quality of the
learned view alignment matrix. Specifically, we use sankey diagram
to compare the view-alignment obtained through the Hungarian
algorithm, PVC, and our method on the BDGP and Caltech101-7
datasets, as illustrated in Figure. 6. As observed, the view correspon-
dences learned by our method accurately identify view mappings
across different clusters. The ground truth view alignment exhibits
a one-to-one mapping between the two columns with the same
cluster. In contrast, the view correspondences obtained through
the Hungarian algorithm and PVC may exhibit inconsistencies
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Figure 4: The clustering performance of our method is com-
pared with several competing methods on the Caltech101-20
and Reuters datasets, considering varying alignment ratios.
Please enlarge the figure for better visual results.

Figure 5: The t-SNE visualization of learned features of
our method and competing PVC methods (PVC, MvCLN,
and SURE) on the Handwritten and Caltech101-20 datasets.
Please enlarge the figure for better visual results.

with the ground truth view alignment. This result suggests that
the alignment matrix learned by our method can precisely capture
view-alignment information compared to the Hungarian algorithm
and PVC approaches.

5 Conclusion
In this study, we propose a novel approach to tackle the practi-
cal challenge of Partially View-aligned Clustering (PVC). Unlike
existing PVC methods that learn view correspondence based on
latent features, our method leverages similarity graphs to capture
the view-invariant semantic structures of instance relationships.
We introduce graph distribution-matched contrastive learning for
partially view-aligned clustering. This method effectively learns
view correspondence by utilizing graph distribution metrics that
capture semantic view-invariant instance relationships. The graph
matching mechanism uncovers comprehensive cross-view map-
pings, even in scenarios where only partial initial correspondence

Figure 6: The Sankey diagram illustrates the view alignment
obtained through the Hungarian algorithm, PVC, and our
method on the BDGP and Caltech101-7 datasets. Each col-
umn on both sides represents two views, and different colors
indicate different clusters. The ideal view alignment should
exhibit a one-to-one mapping between the two columns with
the same cluster.

is available. Furthermore, it leverages well-learned view-alignment
to exploit consistency and complementary information, thereby
effectively learning meaningful semantic features. Comprehensive
experiments conducted on real-world datasets demonstrate the ef-
fectiveness of our proposed approach for PVC tasks. Furthermore,
a model analysis study confirms that our approach effectively ad-
dresses the challenge of learning precise view correspondence.

Acknowledgments
This work was supported in part by National Natural Science Foun-
dation of China (Project No.62106136, No. 62072189), in part by the
GuangDong Basic and Applied Basic Research Foundation (Project
No. 2022A1515010434, 2022A1515011160, 2024A1515011437), in
part by TCL Science and Technology Innovation Fund (Project No.
20231752), in part by the Research Grants Council of the Hong Kong
Special Administration Region (Projection No. CityU 11206622) and
in part by City University of Hong Kong (Project No. 7005986).

References
[1] GalenAndrew, RamanArora, Jeff Bilmes, and Karen Livescu. 2013. Deep canonical

correlation analysis. In International conference on machine learning. PMLR, 1247–
1255.

[2] Francis R Bach and Michael I Jordan. 2002. Kernel independent component
analysis. Journal of machine learning research 3, Jul (2002), 1–48.

[3] Xiao Cai, Hua Wang, Heng Huang, and Chris Ding. 2012. Joint stage recognition
and anatomical annotation of drosophila gene expression patterns. Bioinformatics
28, 12 (2012), i16–i24.



Contrastive Graph Distribution Alignment for Partially View-Aligned Clustering MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

[4] Si-Guo Fang, Dong Huang, Xiao-Sha Cai, Chang-Dong Wang, Chaobo He, and
Yong Tang. 2023. Efficient multi-view clustering via unified and discrete bipartite
graph learning. IEEE Transactions on Neural Networks and Learning Systems
(2023).

[5] Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and Jian Sun. 2021. Ota:
Optimal transport assignment for object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 303–312.

[6] Mehmet Gönen and Ethem Alpaydın. 2011. Multiple kernel learning algorithms.
The Journal of Machine Learning Research 12 (2011), 2211–2268.

[7] Dong Huang, Chang-Dong Wang, and Jian-Huang Lai. 2023. Fast multi-view
clustering via ensembles: Towards scalability, superiority, and simplicity. IEEE
Transactions on Knowledge and Data Engineering (2023).

[8] Zhenyu Huang, Peng Hu, Joey Tianyi Zhou, Jiancheng Lv, and Xi Peng. 2020.
Partially view-aligned clustering. Advances in Neural Information Processing
Systems 33 (2020), 2892–2902.

[9] Zhao Kang, Xinjia Zhao, Chong Peng, Hongyuan Zhu, Joey Tianyi Zhou, Xi
Peng, Wenyu Chen, and Zenglin Xu. 2020. Partition level multiview subspace
clustering. Neural Networks 122 (2020), 279–288.

[10] Zhao Kang,Wangtao Zhou, Zhitong Zhao, Junming Shao, Meng Han, and Zenglin
Xu. 2020. Large-scale multi-view subspace clustering in linear time. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 34. 4412–4419.

[11] Tanguy Kerdoncuff, Rémi Emonet, and Marc Sebban. 2021. Metric learning
in optimal transport for domain adaptation. In Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences on Artificial Intelligence.
2162–2168.

[12] Christoph H Lampert and Oliver Krömer. 2010. Weakly-paired maximum co-
variance analysis for multimodal dimensionality reduction and transfer learning.
In Computer Vision–ECCV 2010: 11th European Conference on Computer Vision,
Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part II 11. Springer,
566–579.

[13] Zhaoyang Li, Qianqian Wang, Zhiqiang Tao, Quanxue Gao, Zhaohua Yang, et al.
2019. Deep Adversarial Multi-view Clustering Network.. In IJCAI, Vol. 2. 4.

[14] Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv, and Xi Peng. 2021.
Completer: Incomplete multi-view clustering via contrastive prediction. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
11174–11183.

[15] Cheng Liu, Rui Li, Si Wu, Hangjun Che, Dazhi Jiang, Zhiwen Yu, and Hau-San
Wong. 2023. Self-guided partial graph propagation for incomplete multiview
clustering. IEEE Transactions on Neural Networks and Learning Systems (2023).

[16] Chengliang Liu, Jie Wen, Zhihao Wu, Xiaoling Luo, Chao Huang, and Yong
Xu. 2022. Generalized structure-aware missing view completion network for
incomplete multi-view clustering. (2022).

[17] Chengliang Liu, Jie Wen, Zhihao Wu, Xiaoling Luo, Chao Huang, and Yong Xu.
2023. Information Recovery-Driven Deep Incomplete Multi-view Clustering
Network. arXiv preprint arXiv:2304.00429 (2023).

[18] Cheng Liu, Si Wu, Rui Li, Dazhi Jiang, and Hau-San Wong. 2023. Self-supervised
graph completion for incomplete multi-view clustering. IEEE Transactions on
Knowledge and Data Engineering (2023).

[19] Jiyuan Liu, Xinwang Liu, Jian Xiong, Qing Liao, Sihang Zhou, Siwei Wang, and
Yuexiang Yang. 2020. Optimal neighborhood multiple kernel clustering with
adaptive local kernels. IEEE Transactions on Knowledge and Data Engineering 34,
6 (2020), 2872–2885.

[20] Jiyuan Liu, Xinwang Liu, Yuexiang Yang, Li Liu, Siqi Wang, Weixuan Liang, and
Jiangyong Shi. 2021. One-pass multi-view clustering for large-scale data. In
Proceedings of the IEEE/CVF international conference on computer vision. 12344–
12353.

[21] Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Lei Wang, Chang Tang, Jianping Yin,
Dinggang Shen, HuaiminWang, andWenGao. 2018. Late fusion incompletemulti-
view clustering. IEEE transactions on pattern analysis and machine intelligence 41,
10 (2018), 2410–2423.

[22] Grégoire Mialon, Dexiong Chen, Alexandre d’Aspremont, and Julien Mairal.
2020. A trainable optimal transport embedding for feature aggregation and its
relationship to attention. arXiv preprint arXiv:2006.12065 (2020).

[23] Tuan Nguyen, Trung Le, Nhan Dam, Quan Hung Tran, Truyen Nguyen, and
Dinh Q Phung. 2021. TIDOT: A Teacher Imitation Learning Approach for Domain
Adaptation with Optimal Transport.. In IJCAI. 2862–2868.

[24] Feiping Nie, Jing Li, Xuelong Li, et al. 2017. Self-weighted Multiview Clustering
with Multiple Graphs.. In IJCAI. 2564–2570.

[25] Erlin Pan and Zhao Kang. 2021. Multi-view contrastive graph clustering. Advances
in neural information processing systems 34 (2021), 2148–2159.

[26] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal
Frossard. 2019. GOT: an optimal transport framework for graph comparison.
Advances in Neural Information Processing Systems 32 (2019).

[27] Yalan Qin, Guorui Feng, Yanli Ren, and Xinpeng Zhang. 2022. Consistency-
induced multiview subspace clustering. IEEE Transactions on Cybernetics 53, 2
(2022), 832–844.

[28] Xiaomeng Si, Qiyue Yin, Xiaojie Zhao, and Li Yao. 2022. Consistent and diverse
multi-view subspace clustering with structure constraint. Pattern Recognition

121 (2022), 108196.
[29] Mengjing Sun, Pei Zhang, Siwei Wang, Sihang Zhou, Wenxuan Tu, Xinwang Liu,

En Zhu, and Changjian Wang. 2021. Scalable multi-view subspace clustering
with unified anchors. In Proceedings of the 29th ACM International Conference on
Multimedia. 3528–3536.

[30] Huayi Tang and Yong Liu. 2022. Deep safe incomplete multi-view clustering:
Theorem and algorithm. In International Conference on Machine Learning (ICML).
PMLR, 21090–21110.

[31] Alexei Vinokourov, Nello Cristianini, and John Shawe-Taylor. 2002. Inferring a
semantic representation of text via cross-language correlation analysis. Advances
in neural information processing systems 15 (2002).

[32] Chang-Dong Wang, Man-Sheng Chen, Ling Huang, Jian-Huang Lai, and S Yu
Philip. 2020. Smoothness regularized multiview subspace clustering with kernel
learning. IEEE Transactions on Neural Networks and Learning Systems 32, 11
(2020), 5047–5060.

[33] Hao Wang, Yan Yang, and Bing Liu. 2019. GMC: Graph-based multi-view cluster-
ing. IEEE Transactions on Knowledge and Data Engineering 32, 6 (2019), 1116–1129.

[34] Qi Wang, Mulin Chen, Feiping Nie, and Xuelong Li. 2018. Detecting coherent
groups in crowd scenes by multiview clustering. IEEE transactions on pattern
analysis and machine intelligence 42, 1 (2018), 46–58.

[35] QianqianWang, Zhengming Ding, Zhiqiang Tao, Quanxue Gao, and Yun Fu. 2020.
Generative Partial Multi-View Clustering. arXiv e-prints (2020), arXiv–2003.

[36] Siwei Wang, Xinwang Liu, Li Liu, Wenxuan Tu, Xinzhong Zhu, Jiyuan Liu,
Sihang Zhou, and En Zhu. 2022. Highly-efficient incomplete large-scale multi-
view clustering with consensus bipartite graph. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 9776–9785.

[37] Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. 2015. On deep multi-
view representation learning. In International conference on machine learning.
PMLR, 1083–1092.

[38] Yiming Wang, Dongxia Chang, Zhiqiang Fu, Jie Wen, and Yao Zhao. 2022. Cross-
view Graph Contrastive Representation Learning on Partially Aligned Multi-view
Data. arXiv preprint arXiv:2211.04906 (2022).

[39] Yiming Wang, Dongxia Chang, Zhiqiang Fu, and Yao Zhao. 2021. Consistent mul-
tiple graph embedding for multi-view clustering. IEEE transactions on multimedia
(2021).

[40] Jie Wen, Zheng Zhang, Yong Xu, Bob Zhang, Lunke Fei, and Guo-Sen Xie. 2021.
Cdimc-net: Cognitive deep incomplete multi-view clustering network. In Pro-
ceedings of the Twenty-Ninth International Conference on International Joint Con-
ferences on Artificial Intelligence. 3230–3236.

[41] Yi Wen, Siwei Wang, Qing Liao, Weixuan Liang, Ke Liang, Xinhang Wan, and
Xinwang Liu. 2023. Unpaired Multi-View Graph Clustering With Cross-View
Structure Matching. IEEE Transactions on Neural Networks and Learning Systems
(2023).

[42] Mengying Xie, Zehui Ye, Gan Pan, and Xiaolan Liu. 2021. Incomplete multi-view
subspace clustering with adaptive instance-sample mapping and deep feature
fusion. Applied Intelligence 51, 8 (2021), 5584–5597.

[43] Cai Xu, Ziyu Guan, Wei Zhao, Hongchang Wu, Yunfei Niu, and Beilei Ling. 2019.
Adversarial incomplete multi-view clustering.. In IJCAI, Vol. 7. 3933–3939.

[44] Cai Xu, Hongmin Liu, Ziyu Guan, Xunlian Wu, Jiale Tan, and Beilei Ling. 2021.
Adversarial incomplete multiview subspace clustering networks. IEEE Transac-
tions on Cybernetics (2021).

[45] Jie Xu, Huayi Tang, Yazhou Ren, Liang Peng, Xiaofeng Zhu, and Lifang He.
2022. Multi-Level Feature Learning for Contrastive Multi-View Clustering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 16051–16060.

[46] Weiqing Yan, Yuanyang Zhang, Chenlei Lv, Chang Tang, Guanghui Yue, Liang
Liao, and Weisi Lin. 2023. Gcfagg: Global and cross-view feature aggregation for
multi-view clustering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 19863–19872.

[47] Mouxing Yang, Yunfan Li, Peng Hu, Jinfeng Bai, Jiancheng Lv, and Xi Peng. 2022.
Robust multi-view clustering with incomplete information. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45, 1 (2022), 1055–1069.

[48] Mouxing Yang, Yunfan Li, Zhenyu Huang, Zitao Liu, Peng Hu, and Xi Peng. 2021.
Partially view-aligned representation learning with noise-robust contrastive
loss. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 1134–1143.

[49] Xu Yang, Cheng Deng, Zhiyuan Dang, and Dacheng Tao. 2021. Deep multiview
collaborative clustering. IEEE Transactions on Neural Networks and Learning
Systems (2021).

[50] Hong Yu, Jia Tang, Guoyin Wang, and Xinbo Gao. 2021. A novel multi-view clus-
tering method for unknown mapping relationships between cross-view samples.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 2075–2083.

[51] Changqing Zhang, Yeqing Liu, and Huazhu Fu. 2019. Ae2-nets: Autoencoder in
autoencoder networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2577–2585.

[52] Xianchao Zhang, Mengyan Chen, Jie Mu, and Linlin Zong. 2023. Adaptive
View-Aligned and Feature Augmentation Network for Partially View-Aligned



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Xibiao Wang et al.

Clustering. In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 223–235.

[53] Handong Zhao, Zhengming Ding, and Yun Fu. 2017. Multi-view clustering via
deep matrix factorization. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 31.

[54] Liang Zhao, Qiongjie Xie, Sontao Wu, and Shubin Ma. 2023. An End-to-End
Framework for Partial View-Aligned Clustering with Graph Structure. In ICASSP

2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 1–5.

[55] Runwu Zhou and Yi-Dong Shen. 2020. End-to-end adversarial-attention network
for multi-modal clustering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 14619–14628.


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 Contrastive Cross-View Feature Learning
	3.3 Cross-View Graph Alignment
	3.4 Optimization

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparative Analysis
	4.3 Model Analysis

	5 Conclusion
	Acknowledgments
	References

