
Appendix

A Implementation Details

A.1 The Sports Dataset

In this paper, we use an ice hockey and a soccer dataset. Table A.1 shows a complete list of features
of these datasets. The dataset records the movements of each player in professional games. The data
sources are game logs and broadcast videos, which are public resources. Personal information of
these players, including age, gender, and physical conditions, has not been included or discussed in
this paper.

Table A.1: The complete list of game features for the ice hockey dataset and the soccer dataset. The table
utilizes adjusted spatial coordinates where negative numbers denote the defensive zone of the acting player and
positive numbers denote the offensive zone.

Type Name Range

Ice
Hockey

Spatial
Features

X Coordinate of Puck [-100, 100]
Y Coordinate of Puck [-42.5, 42.5]

Velocity of Puck (−∞,+∞)
Angle between [−3.14, 3.14]the puck and the goal

Temporal
Features

Game Time Left [0, 3,600]
Event Duration (0, +∞)

In-Game
Features

Score Differential (−∞,+∞)
Manpower
Situation

{Even Strength, Shorted
Handed, Power Play}

Home or Away Team {Home, Away}
Action Outcome {successful, failure}

Soccer

Spatial
Features

X Coordinate of ball [0, 100]
Y Coordinate of ball [0, 100]

Velocity of ball (−∞,+∞)
Angle between [−3.14, 3.14]the ball and the goal

Temporal
Features

Game Time Remaining [0, 100]
Event Duration (0, +∞)

In-Game
Features

Goal Differential (−∞,+∞)
Manpower Situation [-5, 5]
Home or Away Team {Home, Away}

Action Outcome {successful, failure}

Ice Hockey Dataset In this paper, we use a play-by-play dataset constructed by Sportlogiq1. They
capture the information of an on-puck player (player possessing the puck) from broadcast videos
with computer vision techniques. In the experiments, we split the games in this dataset into training,

1https://sportlogiq.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sportlogiq.com

testing, and validation datasets according to game dates, so the training dataset contains 956 games
(from October 3rd, 2018 to February 24th, 2019), and the validation dataset contains 119 games
(from February 24th, 2019 to March 12th, 2019), and the testing dataset contains 121 games (from
March 12th, 2019 to April 6th, 2019).

Soccer Dataset In this paper, we utilize the F24 play-by-play soccer game dataset provided by
Opta2. The dataset records the play-by-play information of game events and player actions for
the entire 2017-2018 game season from multiple soccer leagues, including English Premier League,
Dutch Eredivisie, EFL Championship, Italian Serie A, German Bundesliga, Spanish La Liga, French
Ligue 1 and German Bundesliga Zwei.

A.2 Hyper-Parameters

Table A.2: The Architecture of the main components in our model.
Model Network Component Hidden Dimensions

Feature extractor

Residual Layer 128
Leaky Rectified Linear Unit N/A

Spectral Normalization N/A
Residual Layer 128

Leaky Rectified Linear Unit N/A
Spectral Normalization N/A

Spline DRQN

LSTM Layer 128
Fully Connect Layer 128
Rectified Linear Unit N/A
Fully Connect Layer 128
Rectified Linear Unit N/A

Spline function N/A

A CNF Block
(i.e., MADE Layer [1]

Masked Linear Layer 180
Rectified Linear Unit N/A
Masked Linear Layer 180
Batch Normalization N/A

Reverse Layer N/A

We introduce the hyper-parameters for implementing our distributional RL and FS-CNF models.
Table A.2 shows the model architecture.

Distributional RL model. We set the quantile number N to 64 and set the size of hidden layers
(in both LSTM and Resnet) to be 128. The max trace length of LMST is set to 10, and the batch size
is set to 64. The discount factor is set to 1, and the learning rate is set to 0.0005. The η is set to 1.

FS-CNF. The feature extractor is implemented by Residual layers and Spectral Normalization.
To build CNF, we stack 5 layers of CNF blocks. Each block contains a MADE layer [1], a batch
normalization layer, and a reverse layer by following the structure in [2]. The size of a hidden layer
is set to 180, and the learning rate is set to 0.0001.

A.3 Gaussian Discriminant Analytic Model

We introduce the implementation of our Gaussian Discriminant Analysis (GDA) in our baselines.
GDA is a Gaussian mixture model that builds a single Gaussian for each class q(e|z̃m) where 1)
the class label z̃m is constructed by dividing the expected returns E(Z(s, a)) ∈ [0, 1] into m classes
{z̃1, . . . , z̃M}. 2) we estimate the density for latent features e instead of raw inputs (s, a) since build-
ing GDA on spatial-temporal raw features is difficult and the higher-level latent features learned by
neural networks can alleviate this difficulty [3]. In order for q(e|z̃m) to capture the input density, the
distance between data points in latent space must accurately reflect their distance in input space [4].
However, during learning, feature extractors might map the features of OoD inputs to InD regions

2https://www.optasports.com/

2

in the latent space (i.e., Feature Collapse [5]). To fix this issue, we utilize a bi-Lipschitz constraint
for the feature extractor f(x;ωE):

∀x1, x2 ∈ D and x := (s, a), (1)
K1‖x1 − x2‖I ≤ ‖f(x1;ωE)− f(x2;ωE)‖F ≤ K2‖x1 − x2‖I

where ‖ · ‖I and ‖ · ‖F denote metrics in the input and feature space respectively, and K1 and K2
denote the lower and upper Lipschitz constants [6]. The lower Lipschitz bound ensures sensitivity
to distances in the input space, and the upper Lipschitz bound ensures smoothness in the features,
preventing them from becoming too sensitive to input variations and leading to poor generalisation
and loss of robustness. We follow [4] to ensure the bi-Lipschitzness in the feature extractor f(·;ωE)
by implementing it with residual connections together with spectral normalisation.

A.4 Computation Resource and Running Time

We ran the experiments on a cluster operated by the Slurm workload manager. The cluster has
multiple kinds of GPUs, including Tesla T4 with 16 GB memory, Tesla P100 with 12 GB memory,
and RTX 6000 with 24 GB memory. Our algorithm runs with GPUs of at least 12 GB of memory. We
use 24 GB of main memory for training the distributional RL and the FS-CNF models. The number
of running nodes is 1, and the number of CPUs requested per task is 8. Given the aforementioned
resources, the distributional RL program uses around 12 GPU hours to finish the training of 1 random
seed for the ice-hockey dataset and 16 GPU hours for the soccer dataset (since the size of the soccer
dataset is larger). Based on the well-trained distributional RL program, FS-CNF takes around 8
GPU hours to run the ice-hockey dataset and 10 GPU hours to run the soccer dataset.

Computational Complexity. Table A.2 illustrates the structure of our model. RiGIM is based on
the mini-batch gradient descent. LetB be the batch size, M be the total number of data points, N be
the number of quantiles, H be the size of hidden layers, I be the input size, T be the maximum trace
length of the LSTM, L be the number of layers in the CNF and K be the number of autoregressive
layers in the CNF. The computational complexities of a forward pass of Resnet, LSTM, SPL-DQN
and FS-CNF areO(I2+I),O[T (IH+I2+I)],O(H2+NH2) [7] andO[KIH+K(L−1)H2] [2]
respectively. It requires M/B passes to finish one round of training.

Memory Complexity. Following the same notation, the memory complexity of RiGIM isO[2I2+
4IH+(N +1)H2+3KIH+K(L−1)H]. This complexity is based on the number of parameters
in our model. In practice, we also need to consider the influence of batch size.

B Proof

Let’s assume we have vector valued random variables Z, R with distribution space P(R)|S||A|, so

H(Z)
(a)
= H[(I − γP π)−1R]

(b)
= log |det[(I − γP π)−1]|+H[R]

(c)
= log |det[

dπ

1− γ
]|+H[R]

(d)
= −|A||S| log(1− γ) + log |det[dπ]|+H[R]

• (a) holds by following the Bellman consistency Zπ = R + γP πZπ . To see that the
(I − γP π) is invertible, it suffices to show that for any non-zero vector x ∈ R|S|×|A|:

‖(I − γP π)x‖∞ = ‖x− γP πx‖∞
≥ ‖x‖∞ − γ‖P πx‖∞
≥ ‖x‖∞ − γ‖x‖∞
= (1− γ)‖x‖∞
≥ 0

3

which implies I − γP π is full rank.

• (b) holds by following the differential entropy proprieties and the fact that (I − γP π) is
invertible.

• (c) holds by defining dπ = (1 − γ)(I − γP π)−1. Here, we would like to show that
dπ ∈ [0, 1]|S||A|×|S||A| is the induced matrix for distributions over state-action tuples by
following policy π. In other words, the (s, a)th row of dπ is an induced distribution over
states and actions when following π after starting with s0 = s and a0 = aa. This follows
from its definition:

dπ = (1− γ)
∞∑
t=1

(γP π)t (2)

=
(1− γ)[1− (γP π)∞]

1− (γP π)
(3)

=
(1− γ)

1− (γP π)
(4)

C Complementary Results

Methods Assist Goal GWG OTG SHG PPG
+/− 0.181 ± 0 0.189 ± 0 0.187 ± 0 0.028 ± 0 0.071 ± 0 -0.047 ± 0
EG 0.239 ± 0 0.303 ± 0 0.264 ± 0 0.130 ± 0 -0.053 ± 0 184 ± 0
SI 0.237 ± 0 0.596 ± 0 0.409 ± 0 0.123 ± 0 0.095 ± 0 0.361 ± 0

VAEP 0.238 ± 0.017 0.454 ± 0.013 0.225 ± 0.009 0.06 ± 0.005 0.053 ± 0.006 0.315 ± 0.004
T0-GIM 0.397 ± 0.014 0.394 ± 0.016 0.139 ± 0.009 0.16 ± 0.006 0.151 ± 0.008 0.223 ± 0.021

GIM 0.456 ± 0.029 0.408 ± 0.029 0.167 ± 0.017 0.158 ± 0.007 0.134 ± 0.018 0.248 ± 0.014
Na-RiGIM(0.5) 0.593 ± 0.026 0.476 ± 0.01 0.223 ± 0.013 0.173 ± 0.008 0.152 ± 0.014 0.314 ± 0.012

GDA-RiGIM(0.5) 0.591 ± 0.026 0.475 ± 0.011 0.221 ± 0.014 0.174 ± 0.01 0.152 ± 0.013 0.314 ± 0.012
RiGIM(0.5) 0.675 ± 0.002 0.477 ± 0.008 0.266 ± 0.006 0.184 ± 0.003 0.11 ± 0.007 0.355 ± 0.003
RiGIM(c∗) 0.68 ± 0.002 0.477 ± 0.008 0.269 ± 0.004 0.187 ± 0.003 0.107 ± 0.006 0.357 ± 0.003

Methods Point SHP PPP PIM TOI S
+/− 0.206 ± 0 0.119 ± 0 -0.071 ± 0 -0.014 ± 0 0.021 ± 0 0.038 ± 0
EG 0.322 ± 0 0.023 ± 0 0.226 ± 0 -0.112 ± 0 0.153 ± 0 0.534 ± 0
SI 0.452 ± 0 0.066 ± 0 0.274 ± 0 0.138 ± 0 0.224 ± 0 0.405 ± 0

VAEP 0.382 ± 0.017 -0.0 ± 0.001 0.321 ± 0.01 0.027 ± 0.007 0.086 ± 0.002 0.362 ± 0.012
T0-GIM 0.455 ± 0.017 0.153 ± 0.013 0.295 ± 0.024 0.058 ± 0.008 0.356 ± 0.023 0.387 ± 0.022

GIM 0.501 ± 0.024 0.137 ± 0.01 0.345 ± 0.028 0.061 ± 0.018 0.395 ± 0.037 0.431 ± 0.032
Na-RiGIM(0.5) 0.625 ± 0.019 0.175 ± 0.018 0.453 ± 0.02 0.115 ± 0.018 0.597 ± 0.047 0.611 ± 0.036

GDA-RiGIM(0.5) 0.623 ± 0.02 0.174 ± 0.019 0.452 ± 0.02 0.113 ± 0.018 0.593 ± 0.048 0.609 ± 0.037
RiGIM(0.5) 0.678 ± 0.005 0.141 ± 0.007 0.529 ± 0.002 0.146 ± 0.005 0.68 ± 0.008 0.7 ± 0.006
RiGIM(c∗) 0.681 ± 0.004 0.141 ± 0.007 0.531 ± 0.002 0.147 ± 0.005 0.685 ± 0.007 0.707 ± 0.005

Table C.1: The mean±standard deviation (std) of correlations between the player evaluation metrics and stan-
dard measures for the ice hockey dataset. The metrics with zero standard deviation are computed with dynamic
programming and game statistics.

C.1 Correlations with Standard Success Measures

Table C.2 shows the complete results for the correlations between player evaluation metrics and
standard success measures. We report only the standard deviation for the learning-based metrics
across 5 independent runs.

C.2 Player Ranking for All games

We show the ranking for all the games in the 2018-19 NHL season. Table C.3 shows the ranking of
top-20 players. Nikita Kucherov, who was elected as the Most Valuable Player (MVP) and won the
hart memorial trophy, is included in this ranking.

4

Methods Goals Assists SpG PS% KeyP Drb
+/− 0.284 ± 0 0.318 ± 0 0.199 ± 0 0.288 ± 0 0.218 ± 0 0.119 ± 0
EG 0.422 ± 0 0.173 ± 0 0.328 ± 0 0.164 ± 0 0.278 ± 0 0.013 ± 0
SI 0.585 ± 0 0.153 ± 0 0.438 ± 0 -0.140 ± 0 0.052 ± 0 0.050 ± 0

VAEP 0.093 ± 0.037 0.290 ± 0.058 0.121 ± 0.063 -0.111 ± 0.017 0.116 ± 0.005 0.059 ± 0.002
T0-GIM 0.614 ± 0.008 0.455 ± 0.008 0.715 ± 0.007 0.148 ± 0.008 0.472 ± 0.005 0.431 ± 0.004

GIM 0.627 ± 0.022 0.462 ± 0.024 0.72 ± 0.014 0.149 ± 0.013 0.473 ± 0.017 0.437 ± 0.011
Na-RiGIM(0.5) 0.646 ± 0.035 0.507 ± 0.055 0.741 ± 0.024 0.144 ± 0.036 0.503 ± 0.059 0.445 ± 0.06

GDA-RiGIM(0.5) 0.649 ± 0.051 0.506 ± 0.062 0.725 ± 0.031 0.132 ± 0.048 0.478 ± 0.058 0.421 ± 0.064
RiGIM(0.5) 0.671 ± 0.021 0.577 ± 0.015 0.756 ± 0.01 0.181 ± 0.01 0.574 ± 0.005 0.53 ± 0.005
RiGIM(c∗) 0.682 ± 0.009 0.583 ± 0.014 0.757 ± 0.011 0.186 ± 0.008 0.575 ± 0.005 0.531 ± 0.006

Methods Crosses Fouled Yel Red Off OwnG
+/− 0.017 ± 0 0.035 ± 0 0.001 ± 0 -0.069 ± 0 0.053 ± 0 -0.001 ± 0
EG 0.040 ± 0 -0.026 ± 0 0.534 ± 0 0.034 ± 0 -0.124 ± 0 -0.008 ± 0
SI 0.216 ± 0 -0.065 ± 0 0.114 ± 0 -0.089 ± 0 -0.249 ± 0 -0.102 ± 0

VAEP 0.082 ± 0.021 -0.00 ± 0.001 0.024 ± 0.003 0.133 ± 0.023 -0.055 ± 0.006 -0.051 ± 0.011
T0-GIM 0.161 ± 0.01 0.355 ± 0.004 -0.007 ± 0.01 -0.027 ± 0.003 -0.346 ± 0.01 -0.168 ± 0.007

GIM 0.169 ± 0.016 0.358 ± 0.019 -0.0 ± 0.036 -0.025 ± 0.01 -0.336 ± 0.017 -0.154 ± 0.013
Na-RiGIM(0.5) 0.177 ± 0.05 0.391 ± 0.048 0.101 ± 0.078 0.007 ± 0.018 -0.309 ± 0.078 -0.144 ± 0.028

GDA-RiGIM(0.5) 0.161 ± 0.048 0.389 ± 0.047 0.147 ± 0.088 0.018 ± 0.015 -0.259 ± 0.075 -0.125 ± 0.037
RiGIM(0.5) 0.239 ± 0.007 0.448 ± 0.006 -0.092 ± 0.039 -0.039 ± 0.009 -0.451 ± 0.028 -0.185 ± 0.019
RiGIM(c∗) 0.238 ± 0.007 0.446 ± 0.006 -0.101 ± 0.04 -0.042 ± 0.007 -0.455 ± 0.03 -0.184 ± 0.022

Table C.2: The mean±standard deviation (std) of correlations between the player evaluation metrics and stan-
dard measures for the soccer dataset. The metrics with zero standard deviation are computed with dynamic
programming and game statistics.

Figure 1: Visualization of action-value distributions. From top to bottom, the actions are shot (top row), carry
(middle row) and pass (bottom row). We show the 5 samples for each action.

C.3 Visualization of Action Distributions

C.4 The Scale of Uncertainty during Training

We measure the epistemic uncertainty by the feature-space density estimator. In this section, we
compute the scale of the density of the testing game as more games are observed during training.
Figure 2 shows the scale of epistemic uncertainty after training the model with different numbers
of games. We find the scale of epistemic uncertainty decreases as more games are observed, which
shows the model becomes more confident about its predictions after observing richer training data.
This is evidence that data plays an important role in supporting decision-making. This result is
consistent with the findings in [8].

5

Table C.3: Top 20 players in all games in the 2018-19 NHL season with confidence 0.2.

Player Name Position Team P A G RiGIM
Aleksander Barkov C FLA 96 61 35 51.39

Jack Eichel C BUF 82 54 28 47.43
Nathan MacKinnon C COL 99 58 41 46.87

Mark Scheifele C WPG 84 46 38 46.73
Dylan Larkin C DET 73 41 32 43.15
Roman Josi D NSH 56 41 15 43.0

Connor McDavid C EDM 116 75 41 42.95
Mika Zibanejad C NYR 74 44 30 42.15

Johnny Gaudreau LW CGY 99 63 36 42.11
Leon Draisaitl C EDM 105 55 50 41.55

Nikita Kucherov RW TBL 128 87 41 41.39
Sebastian Aho C CAR 83 53 30 40.73
Mathew Barzal C NYI 62 44 18 40.23
Anze Kopitar C LAK 60 38 22 39.81

Bo Horvat C VAN 61 34 27 38.89
Keith Yandle D FLA 62 53 9 38.84

William Karlsson C VGK 56 32 24 38.8
John Carlson D WSH 70 57 13 38.71

Jonathan Toews C CHI 81 46 35 38.42
Kevin Hayes C NYR 55 36 19 38.06

Figure 2: Illustrating the scale of epistemic uncertainty after observing more training games. The uncertainty
is measured by the negative log-likelihood − log p(s, a|z) based on the outputs from the feature-space density
estimator. We show the mean±std uncertainty computed with the games in the testing dataset.

6

D Negative Social Impact

We expect the main impact outside of the machine learning community to be in professional sports.
As part of the entertainment industry, professional sports increase the quality of life for many people.
Fans, media, and clubs can be better engaged in sports games with a player ranking system, but
putting players’ performance under intense scrutiny may yield more pressure on the professional
players. The overwhelming pressure might cause anxiety and thus contradicts the original purpose
of evaluating players, which is about improving their playing skills and market value.

References
[1] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: masked autoen-

coder for distribution estimation. In International Conference on Machine Learning (ICML),
volume 37, pages 881–889, 2015.

[2] George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density
estimation. In Neural Information Processing Systems (Neurips), pages 2338–2347, 2017.

[3] Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip H. S. Torr, and Yarin Gal. De-
terministic neural networks with appropriate inductive biases capture epistemic and aleatoric
uncertainty. CoRR, abs/2102.11582, 2021.

[4] Jeremiah Z. Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. In Neural Information Processing Systems (Neurips), 2020.

[5] Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using
a single deep deterministic neural network. In International Conference on Machine Learning
(ICML), volume 119, pages 9690–9700, 2020.

[6] Mihaela Rosca, Theophane Weber, Arthur Gretton, and Shakir Mohamed. A case for new neural
network smoothness constraints. CoRR, abs/2012.07969, 2020.

[7] Yudong Luo, Guiliang Liu, Haonan Duan, Oliver Schulte, and Pascal Poupart. Distributional
reinforcement learning with monotonic splines. In International Conference on Learning Rep-
resentations (ICLR), 2022.

[8] Borislav Mavrin, Hengshuai Yao, Linglong Kong, Kaiwen Wu, and Yaoliang Yu. Distribu-
tional reinforcement learning for efficient exploration. In International Conference on Machine
Learning (ICML), volume 97, pages 4424–4434, 2019.

7

	Implementation Details
	The Sports Dataset
	Hyper-Parameters
	Gaussian Discriminant Analytic Model
	Computation Resource and Running Time

	Proof
	Complementary Results
	Correlations with Standard Success Measures
	Player Ranking for All games
	Visualization of Action Distributions
	The Scale of Uncertainty during Training

	Negative Social Impact

