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1 Introduction
In this supplementary material, we provide additional information
of our approach, including details about the network architecture,
optimization algorithm, convergence analysis of the model training,
and effectiveness analysis of the alignment module. In addition, in
the comparison experiments of the main paper, for the partially
view-aligned data, we employ the Hungarian algorithm to com-
pute the sample correspondence on the PCA projection data, and
then apply the standard MVC method for clustering. For a more
comprehensive comparison, we utilize autoencoders instead of
PCA techniques and present the results of the baseline on partially
aligned data.

2 Experiment Details
In this section, we will first introduce the details of the datasets used,
our network architecture and optimization algorithm. Subsequently,
we will conduct a series of experimental analyses.

2.1 Dataset
Like most partially view-aligned clustering methods, we also select
two view data for experimentation. Next, we will introduce the
details of the six datasets used in the experiments:

• HandWritten Awidely-used image dataset comprises 2,000
handwritten digital images ranging from 0 to 9. Each sample
is represented by six distinct feature sets: 216-dimensional
FAC, 76-dimensional FOU, 64-dimensional KAR, six MORs,
240-dimensional Pix, and 47-dimensional ZER. Following
by [12], we select Pix and FAC as the two views in this
experiment.

• Scene-15. The dataset comprises a total of 4,485 images with
15 scene categories, encompassing both indoor and outdoor
environments. Following [4], we utilize two features for
experimentation, namely, PHOG and GIST features.

∗Both authors contributed equally to this research.
†Corresponding author.

Table 1: The architecture of the autoencoder used in the
contrastive cross-view representation learning module

Encoder Decoder

Dense(ReLU, size = 128) Dense(ReLU, size = 128)
Dense(ReLU, size = 256) Dense(ReLU, size = 256)
Dense(ReLU, size = 128) Dense(Softmax, size = 128)

• BDGP. This dataset contains 2,500 images of drosophila em-
bryos, divided into 5 categories. Each sample is represented
by visual ans textual features, where we use visual features
with dimension 1,750 and textual features with dimension
79 as the two views used in the experiment.

• Caltech101. This is a widely-used image dataset for multi-
view learning, consisting of 9144 images divided into 101
object categories and one background category. For our ex-
periments, we select two subsets, namely, Caltech101-7
and Caltech101-20. Caltech101-7 comprises 7 categories
with a total of 1,474 samples. Caltech101-20 contains 20
categories with a total of 2,386 samples. Following [17], ex-
periments are conducted using the 1,984-dimensional HOG
feature and the 512-dimensional GIST feature as the two
views.

• Reuters-dim10. A subset of the Reuters dataset is used
containing 9,379 instances over 6 categories. Following [14],
German and Spanish texts serve as two distinct views.

2.2 Network Design
In this subsection, we detail the networkmodel of our approach. The
main network of this method consists of three modules, namely the
representation learning module, the contrastive cross-view repre-
sentation learning module and the alignment module. The represen-
tation learning module contains two autoencoders for processing
two view data. The structure of the autoencoders used for each
dataset as shown in Table 2. Among them, Dense represents the
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fully connected layer. The contrastive cross-view representation
learning module is also composed of two autoencoders. For each
data set we use the same architecture, as shown in the Table 1. For
the alignment module, we define two tensors for optimal solution
of the final alignment matrix P.

Algorithm 1: Optimization Algorithm
Input: Given a partially view-aligned dataset {X𝑣}𝑚

𝑣=1, the
index set Ω of aligned data, the number of training
epochs 𝑇 , and the number of clusters 𝐾

Output: Clustering result and trained model
Initialize encoders 𝜃𝑖𝑒 , decoders 𝜃𝑖𝑑 , and {F 𝑣}𝑚

𝑣=1. Set the
learning rates and other hyperparameters.

1. Pre-training using aligned data:
Pre-train encoders and decoders based on reconstruction
loss L𝑟 and contrastive loss L𝑐𝑙 .
2. Training using all data:
while 𝑡 < 𝑇 do

• Update {F 𝑣}𝑚
𝑣=1 for semantic features {Z̃𝑣}𝑚

𝑣=1 using
aligned cross-view constrative loss L𝑎𝑐𝑐 .

• Learn latent features {Z𝑣}𝑚
𝑣=1 with losses L𝑟 , L𝑐𝑙 , and

L𝑎𝑐𝑐 .
• Calculate similarity graphs {S𝑣}𝑚

𝑣=1 and their related graph
distributions based on semantic features {Z̃𝑣}𝑚

𝑣=1 for each
view.

• Learn the view alignment matrix P utilizing L𝑎𝑙𝑔 via
stochastic gradient descent optimization.

• 𝑡 = 𝑡 + 1.
end
3. Clustering: The clustering results are obtained from
semantic features with the application of K-means algorithm.

2.3 Optimization
The overall optimization process of the proposed method is sum-
marized in Algorithm 1. The training process can be outlined as
the following steps:

• We adopt a pretraining strategy to initially optimize the en-
tire network using data with known view correspondence.
In the pretraining stage, the reconstruction loss L𝑟 and con-
trastive lossL𝑐𝑙 are utilized to train the encoder and decoder,
mapping the input data to appropriate latent space.

• In the subsequent epochs, unaligned data is included to per-
form representation learning and alignment in an iterative
order. Specifically, the contrastive representation module
is employed to learn the latent features and the semantic
features. The view alignment module is trained on the sim-
ilarity graphs with L𝑎𝑙𝑔 to obtain the alignment matrix P.
These two modules are referenced and learned in a cyclical
manner.

• Finally, a common representation is obtained by concate-
nating the view-specific semantic features, followed by the
application of the K-means clustering algorithm to derive
the final clustering results.

Figure 1: Convergence curve of our proposed method depicts
the trajectory of both the loss value and clustering perfor-
mance.

2.4 Convergence Analysis
In this subsection, we perform a convergence analysis of the pro-
posed method. As depicted in Fig. 1, there is a discernible trend
wherein the clustering effectiveness demonstrates an upward tra-
jectory as the loss values decrease. This observation suggests that
the proposed method exhibits a favorable convergence property,
signifying its ability to iteratively improve and optimize clustering
performance.

2.5 Experiment with AEs
In the main body of our submission (Section 4.2), we present the re-
sults on partially aligned data compared with multi-view clustering
approaches, including: CCA [9], KCCA [2], DCCA [1], DCCAE[11],
MvC-DMF [18], SwMC[7], GMC [10], AE2-NETs [16], LMVSC [5],
SMVSC [8], OPMV [6], FastMICE [3], MVC-UM [15], PVC [4], Mv-
CLN [14], SURE [13]. Among them, for the standard Multi-View
Clustering (MVC) methods, we adopt PCA to project the original
data into the latent space and employ the Hungarian algorithm
to establish corresponding relationships, and then use the aligned
data as input data. For a more complete comparison, we utilize the
autoencoder illustrated in Table 4 to project the original data into a
lower-dimensional space. Subsequently, we employ the Hungarian
algorithm to establish cross-view correspondence. Afterwards, we
perform the above baseline on the aligned data and implement clus-
tering with the same settings as in the main paper. Among them, for
our method and the other four partial view-aligned clustering meth-
ods, we directly adopt the results in the main paper. As shown in
Table 3, the performance of our method outperforms other methods
significantly on most datasets. Apart from achieving suboptimal
results on the ARI index clustering for the Scene-15 dataset, our
method achieves optimal results on the others. Specifically, in terms
of NMI, our method achieves a 4.77% (HandWritten), 2.05% (Scene-
15), 3.84% (BDGP), 29.78% (Caltech101-7), 6.99% (Caltech101-20),
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Table 2: The architecture of the autoencoders used in our method. Here, we present only the structure of the encoders, and the
decoders consists of the same layers in reverse order.

Dataset Encoder-Layer1 Encoder-Layer2 Encoder-Layer3 Encoder-Layer4

HandWritten Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(Softmax, size = 20)
Scene-15 Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(Softmax, size = 128)
BDGP Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(Softmax, size = 10)

Caltech101-7 Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(Softmax, size = 128)
Caltech101-20 Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(Softmax, size = 128)

Reuters Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(ReLU, size = 1024) Dense(Softmax, size = 10)

Table 3: Comparison of clustering performance with a partially aligned setting on six benchmark datasets, with the best results
highlighted in red and the second-best results in blue.

Methods HandWritten Scene-15 BDGP Caltech101-7 Caltech101-20 Reuters
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

CCA 65.75 55.26 46.92 38.10 37.31 21.62 62.84 37.17 34.05 39.42 22.71 15.13 28.29 32.70 13.19 49.09 26.35 23.00
KCCA 43.00 29.86 20.15 33.29 27.80 16.01 46.40 16.34 12.19 32.90 16.97 10.24 23.30 21.96 7.18 47.86 23.33 21.42
DCCA 55.35 48.76 35.40 27.36 27.81 12.91 51.72 21.95 18.72 50.07 52.36 37.27 35.33 48.48 26.03 39.11 11.70 11.62
DCCAE 56.15 52.43 38.11 26.00 26.92 12.80 47.08 17.50 14.99 52.04 53.60 37.97 40.32 55.99 30.06 40.65 17.09 16.45

MvC-DMF 41.60 31.52 21.14 19.19 8.41 3.73 28.94 3.26 1.48 41.38 8.73 1.32 29.33 19.77 8.02 31.76 10.34 3.23
SwMC 28.60 21.97 9.42 9.74 0.66 -0.01 23.88 2.88 0.64 54.88 4.10 5.47 29.63 14.96 2.07 27.49 0.10 -0.02
GMC 21.95 19.98 2.25 11.51 5.42 0.04 28.56 12.55 2.41 54.27 14.94 5.52 37.05 25.72 4.78 31.92 9.60 -0.05

AE2-NETs 77.60 74.07 66.85 23.92 22.12 9.90 40.68 15.82 6.34 34.19 18.00 7.45 36.04 38.79 23.28 34.88 3.23 2.91
LMVCS 71.85 68.65 59.10 35.90 35.86 18.93 44.72 25.21 19.23 63.91 35.05 19.77 47.49 62.44 33.77 45.08 20.05 18.10
SMVSC 53.40 42.92 32.09 23.99 14.60 9.00 55.12 36.83 28.28 66.15 49.24 47.79 49.33 55.42 39.11 49.86 19.44 20.36
OPMV 74.70 74.50 66.50 18.22 7.85 3.29 41.16 14.25 6.40 45.59 45.99 35.29 44.22 58.06 32.97 43.05 15.03 12.19

FastMICE 62.57 54.42 46.17 36.14 29.73 17.62 53.65 29.73 26.18 43.01 31.79 23.33 40.30 43.29 23.29 36.38 16.00 9.99

PVC 76.45 74.47 66.22 37.88 39.12 20.63 89.24 73.56 74.93 50.14 53.54 38.38 48.95 64.19 38.34 35.34 16.12 11.55
MVC-UM 71.45 69.16 60.47 25.70 27.70 11.54 46.68 21.88 8.81 55.50 45.32 37.38 43.25 60.14 32.30 36.87 13.96 15.16
MvCLN 64.55 62.29 49.32 38.53 39.90 24.26 73.04 46.15 44.28 45.52 50.34 36.87 46.19 56.69 41.43 50.63 32.69 26.77
SURE 77.31 72.42 63.01 38.67 40.00 22.53 79.29 57.95 55.87 41.00 45.98 26.79 53.44 59.30 41.90 51.01 32.11 25.76
Ours 83.16 79.24 73.01 41.63 42.05 22.57 90.74 77.40 78.84 92.33 83.32 94.69 76.02 71.18 89.27 54.66 35.93 29.90

Table 4: The architecture of the autoencoder.

Encoder Decoder

Dense(ReLU, size = 500) Dense(ReLU, size = 10)
Dense(ReLU, size = 500) Dense(ReLU, size = 2000)
Dense(ReLU, size = 2000) Dense(ReLU, size = 500)
Dense(Tanh, size = 10) Dense(ReLU, size = 500)

and 3.24% (Reuters) progress respectively compared with the best
baseline.

2.6 Effectiveness of View-Aligned Learning
The primary contribution of our proposed method lies in its capac-
ity to learn correspondences for view-alignment. In the main body
of our submission (Section 4.3.4), we verified the effectiveness of the
alignment module through Sankey diagrams and heatmaps. To fur-
ther validate the effectiveness of the alignment module, we assess
the quality of the learned view-alignment matrix. Specifically, we
compare the alignment matrices obtained through the Hungarian
algorithm, PVC, and our method on the BDGP, HandWritten, and
Caltech101-7 datasets, as illustrated in Fig. 2. As observed, the view

correspondences learned by our method predominantly align with
the true block-diagonal structure. In contrast, the view correspon-
dences obtained through the Hungarian algorithm and PVC may
exhibit inconsistencies with the ground truth cluster alignment
blocks. This outcome suggests that the alignment matrix learned
by our method can accurately capture cluster-level alignment in-
formation in comparison to the Hungarian algorithm and PVC
approaches.

2.7 Effectiveness of Semantic Feature Learning
Strictly contrasting features may result in the dominance of ir-
relevant, view-specific noise, which can distort the extraction of
semantic consistency and overlook available complementary infor-
mation. In contrast, our goal is to learn view correspondences based
on graph distribution metrics that capture semantic view-invariant
instance relationships. This approach enables the identification
of view-invariant semantic structures semantic structures while
avoiding view-specific noise. Additionally, our semantic feature
learning method employs a feature extraction strategy to gener-
ate semantic features by leveraging such view-invariant semantic
structures with cross-view contrastive loss (Eq.6). Furthermore, we
compare our semantic feature learning method with a latent feature
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Figure 2: Convergence curve of our proposed method depicts the trajectory of both the loss value and clustering performance.

Figure 3: Comparison results of our method, latent feature learning and feature learning using MMD.

learning method and a latent feature learning method using MMD
to mitigate inter-view discrepancies. As demonstrated in Fig. 3,
our semantic feature learning approach outperforms the others,
indicating its effectiveness in reducing inter-view discrepancies.

2.8 Comparison with Single View Learning
We compare the clustering performance of our methodwith the best
results from all single-view under completely unaligned settings, as
shown in Table 5. This demonstrates that our method significantly
outperforms the best results of single-view approaches, indicating
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its effectiveness of avoiding learning inaccurate view alignments
which could lead to degradation of clustering performance.

Table 5: Clustering results of ourmethodwith the best results
from all views (BS) under completely misaligned settings.

Type HandWritten BDGP Caltech101-7
ACC NMI ARI ACC NMI ARI ACC NMI ARI

BS 53.70 54.06 40.58 47.20 32.94 25.97 72.93 59.14 66.69
Ours 61.95 56.21 41.68 59.80 38.39 25.34 86.49 65.31 80.24

2.9 Comparison with Euclidean-Based
View-Alignment

To further evaluate the effectiveness of graph distribution align-
ment, we compare it with the direct optimization of Euclidean
distance on latent features and similarity graphs, as shown in Ta-
ble 6. The results indicate that alignment using graph distribution
outperforms other methods.

Table 6: Comparison with different view-alignment learning.

Type Caltech101-7 Caltech101-20 BDGP
ACC NMI ARI ACC NMI ARI ACC NMI ARI

Latent Feature 83.79 77.88 87.36 69.82 61.62 80.33 90.08 74.26 76.99
Graph Node 89.28 81.00 94.74 74.31 72.97 84.83 90.08 73.85 77.09

Graph Distribution 92.33 83.32 94.69 76.01 71.18 89.27 90.74 77.40 78.84

2.10 Visualization of graph distribution
comparison

Furthermore, we utilize the learned view-alignment matrix to re-
store the alignment of the similarity graph obtained from seman-
tic features (Eq.(7)). We then compare this restored graph to one
aligned with the ground-truth view matrix. As depicted in Figure. 4,
the restored graph exhibits a block-diagonal structure similar to
that aligned with the ground truth matrix. By recovering the block-
diagonal similarity graph, our learned alignment is able to appro-
priately match related samples across views. This analysis of the
aligned similarity graphs lends further support that the alignment
module successfully establishes meaningful cross-view mappings
between the different views.
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